
Calculation of critical dimensions for wurtzite and cubic zinc blende
coaxial nanowire heterostructures

S. Raychaudhuri and E. T. Yua�

Department of Electrical and Computer Engineering,University of California, San Diego, La Jolla,
California 92093-0407

�Received 15 January 2006; accepted 23 February 2006; published 25 July 2006�

We employ a methodology, based on established approaches for determining the critical thickness
for strain relaxation in planar films, to determine critical dimensions for coherently strained coaxial
nanowire heterostructures. The model is developed and executed for various specific core-shell
heterostructures in �111� zinc blende and �0001� wurtzite geometries. These calculations reveal that
critical dimensions in such heterostructures can be quantified by a unique critical core radius and a
critical shell thickness, which is dependent on the core radius. It is anticipated that this work will
serve as a guide to determine the feasibility of specific coherently strained nanowire heterostructure

designs. © 2006 American Vacuum Society. �DOI: 10.1116/1.2216715�
I. INTRODUCTION

Recent successes in the growth and fabrication of semi-
conductor nanowires1,2 have led to opportunities in device
design for a variety of applications, including chemical and
biological sensors,3 field effect transistors,4,5 laser diodes,6,7

and light emitting diodes.8,9 Many of these devices either
require or can benefit from the use of heterostructures in their
design, and nanowire heterostructures in both coaxial5 and
axial10 geometries have been proposed to optimize device
performance. In determining the feasibility of these designs,
it is necessary to consider the strain that arises in heterostruc-
tures due to the lattice mismatch between materials. Such
strain not only affects the electronic and optical properties of
the device but also determines the device dimensions at
which coherence is lost and dislocations form, which will
significantly alter or degrade device performance. Further-
more, the types of dislocations or other defects by which
relaxation occurs will vary between crystal structures man-
dating analysis specific to each possible crystal structure.

Only a limited amount of work has been done previously
to model coherence and critical dimensions in nanowire
structures. A model was developed recently to describe strain
and coherence in axial nanowire heterostructures,11 while the
critical dimensions of isotropic coaxial structures12 have
been estimated by comparing the strain energy of two dis-
crete states of the system. In a recent paper13 we presented a
methodology for determining coherent geometries in coaxial
nanowire heterostructures based on the formalism commonly
used in thin film heteroepitaxy14,15 and used it to determine
the coherency limits in specific wurtzite nanowire systems.
In this article we extend this methodology to explore and
contrast coherency limits in both wurtzite and zinc blende
structures. The results of these explorations are expected to
serve as a guide to determine the feasibility of various core-
shell device structures.
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II. ANALYTICAL FRAMEWORK

The geometry of the nanowire system considered is
shown in Fig. 1. The nanowire consists of a core material of
radius r and shell material of thickness h. The axis of the
wire is assumed to be along the �111� direction for zinc
blende structures and along the �0001� direction for wurtzite
structures. In both cases the coherence requirement between
the core and shell will result in cross-sectional and longitu-
dinal strain components due to the mismatch in lattice pa-
rameters along the length of the wire as well as around the
cylindrical surface of the wire.

In this analysis we are interested in determining the geo-
metric limits at which coherence is lost in an analytical fash-
ion that provides intuitive guidance and can be easily trans-
lated between material systems. A commonly used
methodology to predict coherency limits in planar structures
examines the strain energy of the system and determines the
film thickness at which it becomes energetically favorable to
relieve lattice strain by inserting a dislocation.14,15 We will
employ a similar approach to determine the coherency limits
of the coaxial nanowire heterostructure.13 We first solve for
the lattice mismatch strain energy in the system, then deter-
mine the energetics associated with dislocations that are
likely to form, and finally, determine the geometric limits at
which it becomes favorable for these dislocations to appear.
This analysis considers only strain energies due to lattice
mismatch and dislocations and does not take into account the
effects of faceting or other surface energy effects. For suffi-
ciently large structures these effects are not expected to sig-
nificantly alter the outcome of the calculation. For smaller
structures where these effects could contribute more signifi-
cantly to strain relaxation behavior, the analytical approach
presented here must be supplemented by a much more de-
tailed and likely numerical approach.

