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ABSTRACT

The diverse cichlid species flocks of the East African lakes provide a classical example of adaptive radiation.
Territorial aggression is thought to influence the evolution of phenotypic diversity in this system. Most
vertebrates mount hormonal (androgen, glucocorticoid) responses to a territorial challenge. These hormones,
in turn, influence behavior and multiple aspects of physiology and morphology. Examining variation in
competition-induced hormone secretion patterns is thus fundamental to an understanding of the mechanisms
of phenotypic diversification. We test here the hypothesis that diversification in male aggression has been
accompanied by differentiation in steroid hormone levels. We studied two pairs of sibling species from Lake
Victoria belonging to the genera Pundamilia and Mbipia. The two genera are ecologically differentiated, while
sibling species pairs differ mainly in male color patterns. We found that aggression directed toward conspecific
males varied between species and across genera: Pundamilia nyererei males were more aggressive than
Pundamilia pundamilia males, and Mbipia mbipi males were more aggressive than Mbipia lutea males. Males of
both genera exhibited comparable attack rates during acute exposure to a novel conspecific intruder, while
Mbipia males were more aggressive than Pundamilia males during continuous exposure to a conspecific rival,
consistent with the genus difference in feeding ecology. Variation in aggressiveness between genera, but not
between sibling species, was reflected in androgen levels. We further found that M. mbipi displayed lower levels
of cortisol than M. [utea. Our results suggest that concerted divergence in hormones and behavior might play an

important role in the rapid speciation of cichlid fishes.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Identifying the mechanisms that drive population differentiation and
speciation has proven to be one of the most challenging problems in
evolutionary biology (Fisher, 1930; Lande, 1981; Van Doorn et al.,
2009). The adaptive radiations of haplochromine cichlid fishes in the
East African Great Lakes provide textbook examples of rapid diversifica-
tion through natural and sexual selection (Kocher, 2004; Salzburger and
Meyer, 2004; Schluter, 2000). The rock-dwelling communities of these
lakes comprise several species complexes or genera that are strongly
differentiated in ecology. By contrast, within genera, sibling species
tend to be ecologically more similar, yet strikingly different in male
nuptial coloration (Seehausen, 2000). This color variation is a target of
sexual selection by female mate choice and plays a central role in the
evolution and maintenance of haplochromine species richness (e.g.,
Genner and Turner, 2005; Kocher, 2004; Maan et al., 2004; Seehausen
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et al., 1997). Since haplochromine males can be highly territorial, it
has been proposed that interference competition among males for
mating and/or foraging territories can be a source of selection (Genner
et al, 1999; Seehausen and Schluter, 2004). Indeed, several studies
have indicated that male-male competition can generate negative
frequency-dependent selection between competing species (Dijkstra
et al., 2010; Seehausen and Schluter, 2004).

Across cichlid species there is striking variation in the (intrinsic) rate
of territorial aggression (Genner et al., 1999; Ribbink et al., 1983). This
behavioral variation influences outcomes of competition for both
mates and ecological resources, and therefore has implications for
selection, patterns of gene flow and the evolution and maintenance of
phenotypic diversity (Dijkstra et al., 2010; Genner et al., 1999; see
also: Owen-Ashley and Butler, 2004; West-Eberhard, 1983). A clear
understanding of the evolutionary consequences of aggressive behavior
requires understanding the physiological causes and consequences of
agonistic interactions. Variation in hormones could underlie differences
in aggression between species (e.g., O'Connell and Hofmann, 2011;
Oliveira, 2009). However, hormones are not only a causal factor for
male social behavior, but also their excretion rates are influenced in
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turn by the social environment, in particular by interactions between
conspecifics, suggesting a complex two-way relationship between
hormones and behavior (Wingfield et al., 1990; reviewed in Oliveira,
2004).

