

DERs and the Grid UT Energy Week

Lisa Martin

VP, Electric System Engineering & Technical Services

March 29, 2023

© 2018 Austin Energy

EV Adoption Rates

Auto manufacturers are set to introduce almost 100 new EV models by 2024

~ Consumer Reports

Austin SHINES

SHINES:

Sustainable and Holistic INtegration of Energy storage and Solar PV

Utility Scale Energy Storage + PV

Commercial Energy Storage + PV

Residential Energy Storage + PV

DER Management Platform

Potential Impacts of DER

Unintentional Islanding

Utility crews or the public may encounter unintentionally energized equipment

Voltage Regulation & Equipment Loading

Variable DERs cause voltage fluctuations and can exceed applicable limits

DER can mask loads, and the loss of either can lead to imbalance

Protection & Power Quality

Protection elements often not intended for bi-directional flow Power electronics in inverters can cause harmonics

DER Penetration Levels

%Minimum Load	<5%	5 to 30%	>30% to 100+%
DER Penetration Scenarios	Low-numbers and relative capacity	Moderate-level, less stiff grid connection	High-level, grid depends on DER
DER Integration Objectives	To be compatible and non-interfering	To manage local distribution impacts	To engage with grid operations/support
Main Concerns for interconnection and integration of DER	Voltage and current trip limits Fault response	Regulation Recovery Times Islanding Coordination	Dispatching Regulation Ramping Response Ride-thru

Excerpted from *Finding a Bright Spot: Utility Experience, Challenges, and Opportunities in Photovoltaic Power,* IEEE Power and Energy
Magazine, May/June 2009

and

EPRI Technical Update *Storage and Distributed Generation Engineering Guide*,

February 2022

DER Feasibility & Impact Studies

Common Study Areas

- Load Flow
 - Steady State Voltage
 - Voltage Imbalance
 - Tap Changer Transitions
- System Protection
 - Short Circuit Current
 - Coordination
 - Interrupt Rating
- Power Quality
 - Voltage Fluctuations
 - Flicker
 - Harmonics

System Improvement Triggers

- Voltage Change (Dip/Rise)
- Voltage Drop
- Tap Changer Transitions
- Reverse Transformer Flow
- Overloaded Lines
- Transformer Power Factor

Exponential Impacts of Fast Charging

Customer Driven. Community Focused.