In general it is found that the nanowire geometry is more
forgiving than its thin film counterpart in that a number of
dimensional choices exist to attain a stable coherent struc-
ture. For a given choice of materials and alloy compositions,

there exists a critical core radius, below which the structure
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is always coherent regardless of shell thickness. Structures
with a core radius greater than this critical value can still be
stable provided that the shell thickness is below a critical
shell thickness value. The critical shell thickness is depen-
dent on the core radius and will vary depending on the ma-
terial system being considered. The critical dimensions are
found to be dependent only on core radius and shell thick-
ness and have no dependence on the length of the wire.

A. Coherent strain energy calculation

A detailed treatment of how to calculate lattice mismatch
strain energy in a coherently strained coaxial heterostructure
is presented in Ref. 13. The basic methodology assumes that
planar boundary conditions can be assigned to a single point
on the heterointerface. As shown in Fig. 1, for a single point
on the interface it is possible to define two perpendicular
strain components due to lattice mismatch, one along the
length of the wire ��longitudinal� and the other tangential to the
heterointerface ��tangential�. Because the radius of the wire is
free to expand or contract to accommodate strain, the stress
normal to a given point on the interface ��normal� is taken to
be zero. By applying these boundary constraints, it is pos-
sible to solve for the full strain field at a single point on the
interface using well-known relations between stress and
strain.16 This approach can then be used at each point on the
heterointerface to obtain an expression for the total strain
energy in the system. The coherent strain energies in the core
and shell regions are found to be a function of the region
geometry, the strain boundary constraints imposed on the
region, and the elastic stiffness tensor of the material within
the region.

1. Coherent strain energy in zinc blende nanowire
structure

In order to use this methodology to calculate the coherent
strain energy in �111� zinc blende coaxial nanowire struc-
tures, it is necessary to define an appropriately oriented elas-
tic stiffness matrix cij and proper longitudinal and tangential
lattice mismatch boundary conditions. Because the zinc
blende nanowire is assumed to be oriented along the �111�

FIG. 1. Diagram of the relevant geometric parameters for a coaxial nanowire
heterostructure as well as stress ��� and strain ��� boundary constraints for
a single point on the coaxial heterointerface.
direction, it is necessary to rotate cij such that the z axis of cij
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is parallel to the �111� direction. This must be done in order
to make sure that the normal, tangential, and longitudinal
boundary constraints are oriented properly with respect to
the crystal structure. The coherent strain energy expressions
for the core and shell regions of a zinc blende nanowire are
then given by

UZB
�i� =

A�i��f l
�i��2 + B�i�f l

�i�f t
�i� + C�i��f t

�i��2

D�i� L��r2� , �1�

UZB
�ii� =

A�ii��f l
�ii��2 + B�ii�f l

�ii�f t
�ii� + C�ii��f t

�ii��2

D�ii� L���r + h�2

− r2� , �2�

respectively, where f t and f l represent the tangential and lon-
gitudinal strain constraints, A, B, C, and D are given by

A = c11
2 − 2c12

2 + 40c12c44 + 16c44
2 + c11�c12 + 26c44� , �3�

B = 4�c11 − 2c12 − 2c44��c11 − c12 + 4c44� , �4�

C = 4�c11 + 2c12 + c44��c11 − c12 + 4c44� , �5�

D = 18�c11 + c12 + 2c44� , �6�

and variables with superscripts �i� and �ii� denote parameters
specific to the core and shell materials, respectively.

In zinc blende structures the tangential and longitudinal
lattice strain boundary conditions in the core and the shell
are given by

f t
�i� =

a − a�i�

a�i� , �7�

f t
�ii� =

a − a�ii�

a�ii� , �8�

f l
�i� =

a − a�i�

a�i� , �9�

f l
�ii� =

a − a�ii�

a�ii� , �10�

where a represents the strained cubic lattice constant of the
system, a�i� represents the unstrained lattice parameter of the
core material, and a�ii� represents the unstrained lattice pa-
rameter of the shell material. For a given geometry and ma-
terial composition the equilibrium lattice constant a will as-
sume a value that minimizes the total strain energy of the
system. By minimizing Ustrain=U�i�+U�ii�, the equilibrium
lattice strain is found to be

a =
a�ii�a�i��a�ii�r2��i� + a�i�h�h + 2r���ii��

a�ii�r2��i� + a�i�2
h�h + 2r���ii�

, �11�

�i� �ii�
where � and � are given by
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�zinc blende =
�c11 + 2c12��c11 − c12 + 6c44�

2�c11 + c12 + 2c44�
. �12�

The equilibrium lattice constant value falls somewhere
between the relaxed core and shell values and will tend to-
ward that of the region with greater volume. This is expected
given the direct relationship between strain energy and vol-
ume seen in Eqs. �1� and �2�. This result shows that for a
given choice of material, geometry will determine the distri-
bution of lattice strain between the core and shell materials.
for � and � .
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It is because of this that the dimensions of both core and
shell must be considered in determining stable coherent ge-
ometries.