In addition to their role in behavior, hormones also regulate multiple
aspects of physiology and morphology. Consequently, hormones are
thought to mediate trade-offs among life history traits that are
important for survival and reproduction (McGlothlin and Ketterson,
2008). It follows then that ecological or social factors may select for
higher rates of aggressiveness via increases in competition-induced
circulating levels of androgens. Competitive challenges may also induce
a stress response by activating the hypothalamic-pituitary-adrenal
(HPA) axis, resulting in a rapid glucocorticoid release that helps the
animal to respond appropriately to stressful stimuli. However,
increased androgen and glucocorticoid secretion rates can exert
negative effects on the immune system and other physiological
variables (Folstad and Karter, 1992; Wendelaar Bonga, 1997). As
hormones exert (antagonistic) pleiotropy over behavior and other
aspects of an animal's phenotype, selection on hormone-mediated
behaviors could play an important role in creating and maintaining
polymorphic phenotypes (e.g. in a frequency-dependent manner)
(Kitano et al., 2010; Pryke et al., 2007; for review see Zera et al.,
2007). We therefore propose that studying competition-induced
shifts in hormone levels may advance our understanding of the
rapid evolution of the haplochromine cichlid radiation. Specifically,
we ask in the present study whether interspecific variation in
aggression is reflected in parallel patterns of steroid hormones in
four closely related sympatric haplochromine species.

Steroid hormones, such as androgens and glucocorticoids, affect a
variety of morphological, physiological and behavioral traits (reviewed
by Nelson, 2005). As noted above, androgen release is modulated by the
social environment, in particular through interactions with conspecifics
(e.g. Cardwell and Liley, 1991, reviewed in Oliveira, 2004). Circulating
androgen levels are increased in periods of social instability that
constitute a challenge to the animal (Wingfield et al., 1990), preparing
the animal for future competitive situations (reviewed in Oliveira,
2004). In a comparative context, the challenge hypothesis has been
useful in predicting competition-induced shifts in hormone levels
according to several social and life history variables, such as length of
breeding season and mating system (for recent reviews see Gleason et
al., 2009; Goymann, 2009; Hirschenhauser and Oliveira, 2006).

Glucocorticoids coordinate behavioral and physiological responses
to acute and chronic stressors (Sapolsky et al., 2000). For example,
glucocorticoids mobilize energy resources and coordinate other
physiological aspects of the stress response, aiding the animal in
surviving stressful situations (Romero, 2002). At least indirectly,
glucocorticoids are important modulators of aggression as well
(Soma et al., 2008) and, correspondingly, glucocorticoid secretion
rates increase in periods of social instability (Goymann and
Wingfield, 2004). Although glucocorticoid responses are essential to
survival, glucocorticoid can suppress the gonadal axis (Moberg, 1985)
and long term exposure of glucocorticoids can lead to a multitude of
deleterious effects, including neuron death (Sapolsky, 1993). Animals
must therefore strike a balance between glucocorticoid levels that help
survive stressful situations while limiting (long-term) glucocorticoid
secretion to prevent deleterious effects.

Within an evolutionary context, studying hormonal responses to
social challenges may contribute to our understanding of the
mechanism of diversification in cichlids, since steroid hormones not
only regulate behavior (and vice versa), but also affect a variety of key
life history traits such as sexual signaling and immune function. We
test here the hypothesis that diversification in male aggression has
been accompanied by differentiation in steroid hormone levels across
several Lake Victoria cichlid species. We focused on two sympatric
sibling species pairs of haplochromine cichlids from two different
genera that have the same mating system but vary in male color, the

rate of aggressiveness and foraging ecology (Fig. 1): (1) Pundamilia
pundamilia and Pundamilia nyererei and (2) Mbipia lutea and Mbipia
mbipi (Seehausen, 1996). Sibling species within each genus are mor-
phologically very similar but differ markedly in male nuptial coloration
and aggression (Fig. 1) with P. nyererei being more aggressive than P.
pundamilia and M. mbipi being more aggressive than M. lutea (Dijkstra
et al., 2010; Verzijden et al., 2008, 2009; Verzijden unpublished). Al-
though the two genera have not been previously compared, we hypoth-
esized that they would likewise differ in average aggressiveness (Fig. 1).
Mbipia and Pundamilia spp. occupy different trophic niches and accord-
ingly display divergent ecomorphology (Seehausen et al., 1998): Punda-
milia prefer zooplankton and benthic insects, which are more or less
uniformly distributed within the lake. Mbipia are more dependent on
Aufwuchs (i.e., spatially clustered epilithic algae and associated organ-
isms, Bouton et al., 1997; Seehausen et al., 1998), which constitutes a
more defendable resource (Bouton et al, 1997; Seehausen et al,
1998). Thus, in Mbipia aggressive behavior has a dual function in that
it enables males to compete for and attract potential mates and to de-
fend a feeding territory. As a consequence, we predicted that Mbipia
would exhibit higher levels of territorial aggression than Pundamilia
(Fig. 1).

