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ABSTRACT
A central challenge to evolutionary computation is enabling tech-
niques to evolve increasingly complex target end products. Fre-
quently, direct approaches that reward only the target end product
itself are not successful because the path between the starting con-
ditions and the target end product traverses through a complex
fitness landscape, where the directly accessible intermediary states
may be require deleterious or even simply neutral mutations. As
such, a host of techniques have sprung up to support evolutionary
computation techniques taking these paths. One technique is scaf-
folding where intermediary targets are used to provide a path from
the starting state to the end state. While scaffolding can be success-
ful within well-understood domains it also poses the challenge of
identifying useful intermediaries. Within this paper we first iden-
tify some shortcomings of scaffolding approaches — namely, that
poorly selected intermediaries may in fact hurt the evolutionary
computation’s chance of producing the desired target end product.
We then describe a light-weight approach to selecting intermedi-
ate scaffolding states that improve the efficacy of the evolutionary
computation.
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1 INTRODUCTION
Scaffolding is an evolutionary computation approach to enabling
techniques to evolve more complex end products than are possi-
ble with direct evolution and one fitness function. In particular,
scaffolding tries to subdivide the complex path of evolutionary
adaptation into smaller steps of intermediary states. Each state is
supposed to be much simpler to evolve than the ultimate state, and
the solutions to these simple states build on one another to advance
the population to the final complex end state, which was previously
unobtainable. Bongard [2, 3] has applied scaffolding for both mor-
phology and behavior and demonstrated its efficacy. Grabowski et
al. have made use of scaffolding for evolving complex robot behav-
ior, but reportd only a marginal improvement [8]. While scaffolding
can be implemented as to mirror the structure of phylogenies (and
thus have clear parallels to Darwinian evolution), one problem is
identifying useful intermediate states where each successive inter-
mediate state easily helps evolution move the population toward
the final desired state. It seems intuitive that these intermediary
states should fall between the initial condition and the desired ob-
jective. Imagine the evolving substrate (system) should eventually
integrate information from four input sources. A fitness function
that only measures success if all sources are integrated will not
reward any intermediary steps integrating fewer than four sources.
In this example the scaffolding steps appear to be obvious: reward
the integration of sources in a graduated fashion. However, even
in this simple case, it is unclear what order the sources should be
rewarded in. Moreover, for other fitness functions, the scaffolding
steps of reward may be less obvious due to the complexity of the
environment, or in cases of multi-objective optimization [4] indi-
vidual components could be antagonistic. In the previously tested
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cases [2, 3, 8] intermediary steps were hand-designed to fit intuitive
graduation of the final problem, and while improving adaptation,
finding an optimal intermediary is an unsolved problem. Here we
ask what one could do if it is unclear how to hand-design the inter-
mediary steps: Is it possible to discover serendipitous scaffolds for
arbitrary problems, where either the intermediary steps are counter
intuitive to humans or discovered intermediaries outperform those
identified by humans?

In this paper, we propose an approach to selecting scaffolding
states for fitness functions. We compared the speed of adaptation
on a scaffolded evolutionary path to that on a non-scaffolded evo-
lutionary path. For this study, the intermediary environments used
for scaffolding are either hand-designed or randomly generated.
However, the speed of a genetic algorithm does not only depend on
the fitness function, but also the substrate subject to evolution (the
system), the specific selection regime, and the kinds of mutations
(changes) the evolved system experiences. If the system does not
contain meaningful interactions (epistasis or pleiotropy) [15], or
does not require valley crossing mutations, we would not expect in-
termediary steps to make a difference — the fitness landscape would
essentially be smooth. On the other hand, if the system has too
much epistasis, mutations could interact in unpredictable ways and
the fitness landscape would be rugged. Therefore, we will take epis-
tasis into account, by using a simple computational model system
with low epistasis and a complex model system with a much higher
degree of epistasis. We ignore specific treatments for pleiotropy
because higher levels of pleiotropy in computational evolution of-
ten include epistasis as a result. Any system we choose must allow
for randomly generated and hand-designed intermediary patterns.
Lastly, we assume not all combinations of intermediary patterns
when serially forced upon the populations will accelerate evolution-
ary adaptation, so we need an automated method of differentiating
patterns by their effect on evolution.