2. Coherent strain energy in wurtzite nanowire
structures

Using a similar approach, the coherent strain energy ex-
pressions for the core and shell regions of a wurtzite nano-
wire are found to be13
UW
�i� =

�c11
�i�f t

�i��2 − �c12
�i�f t

�i� + c13
�i�f l

�i��2 + c11
�i�f l

�i��c13
�i�f t

�i� + c33
�i�f l

�i��2

2c11
�i� L��r2� , �13�

UW
�ii� =

�c11
�ii�f t

�ii��2 − �c12
�ii�f t

�ii� + c13
�ii�f l

�ii��2 + c11
�ii�f l

�ii��c13
�ii�f t

�ii� + c33
�ii�f l

�ii��2

2c11
�ii� L���r + h�2 − r2� . �14�
In wurtzite structures the tangential and longitudinal lat-
tice strain constraints are determined by the mismatch in the
a and c lattice parameters, respectively. The tangential strain
boundary conditions in the core and the shell are given by

f t
�i� =

a − a�i�

a�i� , �15�

f t
�ii� =

a − a�ii�

a�ii� , �16�

and the longitudinal strain boundary conditions in the core
and shell are given by

f l
�i� =

c − c�i�

c�i� , �17�

f l
�ii� =

c − c�ii�

c�ii� , �18�

where a and c represent the strained lattice constants of the
system, a�i� and c�i� represent the unstrained lattice param-
eters of the core material, and a�ii� and c�ii� represent the
unstrained lattice parameters of the shell material. The equi-
librium lattice constants in wurtzite structures exhibit a simi-
lar geometric dependence as in the zinc blende case.13 As a
result both a and c can be computed using Eq. �11� after
substituting

�wurtzile =
c11

2 − �c12 + c13�2 + c11�2c13 + c33�
2c11

�19�

�i� �ii�
B. Partial relaxation through dislocation formation

The insertion of an edge dislocation at the core-shell in-
terface can allow partial relaxation of lattice mismatch strain
but will also contribute a strain field associated with the dis-
location itself. In order to determine the energetics associated
with these phenomena, it is necessary first to identify the
types of dislocations that are likely to form in the system
being considered. This can be done by considering disloca-
tions known to be stable in a given crystal structure along
with dislocation orientations that will relieve lattice strain.

1. Dislocations in zinc blende nanowires

Perfect dislocations in zinc blende structures tend to be
either pure screw or 60 mixed dislocations along the �011�
directions.17 For zinc blend nanowires grown along the �111�
direction, it is not possible for a perfect dislocation to lie
along the length of the nanowire as shown in Fig. 2�a�. Thus

FIG. 2. �a� Orientation of an edge dislocation line along the axis of the wire
with a Burgers vector, bline, tangential to the circular heterointerface. �b�
Orientation of an edge dislocation loop in the cross-sectional plane of the

wire with Burgers vector, bloop, along the length of the wire.
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this type of dislocation is not expected to define the critical
dimensions in zinc blende structures.

The formation of a dislocation loop around the core of the
nanowire, as shown in Fig. 2�b�, could serve to relieve lattice
strain along the length of the wire and has been observed in
some coaxial nanowires heterostructures with zinc blende
regions.18 Such an edge dislocation loop could form as a
result of a partial-stacking fault. Zinc blende wires oriented
in the �111� direction are comprised of �111� planes of atoms
stacked in an ABC sequence, as shown in Fig. 3�a�. A stack-
ing fault will either insert or remove a �111� plane of atoms
in the core or shell of the structure, as shown in Fig. 3�b�.
This insertion or removal of a �111� plane will result in a
two-dimensional dislocation in the region where the stacking
fault has occurred but will also create an edge dislocation
loop17 around the core region of the heterostructure, such as
the one shown in Fig. 2�b�. The magnitude and orientation of
the Burgers vector of such a loop will efficiently relieve lon-
gitudinal strain, and the loop is thus expected to be the type
of dislocation that will define the critical dimensions in zinc
blende coaxial heterostructures.