In the present study, we investigated how interspecific variation
in two types of territorial challenges from a conspecific rival is
reflected in variation in circulating androgen and glucocorticoid
levels. To this end, we analyzed agonistic behavior patterns and
subsequent hormonal responses across three experimental contexts:
continuous territory defense against a familiar male; a simulated
territorial intrusion challenge by an unfamiliar male; and a social
isolation control. We quantified aggressive displays and attacks and
measured circulating levels of testosterone (T), the teleost-specific
androgen 11-ketotestosterone (11-KT) (Kime, 1993) and the
glucocorticoid hormone cortisol (CORT).

We expected that the behavioral and hormonal responses toward
an unfamiliar intruding rival would be stronger than toward a familiar
neighbor. Further, we predicted that Mbipia males would exhibit higher
levels of aggression, and have higher levels of circulating steroids than
males of Pundamilia (Fig. 1). In a previous study (Dijkstra et al., 2011),
we found that red and blue Pundamilia phenotypes differed in
aggression levels, yet this phenotype difference was not reflected in
circulating steroid hormone levels. Importantly, in that study red and
blue males were from a location in Lake Victoria where they hybridize
and behave like incipient species or color morphs (Seehausen, 2009).
In the current study, in contrast, we focused on reproductively isolated
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Fig. 1. Summary description of trophic ecology as well as the expected relative aggression
and steroid hormone levels for the four species used in the current study, Pundamilia
pundamilia (males are blue), P. nyererei (red), Mbipia lutea (yellow) and M. mbipi
(black). Photos by Ole Seehausen.
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sibling species from a different location, which are expected to show
more pronounced phenotypic divergence (Seehausen, 2009). We
therefore predicted for both genera that the more aggressive species
(P. nyererei and M. mbipi, respectively) would have higher levels of
circulating steroids than their less aggressive sister taxa (P. pundamilia
and M. luteq, respectively).

Materials and methods
Species and subjects

The haplochromine cichlids P. pundamilia (Seehausen et al., 1998)
and P. nyererei (Witte-Maas and Witte, 1985) are endemic to Lake
Victoria and confined to rocky shores and islands (Seehausen, 2009).
Territorial males defend territories that are essential for mating, while
non-territorial males, females and juveniles school at various depths.
P. nyererei males are yellow on their flanks and crimson in more dorsal
regions, including the dorsal fin (we refer to this species as ‘red’). In
contrast, P. pundamilia males are grayish white both dorsally and on the
flanks and have a blue dorsal fin (here referred to as ‘blue’). Territorial
red males occur at a depth of 3-8 m and are specialist plankton eaters;
territorial blue males reside in water less than 3 m deep and feed
predominantly on benthic insect larvae (Seehausen et al., 1998).

Mbipia spp., a haplochromine genus also endemic to Lake Victoria,
is similarly confined to rocky shores and islands (Seehausen et al.,
1998). Males of M. mbipi are black (we refer to them as ‘black’),
whereas males of M. lutea are yellow (and thus we refer to them as
‘yvellow’ here). Territorial yellow males exclusively inhabit shallow
waters (0-2m deep) and feed predominantly on Aufwuchs
(Seehausen et al., 1998). Territorial black, on the other hand, has its
maximum territory density between 0 and 2 m but occurs up to a
depth of 6 m. It also feeds on filamentous algae, although it can be
best described as a partial Aufwuchs eater, since it also ingests other
components of the algal mat such as diatoms and insect larvae
(Bouton et al., 1997). All individuals used in this study were first
generation offspring of fish that were collected in February 2003 at
Makobe Island, located in the western Speke Gulf of Lake Victoria,
where all four species are sympatric, reproductively isolated species,
and likely compete with one another for resources (Seehausen, 1996).
Fish were bred from 16 P. pundamilia pairs, 17 P. nyererei pairs, 10
M. mbipi pairs, and 9 M. lutea pairs. The research was carried out with
an animal experiment license (DEC 3137 and DEC 4335A) from
Groningen University and complied with current laws in The
Netherlands.

Housing

All males were kept in compartments (size 0.5x 0.4 x 0.6 m) within
larger tanks and separated from conspecific males via perforated and
transparent dividers. Each compartment contained gravel substrate
and a dark gray polyvinyl chloride (PVC) tube that served as a territorial
shelter. This arrangement allowed males to become territorial and
interact visually and chemically while preventing physical interaction.
Control males were placed in complete isolation without visual and
chemical access to other fish by covering the sides and the back of the
aquaria with black plastic sheets. All aquaria were connected to a
central recirculating biological filter system with the water temperature
at 25+ 2 °C, and a 12:12 h light:dark cycle. The fish were fed daily with
flake food (a mixture of King British Flakes and Ocean Star International
Spirulina) and a mix of ground shrimp and peas.

