August 24, 2015, Filed Under: 2015Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems Citation: Oldfield RG, Harris RM, Hofmann HA. Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems. Frontiers in Zoology [Internet]. 12(Suppl 1) :S16. Publisher’s Version Abstract The ultimate-level factors that drive the evolution of mating systems have been well studied, but an evolutionarily conserved neural mechanism involved in shaping behaviour and social organization across species has remained elusive. Here, we review studies that have investigated the role of neural arginine vasopressin (AVP), vasotocin (AVT), and their receptor V1a in mediating variation in territorial behaviour. First, we discuss how aggression and territoriality are a function of population density in an inverted-U relationship according to resource defence theory, and how territoriality influences some mating systems. Next, we find that neural AVP, AVT, and V1a expression, especially in one particular neural circuit involving the lateral septum of the forebrain, are associated with territorial behaviour in males of diverse species, most likely due to their role in enhancing social cognition. Then we review studies that examined multiple species and find that neural AVP, AVT, and V1a expression is associated with territory size in mammals and fishes. Because territoriality plays an important role in shaping mating systems in many species, we present the idea that neural AVP, AVT, and V1a expression that is selected to mediate territory size may also influence the evolution of different mating systems. Future research that interprets proximate-level neuro-molecular mechanisms in the context of ultimate-level ecological theory may provide deep insight into the brain-behaviour relationships that underlie the diversity of social organization and mating systems seen across the animal kingdom. oldfield_et_al._2015.pdf
July 7, 2015, Filed Under: 2015Testing the critical window hypothesis of timing and duration of estradiol treatment on hypothalamic gene networks in reproductively mature and aging female rats Citation: Yin W, Maguire SM, Pham B, Garcia AN, Dang NV, Liang J, Wolfe A, Hofmann HA, Gore AC. Testing the critical window hypothesis of timing and duration of estradiol treatment on hypothalamic gene networks in reproductively mature and aging female rats. Endocrinology. 156 (8) :2918 – 2933. Abstract At menopause, the dramatic loss of ovarian estradiol (E2) necessitates the adaptation of estrogen-sensitive neurons in the hypothalamus to an estrogen-depleted environment. We developed a rat model to test the “critical window” hypothesis of the effects of timing and duration of E2 treatment after deprivation on the hypothalamic neuronal gene network in the arcuate nucleus and the medial preoptic area. Rats at 2 ages (reproductively mature or aging) were ovariectomized and given E2 or vehicle replacement regimes of differing timing and duration. Using a 48-gene quantitative low-density PCR array and weighted gene coexpression network analysis, we identified gene modules differentially regulated by age, timing, and duration of E2 treatment. Of particular interest, E2 status differentially affected suites of genes in the hypothalamus involved in energy balance, circadian rhythms, and reproduction. In fact, E2 status was the dominant factor in determining gene modules and hormone levels; age, timing, and duration had more subtle effects. Our results highlight the plasticity of hypothalamic neuroendocrine systems during reproductive aging and its surprising ability to adapt to diverse E2 replacement regimes. 2015.yin_.endo_.pdf
February 22, 2015, Filed Under: 2015Social odors conveying dominance and reproductive information induce rapid physiological and neuromolecular changes in a cichlid fish Citation: Simões JM, Barata EN, Harris RM, O’Connell LA, Hofmann HA, Oliveira RF. Social odors conveying dominance and reproductive information induce rapid physiological and neuromolecular changes in a cichlid fish. BMC Genomics [Internet]. 16 (1) :1 – 13. Publisher’s Version Abstract Social plasticity is a pervasive feature of animal behavior. Animals adjust the expression of their social behavior to the daily changes in social life and to transitions between life-history stages, and this ability has an impact in their Darwinian fitness. This behavioral plasticity may be achieved either by rewiring or by biochemically switching nodes of the neural network underlying social behavior in response to perceived social information. Independent of the proximate mechanisms, at the neuromolecular level social plasticity relies on the regulation of gene expression, such that different neurogenomic states emerge in response to different social stimuli and the switches between states are orchestrated by signaling pathways that interface the social environment and the genotype. Here, we test this hypothesis by characterizing the changes in the brain profile of gene expression in response to social odors in the Mozambique Tilapia, Oreochromis mossambicus. This species has a rich repertoire of social behaviors during which both visual and chemical information are conveyed to conspecifics. Specifically, dominant males increase their urination frequency during agonist encounters and during courtship to convey chemical information reflecting their dominance status. 2015.simoes.bmc_.pdf