When calculating the energy associated with such a dis-
location, it is necessary to consider the strain energy associ-
ated with the partial edge dislocation loop about the core as
well as the energy due to the stacking fault. The total energy
associated with this type of dislocation is17

Uloop = nloopL�2�r
1

6
�c11

�ii� − c12
�ii� + 4c44

�ii��
bloop

2

4�

�log� 32r

bloop
− 1	 + �Afault
 , �20�

FIG. 3. �a� Stacking sequence of �111� planes in a coherently strained �111�
zinc blende coaxial nanowire. �b� Stacking sequence of �111� planes in a
�111� zinc blende nanowire with a stacking fault in the core region. The “X”
represents the location of an edge dislocation loop formed around the core
as a result of the stacking error.
where nloop refers to the dislocation loop density per unit
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length along the axis of the wire, bloop refers to the magni-
tude of the Burgers vector, � is the stacking fault energy per
unit area, and Afault is the area of the stacking fault. Although
the strain field generated by the dislocation will exist in both
the core and shell materials, cij values are arbitrarily chosen
to be those of the shell; this is reasonable since in most
viable heterojunction material systems, cij

�i� and cij
�ii� are suf-

ficiently similar that the choice between them will not sig-
nificantly impact the final calculation. The value of bloop is
expected to be a /�3 for this type of dislocation17 and Afault

will be the cross-sectional area of the core or the shell de-
pending on the region in which the stacking error has oc-
curred. It should be noted that Eq. �20� is derived for a dis-
location loop in an infinite medium, but because the
expression assumes that the loop terminates its own strain
field, it should produce a reasonable estimate for the strain
energy in sufficiently large coaxial nanowire structures.

In examining the energetics of a dislocation at the inter-
face, it is necessary to consider not only the strain energy
associated with the dislocation itself but also the lattice re-
laxation that is expected to occur with the inclusion of a
dislocation. For planar thin films grown on bulk substrates,
the one-dimensional lattice strain including relaxation due to
dislocation formation is given by15

f film =
asubstrate − afilm

afilm
− nb , �21�

where asubstrate represents the strained lattice constant of the
film, afilm represents the relaxed lattice constant of the film, n
refers to the line dislocation density per unit length, and b
refers to the edge component of the dislocation Burgers vec-
tor. The lattice relaxation term nb accounts for the film re-
laxation due to the formation of dislocations at the heteroint-
erface. The system described by Eq. �21� assumes that all
strain will be in the film, and thus only relaxation in the film
is considered.

In the case of the coaxial nanowire structures, strain will
be distributed between the core and the shell. The formation
of an edge dislocation at the interface will result in the in-
sertion or removal of a plane of atoms in the system. This
will change the strain constraint in both core and shell ma-
terials since the two are interdependent. Because the system
will tend to minimize total strain energy in the system, the
region experiencing the greater lattice mismatch will receive
the bulk of the lattice relaxation that occurs. It is therefore
necessary to distribute the lattice relaxation term between the
core and shell while incorporating it into the lattice strain
expressions. The lattice mismatch strain expressions are then
given by

f l
�i� =

a − a�i�

a�i� − � a�i� − a

�a�i� − a�ii��
nloopbloop, �22�

f l
�ii� =

a − a�ii�

a�ii� − � a − a�ii�

�a�i� − a�ii��
nloopbloop. �23�

These expressions resemble Eq. �21� except that the lattice

relaxation term is now divided between the core and shell.
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Equations �22� and �23� model the effect described above by
using the equilibrium lattice constant and the relaxed lattice
constant values to apportion the relaxation term such that the
total strain energy in the system is minimized. Numerical
computations were carried out to minimize the total energy
in the system with respect to the division of the strain relax-
ation term. The results of these calculations were found to be
nearly identical to the functions used in Eqs. �22� and �23�,
confirming that the equilibrium lattice constant can be used
to estimate the distribution of strain relaxation between the
core and shell.