Experimental design
Males were allowed to acclimate to the experimental tank for at

least one week before data collection began. A single focal male was
then observed in each experimental trial, which consisted of one of

three standardized social treatments. In the continuous social stimulation
treatment the focal male was housed next to a conspecific rival male for
at least one week (mean days+SE: 14.10+£0.52, range: 8-20). We
then recorded the behavior (see below) of the two males for 5 min
with a video recorder (Sony Handycam DCR-SR52) and collected
behavioral data of one (focal) male in a given interaction. At the end of
the recording session we netted the focal male and immediately (within
90 s) drew a blood sample (20- to 200-pL) from the caudal vein using a
needle and a syringe. Body mass and standard length (SL) were also
measured. This treatment allowed us to measure the ‘social baseline’
steroid levels of territorial males (Dijkstra et al., 2007).

The second treatment is referred to as the territorial intrusion
treatment. Here, the focal male was also housed next to a conspecific
rival male for at least one week (mean days + SE: 14.13 +0.52, range
8-20), but we then removed the neighboring male and immediately
placed an unfamiliar stimulus male enclosed in a transparent tube
in the compartment of the focal male. Behavior of the focal male
was recorded for the initial 15 min on video from the moment the
stimulus male was introduced; the focal male was allowed to interact
with the stimulus male for 45 min after which we netted the focal
male and immediately took a blood sample. This treatment presumably
triggers the maximum physiological steroid response (Hirschenhauser
et al,, 2004, but see Apfelbeck and Goymann, 2011).

Finally, in the social isolation treatment, we obtained blood
samples from males that were kept in tanks isolated from any other
fish. Males were given the same week-long acclimation period and
were netted and sampled in the same way as in the other treatments.
This treatment allowed us to measure physiological baseline steroid
levels in the absence of social stimulation.

We used a total of 25 blue males (mean mass + SE: 25.3 g+ 2.4; mean
SL+SE: 92.3 mm+2.4), 26 red males (24.6 g+ 2.1; 92.4 mm 4 2.5), 30
yellow males (40.8 g+2.3; 108.3 mm+2.0), and 20 black males
(22.7 g+ 1.7; 89.5 mm 4 2.4). Some males acted both as focal and
stimulus animal (i.e. in the continuous social treatment, the focal
male was stimulated with a male that was later tested in the intruder
treatment). We ensured that males never interacted with the same
opponent twice. To increase power, we tested several males in at least
two of the three treatments (in random order) with an intervening
interval of at least eight days. Hormone and behavioral data were
collected from, 19 blue, 21 red, 29 yellow and 20 black males. Of
these, 14 blue, 16 red, 15 yellow and 11 black males were used in two
different treatments; 2 blue and 1 black male were tested in all three
different treatments. We detected no order effect in the analysis (data
not shown). Males that were allowed to interact were approximately
size-matched (SL difference as percentage of the larger male, mean +
SE: 5.61% £ 0.54, range: 0%-26.51%).

Quantification of behavior

One observer quantified behavior from the video recordings by
scoring the rate that the focal male performed both display and attack
behaviors toward the stimulus male (Baerends and Baerends-van
Roon, 1950; Dijkstra et al., 2006; Verzijden et al., 2009). A display
event was defined as a lateral or frontal display. During frontal
displays, the focal male extends his dorsal fins, and sometimes
pectoral fin and operculum as well, while facing the lateral or frontal
side of the stimulus male. During a lateral display, the male extends
his dorsal, anal and pelvic fins and positions himself such that his
flank is in front of the head of the stimulus male. An attack event
was defined as an individual butt or bite against the transparent
screen or tube directed toward the stimulus male.

