UT Energy Week 28 March 2023 Crum Auditorium UT Austin

AMMONIA REFORMING TO HYDROGEN USING Non-Equilibrium Plasma Discharges

Ammonia valorization by complete or partial reforming to hydrogen in distributed plasma activated reactors

D HOOD MCFADDEN, V SAI SUBHANKAR, T C UNDERWOOD AND F BISETTI

Department of Aerospace Engineering and Engineering Mechanics

Efficient reforming of NH₃ to H₂

- NH₃ has enormous potential as (a) hydrogen storage and vector, and (b) carbon-free fuel for power generation.
- Complete or partial reforming of ammonia to hydrogen via ^{di} 2 NH₃ → 3 H₂ + N₂ (∆H^f₀ = 0.47 eV/molec at 25 °C) is commonly catalyzed by transition metals (Ru, Ni, Fe, and Ir) at 600 °C and elevated pressures.
- Novel concept: Energize the internal states of NH₃ (vibrational and electronic) by electron impact in non-equilibrium plasmas and promote bond breaking at lower temperatures (200 °C)
- Objectives: (1) Characterize experimentally yield and efficiency; (2) Validate a computational model for vibra excitation of ammonia

Experiments demonstrate H₂ production [©] TEXAS with RF excitation & low-energy electrons

Preliminary modeling shows effect of vibrationally "hot" ammonia on volcano p **Elementary reactions** Pressure: 1 bar 10⁵ Cu Gas Temp: 373 K Au $NH_3^{(\nu)}(g) + 2^* \rightleftharpoons NH_2^* + H^*$ Vibrational Temp: 3000 K Aa Pd Pt Ground State $NH_2^* + * \rightleftharpoons NH^* + H^*$ TOF [s⁻¹] 00 xcited state Rh Co Ru H[™]VDF $NH^* + * \rightleftharpoons N^* + H^*$ Fe Pt Rh excited state Ru vibrational Energy [e↓] Pd 10⁻⁵ $H^* + H^* \rightleftharpoons H_2(g) + 2 *$ ma -Without Plasma 🗡 Fe With Plasma $N^* + N^* \rightleftharpoons N_2(q) + 2 *$ -2 -1 1 0 2 3 ΔE_{N} [eV]