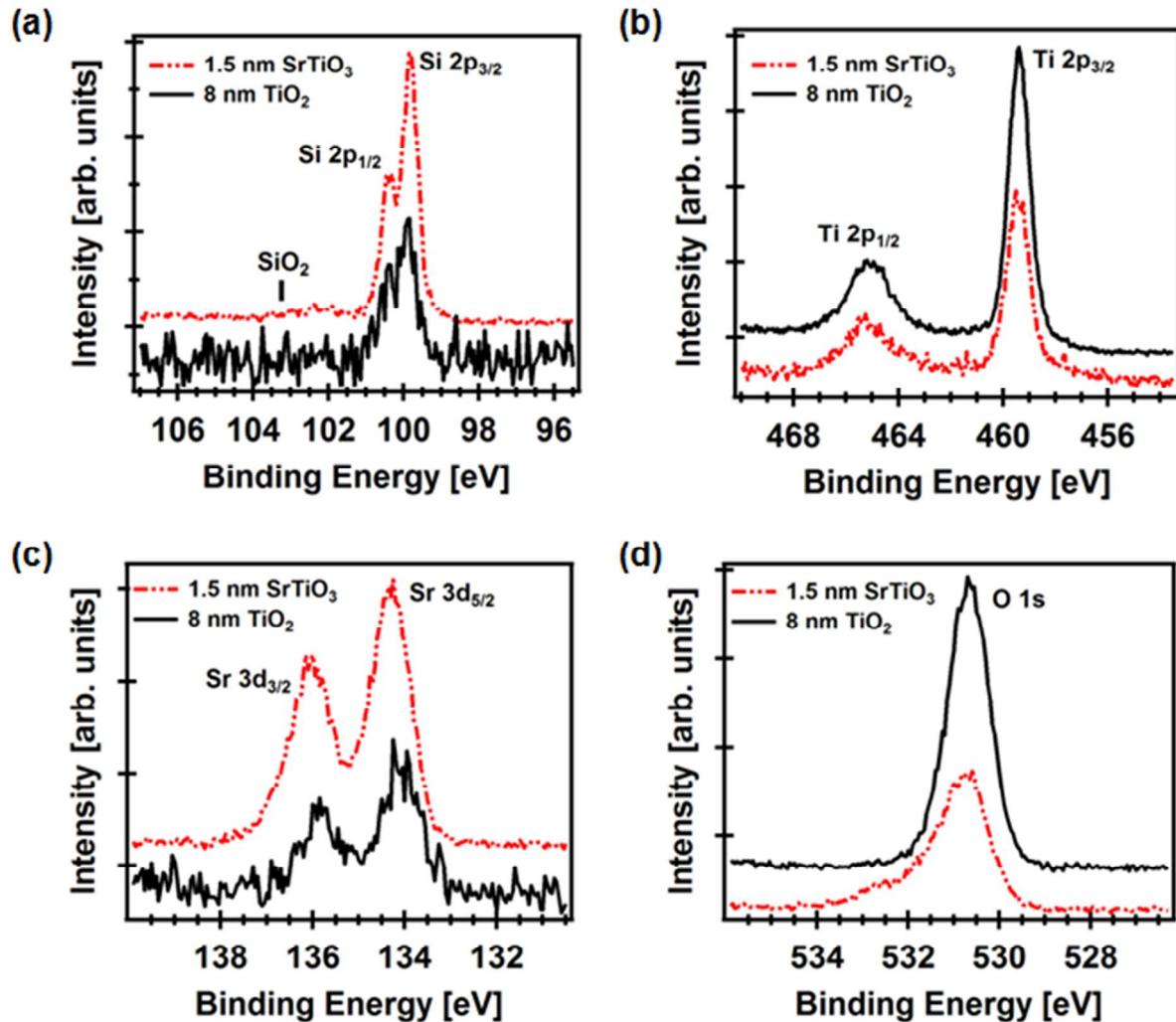


Highly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO₂ resistive memory on silicon

Chengqing Hu,^{†,‡} Martin D. McDaniel,[§] Agham Posadas,[†] Alexander A. Demkov,[†] John G. Ekerdt,[§] and Edward T. Yu^{,†,‡}*

[†] Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, USA

[‡] Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA


[§] Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA

[†] Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA

^{*}Correspondence information:

Edward T. Yu, The University of Texas at Austin, Austin, TX 78758. ety@ece.utexas.edu

XPS characterization of the epitaxial single-crystal TiO_2 films

Figure S1. X-ray photoelectron spectra taken of a four-unit-cell (1.5 nm) SrTiO_3 buffer layer on Si (001) (dashed red line) and after 8-nm-thick epitaxial TiO_2 grown by ALD (solid black line). The high resolution core-level scans are shown for (a) $\text{Si } 2p$, (b) $\text{Ti } 2p$, (c) $\text{Sr } 3d$, and (d) $\text{O } 1s$.

The chemical composition of the crystalline TiO_2 films was characterized by *in situ* XPS. High resolution core-level spectra were collected for $\text{Si } 2p$, $\text{Ti } 2p$, $\text{Sr } 3d$, and $\text{O } 1s$, as shown in Fig. S1(a)-(d). The $\text{Ti } 2p_{3/2}$ peak is located at 459.4 eV for the 8 nm TiO_2 film, indicating that the Ti is fully oxidized.

The Si $2p$ spectrum verifies that there is negligible SiO_2 formation after MBE growth of the single-crystal STO buffer layer, with only a small presence of silicon suboxide (SiO_x) is observed at ~ 102.2 eV. The Sr $3d$ signal is greatly suppressed after growth of the TiO_2 layer, but still visible. The O $1s$ peak can be fit with a single Voigt function after TiO_2 growth, which strongly indicates that no secondary phases are present in the epitaxial TiO_2 film. For the 8 nm TiO_2 film, the ALD growth was continuous and no post-deposition vacuum annealing was performed. The resulting heterostructure for the 8 nm TiO_2 film is composed of TiO_2 (8 nm) / SrTiO_3 (1.5 nm) / SiO_x (~ 0.5 nm) / Si (001).