Hormone assays

We measured circulating levels of two androgens (T and the
teleost-specific 11-KT) and CORT in blood plasma using enzyme
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immunoassays (T and CORT: Assay Design, Ann Arbor, MI; 11-KT
Cayman Chemical Ann Arbor, MI) following protocols established by
Kidd et al. (2010). These assay systems measure both the free and
bound (to steroid binding proteins) fractions. For T and CORT, 7.2 pL
of blood plasma per sample was diluted 1:30 with assay buffer and
the manufacturer's instructions were followed (see Kidd et al., 2010).
For 11-KT we used 3.6 uL plasma per sample. Overall, the intra-assay
CV were 1.58%, 2.57% and 2.21% for T, 11-KT and CORT, respectively.
The inter-assay CV were 6.56%, 4.46% and 8.85% for T, 11-KT and
CORT, respectively. Cross-reactivities for T were: T 100%, 19-
hydroxytestosterone 14.64%, Androstenedione 7.20%, Dehydroepian-
drosterone 0.72%, Estradiol 0.40%, Dihydrotestosterone <0.001%, Estriol
<0.001%, Aldosterone <0.001%, Corticosterone <0.001%, Cortisol
<0.001%, Cortisone <0.001%, Estrone <0.001%, Progesterone <0.001%,
Pregnenolone <0.001%. Cross-reactivities for 11-KT was: 11KT 100%,
4-Androsten-11p, 17B-diol-3-one 0.01%, Testosterone <0.01%, 5o-
Androstan-173, ol-3-one <0.01%, 5a-Androsten-33, 17p-diol
<0.01%. Cross-reactivities for CORT were: Cortisol 100%, Prednisolone
122%, Corticosterone 27.7%, 11-deoxycortisol 4.0%, Progesterone
3.64%, Prednisone 0.85%, Testosterone 0.12%, Androstenedione <0.1%,
Cortisone <0.1%, Estradiol <0.1%. The detection limit for T and CORT
was determined as the concentration of testosterone measured at two
standard deviations from the zero along the standard curve; the
detection limit for 11KT was calculated as 80% B/Bo (sample bound/
maximum bound). The detection limits were 5.67, 1.3, and 56.72 pg/
ml for T, 11-KT and CORT.

Statistics

A linear mixed-model analysis of variance (LMM) was implemented
in PASW Statistics (version 18) to test the influence of sibling species
(red versus blue, black versus yellow), genus (Mbipia versus Pundamilia)
and the treatments (fixed effects) on display rate or attack rate, with
individual (referred to as fish identity) as a random effect in the model.
To test whether sibling species differ in the rate of aggressiveness, we
defined the explanatory factor ‘species’, according to the known species
differences in aggressiveness (red and black are more aggressive than
blue and yellow, respectively, Dijkstra et al, 2010; Verzijden
unpublished). Similar LLM models were employed when comparing T,

11-KT or CORT levels. In all models concerning behavior and hormones,
fish identity was never significant (Wald values<1.042, P values>0.3),
unless stated otherwise. Due to significant departure from normality
(Kolmogorov-Smirnov test P<0.05), we applied a natural log
transformation [In (X+1)] to the behavioral data and a square root
transformation to the hormone data. Backward elimination of non-
significant fixed effects (using a conservative P>0.1) was used as a
model selection criterion. Within-treatment comparisons were done
using ANOVAs. All quoted probabilities are for two-tailed tests of
significance.

Results
Agonistic behavior

Agonistic behavior consisted of both attack and display behavior
(Fig. 2). As expected sibling species had different attack rates; red and
black males were more aggressive than blue and yellow, respectively
(Fig. 2, Table 1). Further, after controlling for the effect of sibling species
the attack rate differed between genera, and according to the type of
treatment, as indicated by a significant interaction between genus and
treatment (Fig. 2, Table 1). Specifically, males of Pundamilia and Mbipia
had comparable attack rates when responding to an intruder (ANOVA:
F(1, 55)=0.02, P=0.88), but in the continuous treatment Mbipia
males performed significantly more attacks than Pundamilia males
(treatment: F(1, 54)=13.92, P<0.001). Display rates were also
influenced by treatment: males displayed more frequently in the
intruder treatment than in the continuous social treatment. Neither
species nor genus was predictive of display rate variation (Fig. 2,
Table 1).

Circulating hormone levels and the challenge response

Overall, there was a significant ‘challenge response’; T and 11-KT
levels were significantly higher in the social treatments (continuous so-
cial treatment and intruder treatment merged into one treatment
group) compared to the isolated fish (LMM, T: F(1, 146.68) =21.46,
P<0.001; 11-KT: F(1, 142.77)=3.94, P=0.049, fish identity
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Fig. 2. Species differences in agonistic behavior in two social conditions for Pundamilia (A) and Mbipia (B). (A) Behavior of red (closed circles) and blue males (open circles). Shown
are the rates per minute for attack and display behavior (mean + SE) in the continuous social stimulation treatment and the intruder treatment. (B) Behavior of black (closed cir-
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Table 1

Results of Linear Mixed Models examining the effects of treatment (continuous social
vs. intruder), genus (Mbipia, Pundamilia) and sibling species (a significant effect
means that red and black are different from blue and yellow, respectively) on attack
(top) and display rates (bottom). Significance levels are reported for before factors
were removed from the model during the backward elimination process and in the
final model (which only retained significant terms, shown in bold). Note that if the in-
teraction term is significant or retained, their main effects are not reported.