February 2, 2015, Filed Under: 2015Taxon matters: Promoting integrative studies of social behavior: NESCent Working Group on Integrative Models of Vertebrate Sociality: Evolution, Mechanisms, and Emergent Properties Citation: Taborsky M, Hofmann HA, Beery AK, Blumstein DT, Hayes LD, Lacey EA, Martins EP, Phelps SM, Solomon NG, Rubenstein DR. Taxon matters: Promoting integrative studies of social behavior: NESCent Working Group on Integrative Models of Vertebrate Sociality: Evolution, Mechanisms, and Emergent Properties. Trends in Neurosciences. 38 (4) :189 – 191. Abstract The neural and molecular mechanisms underlying social behavior – including their functional significance and evolution – can only be fully understood using data obtained under multiple social, environmental, and physiological conditions. Understanding the complexity of social behavior requires integration across levels of analysis in both laboratory and field settings. However, there is currently a disconnect between the systems studied in the laboratory versus the field. We argue that recent conceptual and technical advances provide exciting new opportunities to close this gap by making non-model organisms accessible to modern approaches in both laboratory and nature. 2015.taborsky.tn_.pdf
February 1, 2015, Filed Under: 2015Arginine vasotocin regulates social ascent in the African cichlid fish Astatotilapia burtoni Citation: Huffman LS, Hinz FI, Wojcik S, Aubin-Horth N, Hofmann HA. Arginine vasotocin regulates social ascent in the African cichlid fish Astatotilapia burtoni. General and Comparative Endocrinology [Internet]. 212 :106 – 113. Publisher’s Version Abstract Neuropeptides modulate many aspects of behavior and physiology in a broad range of animals. Arginine vasotocin (AVT) is implicated in mediating social behavior in teleost fish, although its specific role varies between species, sexes, life stages, and social context. To investigate whether the effects of AVT on behavior depend on social context, we used the African cichlid fish Astatotilapia burtoni, which is well-known for its remarkable behavioral plasticity. We pharmacologically manipulated the AVT system in established socially dominant and subordinate A. burtoni males, as well as in males ascending to dominance status in a socially unstable environment. Our results show that exogenous AVT causes a stress response, as evidenced by reduced behavioral activity and increased circulating levels of cortisol in established dominant and subordinate males. Administration of the AVT antagonist Manning compound, on the other hand, did not affect established subordinate or dominant males. However, AVT antagonist-treated males ascending from subordinate to dominant status exhibited reduced aggressive and increased courtship behavior compared to vehicle-treated animals. Finally, we measured circulating cortisol levels and brain gene expression levels of AVT and its behaviorally relevant V1a2 receptor in all three social phenotypes and found that plasma cortisol and mRNA levels of both genes were increased in ascending males compared to dominant and subordinate males. Our results provide a more detailed understanding of the role of the AVT system in the regulation of complex behavior in a dynamically changing social environment. 2014.huffman.gce_.pdf
January 26, 2015, Filed Under: 2015Seeing is believing: dynamic evolution of gene families Citation: Harris RM, Hofmann HA. Seeing is believing: dynamic evolution of gene families. Proceedings of the National Academy of Sciences of the United States of America. 112 (5) :1252 – 1253. Abstract Educated by his deep appreciation of nature, Darwin observed that “from so simple a beginning endless forms most beautiful” have arisen throughout the evolutionary history of life on earth (1). The spectacular diversity of orchids (2) and beetles (3) has long fascinated naturalists and casual observers alike. More recently, the adaptive radiations of Hawaiian drosophilids (4), Caribbean Anolis lizards (5), and African cichlid fishes (6) have become prime examples for understanding the mechanisms that enable diversification. Gene duplication and deletion are generally considered important evolutionary mechanisms that give rise to phenotypic diversity (7). Following gene duplication and loss, adaptation and speciation appear to proceed through a combination of both structural and cis-regulatory changes in one or more paralogous genes (8). Recent advances in sequencing technology have enabled researchers to make significant progress in understanding the molecular evolution that has facilitated diversification. In PNAS, Cortesi et al. (9) examine the evolution of vertebrate opsin genes as a spectacular example of how gene duplication and deletion events that affect spectral sensitivity have driven adaptation to diverse light environments and visual displays. 2015.harris.pnas_.pdf
