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Cross-sectional scanning tunneling microscof§TM) has been used to characterize the
atomic-scale structure of InfgdPyes/INP and INN 51ASy 3064/ INP  strained-layer multiple
quantum well structures grown by gas-source molecular-beam epitaxy. Atomically resolved STM
images of the(110 cross-sectional plane reveal nanoscale clustering within the, /lAg alloy

layers, with the boundaries between As-rich and P-rich regions in the alloy layers appearing to be
preferentially oriented along tH&12] and[112] directions in thg110 plane.(110) cross-sectional
images reveal that considerably less compositional variation appears witliilhelane; features
elongated along th¢11Q] direction are observed, but fe@el12 boundaries are seen. These
observations suggest that the boundaries between As-rich and P-rich clusters may form
preferentially within the (111) and (111) planes. Comparisons of filled-state images of
InAs,P; _,/InP and InNAs P, _, ,/InP heterostructures suggest that N incorporation increases the
valence-band offset in InpAs,P;_,_,/InP compared to that in InAB;_,/InP. © 1998
American Vacuum Societ)S0734-211X98)11104-9

[. INTRODUCTION clustering, and/or compositional modulation, phenomena that
have been observed to occur in a wide range of 1ll-V mate-
The  InAsP;_,/InP and,  more  recently, rial system&'2and that can exert considerable influence on

InN,As,Py .y /InPheterostructure material systems havecrystal quality, interface quality, and other electronic as well
shown considerable promise for lasers and other optoelees optoelectronic properties such as band 'gdmnd-edge
tronic devices operating at 1.06, 1.3, and 1/&%.* For  discontinuities, and transport propertfés®’ In addition, the
INAs,P; _,/InP quantum well structures, the compressiveinN,As,P;_,_,/InP material system is of considerable inter-
strain in the InAgP; _, layer leads to a smaller valence-band est because the effects of N incorporation on material prop-
effective mass that facilitates population inversion in |a§ers.erties are not clearly understood, but appear to differ consid-
Furthermore, the large conduction-band offset in this mateerably from the effects of alloying with other group V
rial systeni (AE,=0.75AE,) leads to efficient electron con- elements®1® Detailed characterization and understanding of
finement and reduced leakage current in laser diodes, therelyomic-scale compositional variations and the effects of N
minimizing the threshold current in In4B, ,/InP lasers.  incorporation on compositional structure and band offsets are
Finally, the composition in the InAB;_,/InP system is therefore of great importance for optoelectronic and elec-
easier to control than that in the,[®a, _,As P, ,/InP qua-  tronic devices based on these materials.
ternary system, which has been explored extensively for op- In this article, we describe scanning tunneling microscope
toelectronic device applications at wavelengths of 0.98—-1.55STM) studies of pseudomorphic InjsPses/INP  and
um.2’ More recently, InNAs, P, _,_, alloys have generated InNg gASy 3P 64/ INP multiple quantum well heterostruc-
considerable interest, because incorporation of N at low corntures grown by gas-source molecular-beam epitd®iBE)
centration into the InA$>; _, alloy layers has been shown to on (001) InP substrates. Characterization of InRs_,/InP
produce a substantial decrease in band fgegn partially and INNAs P, _,_,/InP in these studies has provided de-
compensate for strain due to As present in the alloy, and matailed information about heterojunction interface properties,
possibly increase the conduction-band offset even fufthernanoscale clustering in In4B, _, alloys, and the qualitative
Above room-temperature lasing has been realized innfluence of N incorporation on heterojunction band align-
INNLAS, P,y /In,Ga,_,As, P, _, quantum well microdisk ments for INNAs,P, _,_,/InP.
lasers, with the improved performance compared to
In,Ga, _,AslIn,Ga _,As P, _y, quantum well lasers possibly || EXPERIMENT
due to an enhanced conduction-band offset coming from ni-
trogen incorporatiofi.

A significant concern in ternary and quaternary Il
semiconductor alloys is the possible presence of ordering,

The samples used for these studies were grown by gas-
_y Source MBE. A 2500 A InP buffer layer was grown initially

n a (001) n* InP substrate, followed by a coherently
trained heterostructure consisting of 50 A 1gA, ¢ al-
dpresent address: Hewlett-Packard Company, 3500 Deer Creek Rd., M@matmg with 100 A InP for five perlqu, a.nd then five pe-
26M-7, Palo Alto, CA 94304, riods of 50 A |nN).01ASO.35PO.64 alternatlng with 200 A InP.
YElectronic mail: ety@ece.ucsd.edu All epitaxially grown layers were dopedh type (n
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Fic. 1. Schematic diagram of the sample structure and STM geometry used
in these studies. STM imaging is performed on bth0 and(110) cross-
sectional planes.

~10%-10" cm™®). The substrate temperature during
growth was 460 °C; other details concerning the growth
chamber and procedures are described elsevfét&igure

1 shows a schematic diagram of the sample structure and
STM geometry employed in our work. STM studies were — [001]

performed on boti{110 and(110) cross-sectional surfaces 50A

exposed hyin situ cleaving in an ultrahigh vacuufHV)

STM chamber at a pressure of(7—9)x 10 ! Torr. Elec-  Fic. 2. (a) Three-dimensional rendering of a 205205 A (110) constant-

trochemically etched W tips cleanésitu by electron bom-  current f_TMdimtage of t:‘eb'_”/%%dj?-es’:(; :‘\l/”“pf quantum well stue-

. ure, obtained at a sample bias voltage-&.4 V and a tunneling current o
bardment were used for these studies. 0.1 nA. Major directions are indicated by arrows. Two triangular As-rich
regions, bounded by dotted lines, and two P-rich regions are indiodted.
Three-dimensional rendering of a 400x&00 A constant-current110)
STM image of the InAgsy g5/ INP multiple quantum well structure, ob-
[ll. RESULTS AND DISCUSSION tained at a sample bias voltage-62.4 V and a tunneling current of 0.1 nA.