Factor df F Significance
Attack

Treatment x genus x species 1, 58.15 1.11 0.30
Treatment x species 1,58.43 0.09 0.76
Genus x species 1,59.73 0.24 0.62
Species 1, 59.70 7.22 0.009
Treatment x genus 1,59.83 5.97 0.017
Display

Treatment x genus x species 1, 52.02 1.38 0.25
Treatment x genus 1,52.95 0.67 0.42
Treatment x species 1, 53.66 0.99 0.33
Genus x species 1,57.23 1.26 0.27
Genus 1,57.82 0.07 0.80
Species 1,58.34 0.37 0.55
Treatment 1,53.42 100.02 <0.001

Wald = 2.05, P=0.04). However, there was no such overall effect for
CORT (see below).

We then tested whether species, genera and treatment had an
effect on the challenge responses. In contrast to the analysis of behavior,
we also included isolated males in this analysis, but the statistical
results were similar if only the two social treatments were included in
the analysis. Contrary to our predictions, circulating T levels did not
differ between sibling species, despite marked differences in the level
of aggressiveness (Fig. 3, Table 2). However, an interaction between
treatment and genus was predictive of levels of T (Table 2), which
parallels observed differences in attack rate (Table 2). Specifically,
Mbipia and Pundamilia males had similar T levels when in isolation
(ANOVA: F(1, 36)=0.14, P=0.71) and similarly high levels when
faced with an intruder (F(1, 55)=0.009, P=0.92). In contrast T levels
in Pundamilia were lower during continuous exposure to a rival than
those in Mbipia, resulting in a significant difference between the genera
(F(1,54)=15.17, P=0.001, see Fig. 3).

The pattern of 11-KT resembles that of T, which is unsurprising
given that these two androgens are tightly correlated (Pearson's
r=0.77, P<0.001). The analysis of 11-KT showed that treatment did
not affect circulating levels, nor was there an effect of sibling species
or genus, although the interactions between treatment and species
and between treatment and genus were retained in the model as non-
significant factors (0.05<P<0.10, see Table 2). Fish identity had a
significant effect on variation in 11-KT (Wald =2.273, P=0.023).

In the final model for CORT, there was a significant interaction
between sibling species and genus (Fig. 3, Table 2), thus species
pairs differ in the degree to which they diverge in CORT response.
This interaction effect is most apparent in the continuous social
treatment where to our surprise Mbipia black males had considerably
lower CORT levels compared to yellow males (ANOVA: F(1, 26)=
11.05, P=10.003), while CORT levels did not differ between Pundamilia
red and blue males in this treatment condition (F(1, 26)=1.79,
P=0.19). There was no significant interaction between treatment and
genus that would have explained this variation in CORT (Table 2).
Thus, in contrast to T, CORT levels did not reflect genus-specific
variation in agonistic behavior. Finally, as expected, after stimulation
with an unfamiliar intruding rival CORT levels were much higher than
during exposure to a familiar neighbor or in isolation (Table 2).

Discussion

In the present study, we investigated in closely related cichlid fish
species how interspecific variation in circulating androgen and
glucocorticoid levels is associated with two types of territorial
challenges. We found differences in aggression between sibling species:
red males attack more than blue ones (see also Dijkstra et al., 2010) and
black more than yellow ones. The two genera Mbipia and Pundamilia
showed different dynamics in male agonistic responses across the two
types of territorial challenges. In the intruder treatment, males of both
genera exhibited high attack rates. However, in the continuous
treatment, attack rates of Mbipia males were much higher than those
in Pundamilia males. As expected, the genus difference in agonistic
behavior was reflected in the T response: in the intruder treatment,
males of both genera exhibited comparably high T responses, while in
the continuous social treatment Mbipia had higher social baseline T
levels than Pundamilia males; thus, it appears that Mbipia males already
exhibited high androgen levels in this social condition when faced with
a familiar rival and that the introduction of an unfamiliar intruder could
not increase androgen levels any further.