2. Dislocations in wurtzite nanowires

In contrast to the zinc blende case, wurtzite coaxial nano-
wire heterostructures are expected to relax through the for-
mation of a pure edge dislocation along the length of the
wire as shown in Fig. 2�a�.13 Such a dislocation will relieve
strain in the cross section of the nanowire. The strain energy
associated with this type of dislocation is17

Uline = nline2�rL� c11
�ii� − c12

�ii�

2c11
�ii� 
bline

2

4�
log� 4h

bline
	 , �24�

where nline refers to the dislocation line density per unit
length about the circumference of the heterointerface and
bline refers to the magnitude of the Burgers vector for such a
dislocation. In this expression the dislocation is assumed to
be located at the heterointerface, as shown in Fig. 2�a�, and
the strain field is assumed to terminate at the free surface of
the nanowire system. This is analogous to the approach used
for computing dislocation energies when calculating critical
thickness in planar heterostructures.14,15 The value of bline is
expected to be that of the equilibrium lattice constant a.19

The formation of a such a line dislocation will allow for
the partial relaxation of tangential lattice mismatch strain by
inserting or removing a plane of atoms. As in the zinc blende
case, the resulting relaxation in lattice strain will be distrib-
uted between the core and shell materials such that total
strain energy in the system is minimized. Applying the same
model to distribute the relaxation term as used in the zinc
blende case, the tangential strain elements become

f t
�i� =

a − a�i�

a�i� − � a�i� − a

�a�i� − a�ii��
nlinebline, �25�

f t
�ii� =

a − a�ii�

a�ii� − � a − a�ii�

�a�i� − a�ii��
nlinebline. �26�

for the core and shell regions, respectively.

C. Critical geometry calculation

The total strain energy in the system is the sum of the
lattice mismatch strain energy in the core and shell regions as
well as the energy due to the presence of the dislocations
discussed above. The expressions for the total strain energy
for zinc blende and wurtzite structures including dislocations

are
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Utot = UZB
�i� + UZB

�ii� + Uloop, �27�

Utot = UW
�i� + UW

�ii� + Uline, �28�

respectively, where UZB
�i� and UZB

�ii� are calculated using Eqs.
�7� and �8� and Eqs. �22� and �23� and UW

�i� and UW
�ii� are

calculated using Eqs. �17� and �18� and Eqs. �25� and �26�.
The critical dimensions are obtained by determining the geo-
metric limits at which it becomes energetically favorable to
include a dislocation. This is done mathematically by evalu-
ating ��Utot /�n�n=0 and determining the dimensions for
which this function changes from positive to negative.15

Such an analysis will determine the dimensions at which
sufficient strain energy will be relieved by the insertion of a
single dislocation to make up for the energy cost of inserting
the dislocation. However, it does not take into account the
energetic effects of interactions between dislocations, which
are expected to be significant for nanoscale structures, and
thus is only valid at the critical dimensions at which the first
dislocation forms.

III. RESULTS AND DISCUSSION

Figure 4 shows a schematic plot indicating the general
form of the results of the critical dimension calculation ob-
tained for a specific wurtzite and zinc blende structure. The

FIG. 4. Schematic plot of the critical dimensions for a �a� zinc blende and �b�
wurtzite coaxial nanowire structure. The shaded region of the plots shows all
possible strained coherent geometries, which are quantified by the critical
core radius rcrit and the critical shell thickness curve �darkened portion of the
curves�.
shaded portions of the plots show the combinations of core-
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shell dimensions that will yield coherently strained structures
for a particular choice of material and alloy composition.
More detailed calculation results for specific structures will
be shown in Figs. 5–7.

The curves in Fig. 4 show the limiting geometries for
dislocation formation. The solid and dashed curves in Fig.
4�a� show the limiting dimensions for the formation of a
stacking fault in the core and shell regions of a zinc blende
nanowire, respectively. The solid curve in Fig. 4�b� shows
the limiting dimensions for the formation of a dislocation
line in a wurtzite nanowire. From Figs. 4�a� and 4�b� we see
that for a given combination of materials forming the coaxial
nanowire heterostructure, there is a critical core radius rcrit

below which the coaxial nanowire will be coherent regard-

FIG. 5. Plot of the calculated critical core radius for various nanowire het-
erostructures as a function of alloy composition. The structures considered
are comprised of an InAs core with an In1−xGaxAs shell ���, Si1−xGex core
with a Si shell ���, GaN core with an AlxGa1−xN shell ���, and InxGa1−xN
core with a GaN shell ���.

FIG. 6. Calculated critical dimensions for various zinc blende nanowire het-
erojunctions comprised of �a� InAs cores with In1−xGaxAs shells and �b�

Si1−xGex cores with Si shells.
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less of shell thickness. Such a critical core radius exists be-
cause of the coaxial nanowire structure’s ability to distribute
strain between the core and shell. As the shell thickness in-
creases eventually, all of the strain is passed to the core.
Since the core volume is constant, the strain energy of the
system will no longer change with shell thickness. If the core
volume is sufficiently small, then the strain energy stored in
the core will never be great enough to warrant the formation
of a dislocation.