Figure 2a) shows a 205 A205 A (110 constant-current
STM image of the InAgP;_,/InP multiple quantum well -
structure, obtained at a sample bias-2.4 V and a tunnel- sections in th&€110) plane with bases along th&10] direc-
ing current of 0.1 nA. Electronically induced contrast be-tion and sides appearing to be preferentially oriented along
tween the InAgP;_, and InP layers is clearly visible. Be- the[112] and[112] directions.
cause the valence-band edge of InAs is higher than that of If the boundaries between As-rich and P-rich regions as-
InP, we interpret the brighter features as being associatesime the form of simple planes, then the observation that the
with As and darker features with P within the In&_, intersections of th€110 plane and the boundaries between
layer. Variations in composition at the nanometer scale ar@s-rich and P-rich regions within the InfB,_, layers are
clearly visible in the InAgP, _, alloy layer in Fig. Za), al-  oriented preferentially along thé12] and[112] directions
lowing us to investigate in detail the nature of clustering inimplies that the boundary plane indicéskl) should satisfy
InAs,P;_. From Fig. Za), it is apparent that within the the equation
InAs,P; _, alloy layer there exist brighter As-rich clusters  _
and darker P-rich clusters, as indicated by the arrows. The +(h=k)+21=0. _ @
clustering of As and P within the InAB;_, alloy layers The simplest solutions to Edl) correspond ta111) and
leads to a marked asymmetry in interface quality in(thE) (111) planes in the crystal, suggesting that the boundaries
plane—the InP-on-InA%; , interfaces are considerably between As-rich and P-rich regions may form preferentially
rougher and less abrupt than the IpRs ,-on-InP inter-  within these planes.
faces. In Fig. 2a), dotted lines delineate two As-rich clus-  Imaging of the(110) cross-sectional plane provides fur-
ters, which appear to possess approximately triangular crogber information about the compositional structure present
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(@) InNAsP INNAsP  InAsP  InAsP  InAsP these materials is valid since the comparison is made within

y ' the same image and therefore under identical tip and sample
conditions. In Fig. &), for each extracted line scan, the
contrast between the InNs P, , jand the adjacent InP
layer is generayl 2 A or more, while the contrast between
InAs,P;_, and InP layers is usually about 1.5-1.8 A or less.
These observations may indicate that the valence-band offset
at the InNAs P, _,_,/InP heterojunction interface is some-
what greater than that for In4B, _, /InP.

(b) IV. CONCLUSION

T T v T T T

o —:n:tA;}I’IISP »»»»»»»»»»»»»»» & We have performed atomically resolved constant-current
— INASF/IN

cross-sectional STM imaging of Ingg,_,/InP and
INN,As,P, _,_/InP strained-layer multiple quantum well
structures grown by gas-source MBE. These studies have
revealed the presence of nanoscale clustering of As and P
within the InAsP;_, alloy layers. A clear asymmetry in in-
. terface quality is visible in the(110) plane, with the
; o0 5 200 e INAs,P; _4-on-InP interface; being considerably s_moother
Position (A) than the IqP-on- InAgPl,X |n.terfalces. The boundaries be-
tween As-rich and P-rich regions in the In#&s_, alloy lay-
Fie. 3. (@ 860 Ax370 A constant-current(110) STM image of  €rs are oriented preferentially it12] and[112] directions in
INAS 3P0 65/ INP and INN g AS, 3P0 64/INP multiple quantum well struc- (110 images, forming As-rich regions with approximately
B e Lo s o o it et e g, angular(110) cross sections. 16110 cross sectional im-
INNg 01ASo 35P0.64/ INP and INAg 3P 65/ INP profiles are superimposed to ages, "Ye observe tha,t the As comppsm(_)n n IM_S‘X lay-
compare the topographic contrast observed for each material system. €IS varies much less in the lateral direction than in(#)
image. These observations suggest that within the JBAS
layers, the boundaries between As-rich and P-rich regions
within the InAsP; _, alloy layers. Figure @) shows a 400 may form preferentially within th€111) and (111) planes,
Ax400 A (110) STM image obtained at a sample bias of and that the As-rich and P-rich clusters tend to be elongated
—2.4 V and a tunneling current of 0.1 nA. In Fig(k, it is along the[110Q] direction. Finally, (110) cross-sectional
apparent that the As composition is graded in {081] filled-state imaging of both InA®,_,/InP and
growth direction within the lower two InA®;_ alloy lay-  InNyAs,P; ,_/InP heterostructures shows that N incorpo-
ers: the image contrast is brightghighe) near the ration into the InAgP;_, layer increases the valence-band
InAs,P; _,-on-InP interfaces and darkdower) near the InP-  offset at the InNAs P, _,_,/InP interface compared to that
on-InAsP; _interfaces, corresponding to higher and lowerfor InAs,P; _,/InP.
As compositions, respectively. Furthermore, the IgiAs,
alloy layers show considerably less compositional variation
in the[110] lateral direction than was evident along {i40] ACKNOWLEDGMENTS
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