Variation in 11-KT levels generally followed the pattern observed
in T, although the interaction term between genus and treatment in
the final model was non-significant. It should be noted, however,
that fish identity had a significant effect, suggesting that individual
consistency in 11-KT levels may have masked treatment effects.
Often, 11-KT is viewed as the more relevant androgen in fish (e.g.,
Hirschenhauser et al., 2004), but the evidence suggests this may not
be true in haplochromine cichlids. Specifically, 11-KT levels are ca.
40 times lower than those of T, and at the same time 11-KT and T
are also tightly correlated, consistent with observations in the
model haplochromine species Astatotilapia burtoni (Kidd et al.,
2010; Korzan et al., 2008; Parikh et al., 2006).

When exposed to an intruder challenge, males of both genera
displayed higher levels of CORT and display behavior compared to
the continuous social and isolation treatment. Assuming that the
intruder treatment poses more of an acute challenge than the
continuous social treatment, this observation is consistent with the
notion that a social stressor can elevate not only androgen but also
CORT levels (Romero, 2002). Despite exhibiting high levels of
aggression, T and 11-KT, Mbipia males had relatively low CORT levels
in the continuous social treatment. While short-term elevations of
glucocorticoids such as CORT promote behavioral and physiological
adjustments to the environment (Goymann and Wingfield, 2004),
chronic elevation of glucocorticoids can have negative effects (e.g.,
Sapolsky, 1993), including a reduction in the expression of sexual
ornaments (Bortolotti et al., 2009). It is intriguing that black males
in the continuous social treatment had dramatically lower CORT
levels than yellow males despite exhibiting higher rates of aggression.
This inverse relationship between CORT and aggression has been
previously reported in rats (Haller et al., 2004; but see Angelier et
al., 2011; Mitani et al., 2002). However, we can currently only
speculate why black males have lower CORT levels under continuous
territorial defense, which can be viewed as a more long-term stressor.
Given the fact that black males most likely express more melanin
than yellow males, these findings hint at a possible role of the
melanocortin system linking pigmentation, aggression and the stress
axis (Ducrest et al., 2008).

Contrary to our expectation, sibling species differed in aggressive
behavior, but not in androgen profiles. This result is consistent with
our previous study in which red and blue Pundamilia phenotypes
from a location where they hybridize also differed in aggression
level, but not in hormone profile (Dijkstra et al., 2011). However,

Fig. 3. Circulating levels of (A) testosterone (T), (B) 11-ketotestosterone (11-KT) and (C) cortisol (CORT) in the three different treatments (isolation, continuous social and intruder)
for Pundamilia and Mbipia. Shown are means + SE. Different letters between 2 groups indicate that post-hoc test (2-sample t-tests and LMM with FDR control) was significant

between those groups.
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Table 2

Results of Linear Mixed Models examining the effects of treatment (isolation,
continuous social, intruder), genus (Mbipia, Pundamilia) and sibling species (a significant
effect means that red and black are different from blue and yellow, respectively) on
circulating levels of testosterone, 11-ketotestosterone and cortisol. Significance levels
are reported for before factors were removed from the model during the backward
elimination process and in the final model (which only retained significant terms,
shown in bold). Note that if the interaction term is significant or retained, their main
effects are not reported.

Factor df F Significance
Testosterone

Treatment x genus x species 2,103.86 0.05 0.95
Genus x species 1,82.39 0.50 0.48
Species x treatment 2,105.23 1.68 0.19
Species 1,83.73 0.04 0.84
Genus x treatment 2,110.12 433 0.016
11-Ketotestosterone

Treatment x genus x species 2,92.81 0.30 0.74
Genus x species 1,79.26 0.57 0.45
Treatment x species 2,95.17 2.77 0.07
Genus x treatment 2,95.40 2.44 0.09
Cortisol

Treatment x genus x species 2, 105.06 1.40 0.25
Treatment x species 2,106.72 0.56 0.57
Genus x treatment 2, 109.40 0.59 0.56
Genus x species 1, 79.80 538 0.02
Treatment 2,110.73 20.15 <0.001

