• Hofmann Lab
  • People
  • Research
  • Publications
  • Teaching
  • Public Engagement
  • Links
  • News
  • Skip to primary navigation
  • Skip to main content
UT Shield
The Hofmann Lab
  • Hofmann Lab
  • People
    • Former Lab Members
  • Research
  • Publications
  • Teaching
  • Public Engagement
  • Links
  • News

2005

July 14, 2005, Filed Under: 2005

Alternative life histories shape brain gene expression profiles in males of the same population

Citation:

Aubin-Horth N, Landry CR, Letcher BH, Hofmann HA. Alternative life histories shape brain gene expression profiles in males of the same population. Proceedings of the Royal Society B: Biological Sciences [Internet]. 272 (1573) :1655 – 1662.

Publisher’s Version

Abstract

Atlantic salmon (Salmo salar) undergo spectacular marine migrations before homing to spawn in natal rivers. However, males that grow fastest early in life can adopt an alternative ‘sneaker’ tactic by maturing earlier at greatly reduced size without leaving freshwater. While the ultimate evolutionary causes have been well studied, virtually nothing is known about the molecular bases of this developmental plasticity. We investigate the nature and extent of coordinated molecular changes that accompany such a fundamental transformation by comparing the brain transcription profiles of wild mature sneaker males to age-matched immature males (future large anadromous males) and immature females. Of the ca. 3000 genes surveyed, 15% are differentially expressed in the brains of the two male types. These genes are involved in a wide range of processes, including growth, reproduction and neural plasticity. Interestingly, despite the potential for wide variation in gene expression profiles among individuals sampled in nature, consistent patterns of gene expression were found for individuals of the same reproductive tactic. Notably, gene expression patterns in immature males were different both from immature females and sneakers, indicating that delayed maturation and sea migration by immature males, the ‘default’ life cycle, may actually result from an active inhibition of development into a sneaker.

2005.aubinhorth.procrsocb.pdf

January 13, 2005, Filed Under: 2005

Interaction of rearing environment and reproductive tactic on gene expression profiles in Atlantic salmon

Citation:

Aubin-Horth N, Letcher BH, Hofmann HA. Interaction of rearing environment and reproductive tactic on gene expression profiles in Atlantic salmon. Journal of Heredity. 96 (3) :261 – 278.

Abstract

Organisms that share the same genotype can develop into divergent phenotypes, depending on environmental conditions. In Atlantic salmon, young males of the same age can be found either as sneakers or immature males that are future anadromous fish. Just as the organism-level phenotype varies between divergent male developmental trajectories, brain gene expression is expected to vary as well. We hypothesized that rearing environment can also have an important effect on gene expression in the brain and possibly interact with the reproductive tactic adopted. We tested this hypothesis by comparing brain gene expression profiles of the two male tactics in fish from the same population that were reared in either a natural stream or under laboratory conditions. We found that expression of certain genes was affected by rearing environment only, while others varied between male reproductive tactics independent of rearing environment. Finally, more than half of all genes that showed variable expression varied between the two male tactics only in one environment. Thus, in these fish, very different molecular pathways can give rise to similar macro-phenotypes depending on rearing environment. This result gives important insights into the molecular underpinnings of developmental plasticity in relationship to the environment.

2005.aubin-horth.jh_.pdf

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025