October 30, 2014, Filed Under: 2015Parental care in the Cuatro Ciénegas cichlid, Herichthys minckleyi (Teleostei: Cichlidae) Citation: Oldfield, Ronald G, Mandrekar K, Nieves XM, Hendrickson DA, Chakrabarty P, Swanson BO, Hofmann HA. Parental care in the Cuatro Ciénegas cichlid, Herichthys minckleyi (Teleostei: Cichlidae). Hydrobiologia [Internet]. 748 (1) :233-257. Publisher’s Version Abstract Behavioral studies have often examined parental care by measuring phenotypic plasticity of behavior within a species. Phylogenetic studies have compared parental care among species, but only at broad categories (e.g., care vs. no care). Here we provide a detailed account that integrates phylogenetic analysis with quantitative behavioral data to better understand parental care behavior in the Cuatro Ciénegas cichlid, Herichthys minckleyi. We found that H. minckleyi occurs in a clade of sexually monochromatic or weakly dichromatic monogamous species, but that male and female H. minckleyi have dramatically different reproductive coloration patterns, likely as a result of sexual selection. Furthermore, we found that males are polygynous; large males guard large territories, and smaller males may attempt alternative mating tactics (sneaking). Finally, compared to the closely related monogamous Rio Grande cichlid, H. cyanoguttatus, males of H. minckleyi were present at their nests less often and performed lower rates of aggressive offspring defense, and females compensated for the absence of their mates by performing higher levels of offspring defense. Body color, mating system, and parental care in H. minckleyi appear to have evolved after it colonized Cuatro Ciénegas, and are likely a result of evolution in an isolated, stable environment. oldfield_et_al._2015b.pdf
September 6, 2014, Filed Under: 2015Neural Gene Expression Profiles and Androgen Levels Underlie Alternative Reproductive Tactics in the Ocellated Wrasse, Symphodus ocellatus Citation: Stiver KA, Harris RM, Townsend JP, Hofmann HA, Alonzo SH. Neural Gene Expression Profiles and Androgen Levels Underlie Alternative Reproductive Tactics in the Ocellated Wrasse, Symphodus ocellatus. Ethology. 121 (2) :152 – 167. Abstract Discrete variation in reproductive behavior and physiology is observed in diverse taxa. Although it is known that most within-sex alternative reproductive tactics arise as a consequence of phenotypic plasticity, relatively little is known about differential neural gene expression among plastic alternative reproductive phenotypes. In the ocellated wrasse Symphodus ocellatus, males exhibit one of three alternative tactics (nesting, satellite, and sneaker) within a reproductive season, but switch tactics between years. Satellites and sneakers spawn parasitically in dominant (nesting) males’ nests, but only nesting males provide parental care. Nesting and satellite males show transient cooperative defense of nests against sneakers. Here, we analyze circulating sex steroid hormone levels and neural gene expression profiles in these three male phenotypes and in females. 11-ketotestosterone (but not testosterone) was highest in nesting males, while estradiol was highest in females. Brain transcriptomes of satellites and females were most similar to each other and intermediate to nesting and sneaker males. Sneakers showed more total expression differences, whereas nesting males showed higher magnitude expression differences. Our findings reveal the surprising extent to which neural gene expression patterns vary across reproductive tactics that vary in a number of social traits, including aggression, territoriality, and cooperation, providing important insights into the molecular mechanisms that may underlie variation in cooperative and reproductive behavior. 2015.stiver.ethology.pdf 2015.stiver.ethology.pdf
February 6, 2014, Filed Under: 2015Copy number variation in the melanocortin 4 receptor gene and alternative reproductive tactics the swordtail Xiphophorus multilineatus Citation: Smith CC, Harris RM, Lampert KP, Schartl M, Hofmann HA, Ryan MJ. Copy number variation in the melanocortin 4 receptor gene and alternative reproductive tactics the swordtail Xiphophorus multilineatus. Environmental Biology of Fishes [Internet]. 98 (1) :23-33. Publisher’s Version Abstract Alternative reproductive tactics are powerful examples of how variation in genetics and physiology among individuals can lead to striking diversity in phenotype. In the swordtails (genus Xiphophorus), copy number variation (CNV) at the melanocortin 4 receptor (mc4r) locus is correlated with male body size, which in turn is correlated with male mating behavior. We measured the relationship between mc4r CNV, behavior, and 11-ketotesterone (11-KT) in X. multilineatus to determine whether mc4r CNV was associated with other components of male tactics in addition to body size. We confirmed the results of previous studies, showing that male size increases with mc4r CNV and that mating behavior toward females was size-dependent. We also examined agonistic behavior by exposing males to their mirror image and found that male-male displays behavior were size-dependent. Small males were less likely to exhibit an agonistic response, suggesting that alternative reproductive tactics span intrasexual and intersexual contexts. There was no significant association between mc4r CNV and behavior or 11-KT hormone titer. Mc4r CNV is thus associated with the variation in male body size, but not with other traits independent of body size. smith_et_al._2015.pdf