our results are in contrast to findings in another haplochromine
cichlid, A. burtoni, where two distinct color morphs display morph-
specific steroid and behavioral profiles (Korzan et al., 2008). Although
high levels of circulating androgens can increase aggressive behavior
given the appropriate social stimuli, androgens do not cause
aggression to occur per se (Wingfield et al., 1987). In addition, there
is a complex bidirectional relationship between androgens and
behavior in that agonistic interactions themselves modulate the
hormonal state of the animal as well. (Wingfield et al., 1990;
reviewed in Oliveira, 2004). This complex interrelationship as well
as (non)-androgenic effects on aggression could easily obscure
hormone-behavior associations (Wingfield, 1994). For example, in
our study, species differences in aggressiveness within the same
genus might be explained by the amount of available steroids (as
determined by steroid binding proteins, Jennings et al., 2000) and/
or differences throughout the brain in the abundance and/or
distribution of androgen receptors, aromatase activity (which
converts T into Estradiol) and/or expression of estrogen receptors,
all of which are known to regulate aggression (O'Connell and
Hofmann, 2011; Soma et al., 2008; Trainor et al. 2006). Of course,
other neuroendocrine pathways, such as those involving neuropep-
tide hormones (Goodson and Bass, 2001; Greenwood et al., 2008)
and biogenic amines (Haller and Kruk, 2003), can also mediate
behavioral and physiological differences across vertebrates. Future
studies should shed more light on these different pathways that
underpin the expression of aggression.

Our observation that variation in androgen profiles reflected
behavioral diversification between genera, but not between sibling
species is difficult to explain, though this pattern could be related to
the nature of the difference in aggression. Between genera, the
behavioral difference was dependent on the type of competition:
males of Mbipia and Pundamilia differed in attack rate and androgen
levels during continuous social defense only. By contrast, behavioral
differences between sibling species occurred within treatments.
Although speculative at this point, we suggest that variation in
androgens might be most strongly associated with fundamental
differences in how territorial defense is conducted with respect to
chronic and acute social challenges and/or with respect to rival
familiarity (in the continuous social treatment males were exposed

to the same male for at 8 days, while the intruder male was a novel,
unfamiliar rival). The way genera respond to these different types of
social challenges could have been shaped by divergent ecological
selection. How general these patterns are remains an exciting ques-
tion for future studies.

We compared the challenge response in four cichlid species that
have the same mating system, but vary in male color and aggressive-
ness. We hypothesized that genus differences in foraging ecology
would be associated with a difference in aggression, which in turn
would be mirrored in different androgen levels. We indeed found
that Mbipia males were more aggressive than Pundamilia males in
the continuous social treatment, consistent with previous studies
suggesting that Aufwuchs eaters tend to be more aggressive than
non-Aufwuchs feeders (Ribbink et al., 1983). This contrast in behavior
was reflected in distinct androgen profiles, which is consistent with
the idea that ecological factors exert selection on the rate of
aggression as well as androgen secretion rates (Hau et al., 2008;
Wingfield et al.,, 1990). We note, however that our study is one of
the first that implicates a role for the degree of competition for food
resources in the challenge hypothesis, which typically deals with
territorial aggression in a reproductive context alone (Wingfield et
al., 1990; but see Ros et al., 2002). One future challenge will be to
tease apart the effect of (foraging) ecology from effects of phylogeny
that set species apart (for a phylogenetic approach toward
understanding evolutionary shifts in physiological processes, see
Emerson (1996)).

The cichlid species flocks in East Africa are textbook examples for
how sexual and natural selection can drive speciation and the
evolution of phenotypic diversity. Our study supports the idea that
ecological (here trophic) selection can affect traits that are also
sexually selected (such as male-male aggression), or vice versa. This
interaction between natural and sexual selection would be consistent
with recent studies suggesting that disruptive or divergent sexual
selection does not operate in isolation but in conjunction with
ecological selection (Seehausen et al., 2008; Van Doorn et al., 2009;
for reviews see Bolnick and Fitzpatrick, 2007; Salzburger, 2009).
Examining the hormonal correlates of differences between species
(and genera) in territorial and morphological traits can help explain
how natural and sexual selection both may drive the diversification
of these traits, yet only few studies have addressed this question.
We have shown here that diversification in traits relevant to sexual
selection (male coloration and agonistic behavior) has been accompa-
nied by a corresponding differentiation in glucocorticoid regulation in
the Mbipia sibling species pair. At the same time, diversification in
foraging ecology, ecomorphology and, most importantly, agonistic
behavior between two sympatric genera has been accompanied by a
corresponding differentiation in competition-induced shifts in androgen
levels. Because endocrine pathways impinge on a multitude of
physiological processes and life history trade-offs, the analysis of
hormonal function across closely related species is fundamental to our
understanding of the processes that generate diversity (Zera et al., 2007).
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