To satisfy these conditions we used a pattern formation task
where a grid of cells is sequentially populated by colored cells. This
kind of task comes from evolutionary developmental biology [7]
(sometimes referred to as the French Flag model where similarity
to a striped pattern is used as the fitness function) and investigates
how developmental systems evolve. The initial pattern was often
either blank or random and the target and intermediary patterns
were easily generated. Patterns that humans would intuitively hand-
design as intermediary steps between the initial and final patterns
are usually averages (or weighted averages) between those two
patterns, with biases toward one or the other to generate finer
gradations. The two computational systems we used start with an
empty pattern and are then allowed to perform modifications by
using commands like “add cell”, “move cell to the left”, or “divide
cell”. Aside from their complexity, the main difference is in the way
these commands are encoded. In the simple system the linearly
applied commands are specified by a list susceptible to mutation
so the pattern formation is affected by those mutations. In the
complex system each cell is controlled by a Markov Brain [9] which
have been used before as a substrate for neuroevolution in various
contexts [5, 12, 14] as well as in pattern formation [7].

Here we will show: randomly generated intermediary scaffolds
can be used to improve evolution (either by accelerating adapta-
tion or by achieving a superior final fitness) with no knowledge

of problem domain; that even long sequences of random interme-
diate patterns can evolve better than evolving straight to a final
pattern; and we will compare evolution on serendipitous paths with
intuitively-designed paths.

2 BACKGROUND & METHODS
Here we provide a brief overview of both the simple and more
complex models of developmental processes. Both models capture
relevant details of biological developmental processes however,
they represent different trade-offs between level of abstraction (in
particular epistatis) and compute time. In particular, the simplified
model of development is more abstract (and contains less epista-
sis) but runs at a fraction of the speed of the complex model of
development. As such, it is both suitable for many questions within
developmental biology and also provides an excellent test bed for
exploring pattern space more thoroughly. Thus, we use this model
with many more patterns (100) and replicates to ensure the gener-
ality of our approach. The more complex model includes a higher
degree of epistasis. The increased detail results in additional run
time and thus we use the complex model for more targeted testing
with fewer patterns and replicates. Together the models provide
complementary analyses and insights.

2.1 Simplified Model: Pattern Matching
In the simple model of development we abstracted away much of
the developmental process into expression of 100 serial commands.
The expression of these commands created the phenotype pattern
that was then matched to a randomly generated target pattern.
Each target pattern was constructed as a 6x6 grid of colored cells
with each cell representing 1 of 5 possible colors, fundamentally
represented as integers 0 through 4. Each organism’s fitness was
assessed based on its ability to produce a phenotype pattern match-
ing the target pattern according to fitness w = 2matches with the
number of matches as exactly the Hamming distance between the
phenotype pattern and target pattern (a value between 0 and 36).
Each organism’s genome is expressed into a phenotype pattern by
serial translation of 100 position-color commands comprised of 3
numbers, making 300 genomic sites in total. There were 5 such
possible commands: increment color with modulo at location, and
4 commands for copy color to location from adjacent (from Left,
Right, Up, or Down) which does nothing if there is no valid adjacent
cell in that direction. For example, an inefficient algorithm could
have a genome whose expression means the first 6 numbers detail
2 color increments at position (0,0) to achieve the 3rd color, and
the next 12 numbers describing the same operations in the next
2 adjacent locations. An evolved more efficient algorithm might
better use the copy commands for the next 2nd and 3rd locations,
thereby reducing the encoding by 6 genomic sites. A population of
100 organisms were evolved from random initial genomes through
entire-population replacement at each t to t+1 with RouletteWheel
selection. Mutations were applied at replication time with a per-site
probability of µ = 0.001 to generate a random number within the
valid range for that site: 0 − 5 for position x and position y within
the 6x6 grid, and 0 − 4 for color commands.

Target patterns were generated with 4 hand-designed and 96
randomly designed. The hand-designed patterns were selected for
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Figure 1: 100 patterns, 4 experimenter-designed, the other 96
random. The initial pattern organisms start their develop-
mental process from is made from empty (value is 0) cells.

ease of testing early in experimental design, and thus allow easy
visual inspection of pattern similarity. See Figure 1.

Evolution could create a genome thatwould express non-constrained
development with all color increment commands to directly set
the colors of each position in the grid. Evolution could construct
such a genome for patterns comprised of only the first few col-
ors in the series, as achieving such a target pattern would require
less than 100 increment commands. However, colors later in the
sequence require multiple increment commands and thus become
rather costly from a genomic perspective if using only increment
commands. In these cases evolution should favor the use of themore
developmentally-constrained 4 color direction copy commands.