The darker portions of the curves in Fig. 4�a� define a
critical shell thickness for zinc blende structures with a core
radius larger than the critical core radius. This critical shell
thickness represents the shell thickness at which it becomes
energetically favorable for a stacking fault to form. From
Fig. 4�a� it is clear that at core radius values close to rcrit, the
critical shell thickness will be limited by the formation of a
stacking fault in the core region. As the core radius increases,
however, the coherence limit will be defined by the forma-
tion of a stacking fault in the shell region. This occurs be-
cause the energy associated with a stacking fault in the core
region increases more rapidly with core radius than the en-
ergy associated with a stacking fault in the shell region.

The darker portion of the curve in Fig. 4�b� defines a
critical shell thickness for wurtzite structures with core ra-
dius larger than the critical core radius value. This critical
shell thickness represents the shell thickness value at which
it becomes energetically favorable to insert a line dislocation
at the heterointerface for a given core radius. The positively
sloped region of the dislocation curve �lighter portion of the
curve� is a function of the assumption, used to calculate the

FIG. 7. Calculated critical dimensions for various wurtzite nanowire hetero-
junctions comprised of �a� GaN cores with AlxGa1−xN shells and �b�
InxGa1−xN core with GaN shells.
dislocation strain energy Uline, that no other dislocations are
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present to terminate the dislocation strain field. Because a
dislocation must have already formed in order to arrive at
this region on the plot, the features of the curve in this region
are not applicable in determining coherence. Though the
mechanisms by which coherency is lost differ between zinc
blende and wurtzite structures, Fig. 4 shows that in both
cases the critical dimensions can be quantified by a critical
core radius below which dislocations will never form and a
critical shell thickness that is dependent on core radius.

Numerical calculations were carried out for a number of
material systems as a function of alloy composition. Figure 5
shows the calculated critical core radii as a function of alloy
composition for zinc blende structures comprised of InAs
cores with Inx−1GaxAs shells and Six−1Gex cores with Si
shells, as well as wurtzite structures comprised of GaN cores
with AlxGa1−xN shells and InxGa1−xN cores with GaN shells.
Figures 6�a�, 6�b�, 7�a�, and 7�b� show the calculated critical
dimensions for these structures, respectively. Each curve in
Figs. 6 and 7 plots the combination of core radius and shell
thickness at which the first dislocation is expected to form
for a given alloy composition. Figures 5–7 were calculated
using the material parameter values20–22 listed in Tables I and
II, all of which were assumed to vary linearly with alloy
composition. Figures 5–7 suggest that the critical dimensions
for reasonable alloy compositions are well within the range
of experimental interest. In general these results show that
there are a variety of compositional and geometric choices
that will yield coherent structures, giving device designers a
flexibility that is typically not observed in planar thin film
devices.

IV. CONCLUSION

In summary, we have utilized a methodology, based on
the well-known formalism used to determine the critical
thickness in planar epitaxial growth, to determine coherent

TABLE I. Relevant physical parameters for zinc blend

InAs GaAs

a �Å� 6.0583 5.6533
c11 �GPa� 83 119
c12 �GPa� 45 54
c44 �GPa� 40 60
� �mJ/m2� 30 45

TABLE II. Relevant physical parameters for wurtzite materials.

GaN AIN InN Reference

a �Å� 3.199 3.110 3.585 22
c �Å� 5.227 4.995 5.801 22

c11 �GPa� 370 410 223 22
c12 �GPa� 145 140 115 22
c13 �GPa� 110 100 92 22
c33 �GPa� 390 390 224 22
c44 �GPa� 90 120 48 22
JVST B - Microelectronics and Nanometer Structures
geometries for various zinc blende and wurtzite coaxial
nanowire heterostructures. The unique geometry of the nano-
wire structure along with the volumetric similarity of the
materials involved gives rise to a number of possible coher-
ent structures for a given choice of materials and alloy com-
positions, which are quantified by a unique critical core ra-
dius and a critical shell thickness that is a function of the
core radius. This flexibility is unique to nanowire structures
and provides material and device engineers with increased
flexibility in design not available in planar thin film
heterostructures.
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