Uncertainty Quantification for the Circular Economy

Raymond J. Park^{1,4}, Michael Baldea^{1,3}, Erhan Kutanoglu²

¹ McKetta Department of Chemical Engineering, ²Operations Research and Industrial Engineering Graduate Program, ³Oden Institute for Computational Engineering and Sciences, ⁴Department of Mathematics, The University of Texas at Austin

Motivation:

Sustainability requires transitioning products from a "one-way stream" to a circular configuration where materials are recovered and reused

- Circularity carries high uncertainty
 - Material quality: no waste is pure waste
 - Flow rate: collection rates vary
 - Legacy: materials have already accumulated in the environment

Research objectives:

- Develop general model of circular supply chain
- Characterize dynamics and optimal management
- Quantify effect of uncertainty

Model of the Circular Economy: State-Task Network

Material state

- Product, waste, recovered material, reprocessed material
- Modeled as an accumulation term with saturation
- Tasks
 - Manufacture, utilization, collection, reprocess
 - Modeled as first-order system with time delay

Case Studies

- Ideal: zero processing delays, unitary efficiency
- Realistic: non-zero delays, sub-unitary efficiency

Park, Baldea, Kutanoglu 2

Results, Conclusions and Future Work

- Monte Carlo simulation: strong impact of variability in processing capacity on material inventory of product and virgin material demand
- Need for closed-loop (control inspired) approaches for managing the circular supply chain – orders, production rates updated periodically as new information becomes available
- Future work: optimal supply chain management problem formulation and solution
 Park, Baldea, Kutanoglu 3