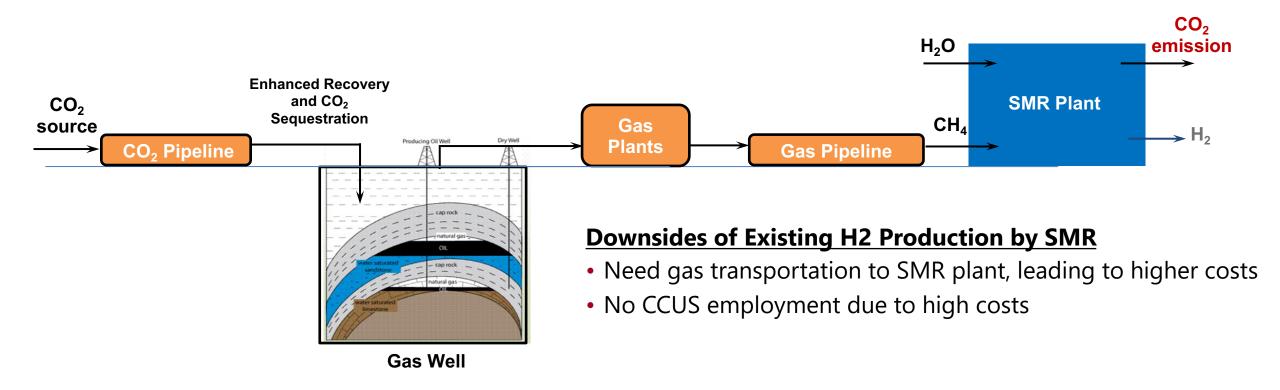
Hydrogen Production at Natural Gas Wellheads

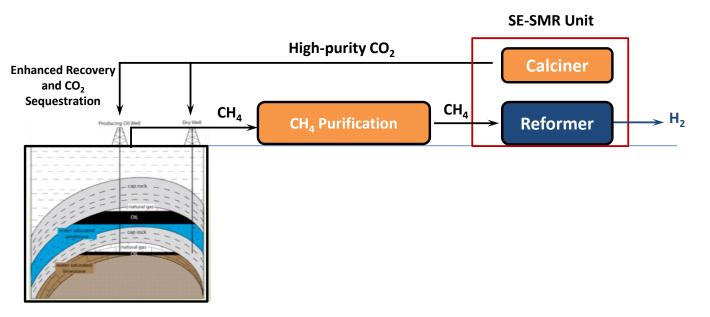
Presenter: Deena Elhossary

Team Member


Yingda Lu, Assistant Professor (PI) Kishore Mohanty, Professor (Co-PI) Deena Elhossary, PhD student Hao Wang, MS student

Hildebrand Department of Petroleum & Geosystems Engineering

Motivation and Background


- H₂ plays an indispensable role as a clean energy carrier in future decarbonized energy systems
- Steam methane reforming (SMR) remains a major route to produce H₂
- Existing SMR, gas production and CO₂ sequestration remain largely separated with little integration

Project Overview

• **Proposed work** - an innovative process that integrates SE-SMR + gas production + CO₂ sequestration

Impacts and Significances

- Low-carbon H₂ production
- Simultaneous CO₂ sequestration/utilization
- Enhance gas production
- H₂ hubs in Texas
- Subsurface H₂ production technology

- Task 1 Develop reservoir models considering the effect of CO₂ injection on gas production
- Task 2 Identify high-capacity CO2 adsorbents for CO₂/H₂ separation
- Task 3 Conduct techno-economic analysis of the integrated process

Project Progress Updates

- Task 1 Develop reservoir models considering the effect of CO₂ injection on gas production
 - Established representative 2D reservoir models for gas recovery under CO₂ injection
 - Studied how permeability heterogeneity, formation thickness, CO₂ injection rate affect gas recovery

- Task 2 Identify high-capacity CO2 adsorbents for CO₂/H₂ separation
 - Designed and constructed an apparatus for testing the performance of CO₂ adsorbents
 - Conducted literature survey and identified a few adsorbent candidates for testing
 - Performed preliminary characterizations of adsorbent candidates (BET surface area, etc.)

- Task 3 Conduct techno-economic analysis of the integrated process
 - Completed the process simulation setup for conventional SMR and SE-SMR using Aspen Plus
 - Conducted sensitivity analysis of pressure, temperature, CH_4/H_2 ratio on CH_4 conversion