

Computational Design and Engineering of Biocatalysts for CO₂ Reduction

OUR TEAM

Prof. Yi Lu

Dr. Yunling Deng

Dr. Casey Van Stappen

tappen 🛛 Prof. Narayana Aluru Mohan Teja Dronadula

YUNLING DENG, PHD

Lu Lab Postdoc Department of Chemistry The University of Texas at Austin

MOHAN TEJA DRONADULA

Multiscale Nanotechnology group Ph.D. Oden Institute The University of Texas at Austin

Introduction

Designing biocatalysts for converting CO₂ into valuable products offers a green way to minimize greenhouse gas emissions and generate a sustainable net-zero carbon economy.

- Cobalt-substituted myoglobin (CoMb) can reduce CO₂ to CO under photocatalytic conditions.
- The catalytic activity can be enhanced by tuning the secondary coordination sphere (SCS).
- **Aims** 1. Determine the oxidation states of CoMb system capable of CO_2 binding.
 - 2. Calculate the energy landscapes associated with CO₂ activation and reduction.
 - 3. Identify favorable SCS interactions for CO₂ binding and activation.

Angew. Chem. Int. Ed. 2023, e202215719, in press

Methodology and Benchmarking

- QM/MM method was employed to deal with the large system sizes.
- Deviations from full scale DFT calculations can be minimized by careful selection of the QM region.
- Electrostatic potential at the metal center was used for QM region selection.
- Additionally, structural and opto-electronic properties were computed to benchmark with experiments.

Absorption spectrum plots showing a red shift of 30nm between Co(II) and Co(III).

Convergence in potential w.r.t QM size

Results and Future Plans

- Preliminary QM/MM MD simulations show that CO₂ does not bind to Co(II)Mb system.
- Binding was observed in Co(0)Mb and Co(I)Mb systems and the binding energies were similar (< 5kcal/mol).
- Charge transfer from Porphyrin to CO₂ was observed upon binding.

Future plans:

- Calculate the energy landscapes associated with CO₂ activation and reduction to CO in CoMb systems.
- Use the established methodology to identify favorable SCS interactions for CO₂ binding and activation.
- Adopt machine learning framework to tackle the time scale limitations (e.g., in free energy calculations).

Zeng, Jinzhe, et al, *Journal of chemical theory and computation* 17.11 (2021): 6993-7009.