2.2 Complex model: Digital Tissue
This model was originally developed to enable the evolution of
multicellular organisms (called digital tissues), where each digital
tissue starts as a single cell that develops into a 2D tissue of differ-
entiated cell (similar to [6]). These tissues can be used to address
evolutionary-development questions within biological studies. The
behavior of the cells are controlled by evolving Markov Brains,
which are networks of deterministic and probabilistic logic gates
encoded in an evolvable fashion [5, 12]. These 2D tissues of dif-
ferentiated cells evolve in response to selection for a particular
target pattern or body plan. Figure 2 provides an illustration of the
15 different target patterns used for this study. Each large square
represents a body plan or pattern. Each smaller square represents a
cell, where cell fate is indicated by color.

Each tissue starts its life as an isolated cell and over development
time can replicate to produce a digital tissue and, in conjunction
with its neighboring cells, select a cell fate to produce a pattern.

Figure 2: Patterns used for the digital tissues experiments

Figure 3: Illustration of the inputs and outputs for each cell.
Each cell, except those on the edge of the digital tissue, have
four cardinal neighboring cells. Each cell receives inputs
about the cell fate each neighboring cell expresses, as well
as information about being on the edge of the tissue, and
if it is the origin cell or not. Cells can decide to migrate or
divide, whereas migration happens before division. In addi-
tion cells have to identify a direction they would like to mi-
grate or divide into. Each cell can identify which current cell
fate it has, signaling its fate to its own four neighbors.

As a result of evolution, these patterns correspond to – but are
not always exactly the same as – the target patterns. Each cell
within the tissue has several capabilities described in Figure 3 and
following. In general, we provided the cells with a wide-variety of
capabilities to enable evolution to discover the most useful for the
desired task. The capabilities can be used by the cell to determine
and then express its own cell fate (depicted as color), which is the
only aspect of the cell that affects the body pattern of the tissue and
thus its fitness. The evolutionary success (or failure) of the digital
tissue is determined by the degree to which its cells express a target
pattern rewarded exponentially so that more matching cells give
an exponential increase in fitness:

W = 1.5(number of cells correct ), (1)
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where a cell is correct if its color matches the color of the corre-
sponding cell in the target pattern.

The behavior of each cell, including its replication, migration,
communication, and expression of cell fate, is controlled by a
Markov Brain [5, 12]. Markov Brains are networks of probabilistic
and deterministic logic gates. A string of numbers (i.e, the genome)
encodes the function and connectivity of gates. Mutating the num-
bers of the genome thus can change the function of a Markov Brain.
These Markov Brains have been used to study a wide-variety of top-
ics within evolutionary computation [16], artificial life [10], and bi-
ology [14]. Here we select Markov Brains using different techniques
based on the efficacy with which they encode the development of a
digital tissue into a desired target pattern. The evolutionary setup
is straightforward: a population of Markov Brains experience selec-
tion on the basis of a pattern. Moran selection, where part of the
population is replaced each generation is used. When the fitness of
a Markov Brain is evaluated it is placed within a single-cell within
an environment for a digital tissue. We allow the digital cell (con-
trolled by the Markov Brain) to unfold for 150 time steps, where
each time step the outputs of the brain reflect the behavior of the
cell (replicate, migrate, establish cell fate). At the end of this time
period, we compare the tissue pattern to the desired pattern and
calculate fitness based on similarity.

When an individualMarkov Brain from the population is selected
for replication then point mutations, duplications, and deletions are
applied to a duplicate genome. This new genome is then translated
into a Markov Brain. For the translation step, the genome is read
sequentially. Once a particular number combination (42 and then
213) is found, the next region of the genome is translated into a
gate. This process is similar to how the genes of natural organisms
are transcribed and then translated into proteins. Each gate can
either connect to other gates by writing their outputs into hidden
nodes that other gates can read from, or by connecting to input
nodes and output nodes. This way, the resulting Markov Brain can
obtain information about its environment by using input nodes,
integrate information by using hidden nodes, and relay actions to
the environment using output nodes.

Sensor Inputs: We provide the Markov Brains (and thus the
digital cells they control) with the following types of sensory infor-
mation (Figure 3): (1) if the cell is at the origin (the top left cell); (2)
if the cell is on the edge of the space provided for the digital tissue
body; (3) any marking (a number) in the cell’s current location (a
form of stigmergic communication [1] designed to be analogous
to secreting a chemical at a location); (4) the cell fate (color) of the
cell’s cardinal neighbors; (5) any messages emitted by neighbor.

Actuator Outputs:We provide the Markov Brains (and thus the
digital cells they control) with the following capabilities to interact
with neighboring cells and specify their fate (Figure 3): (1) a cell fate
(depicted as the color of their cell); (2) if the cell is going to migrate;
(3) if the cell is going to reproduce; (4) the direction that the cell
would like to move and reproduce. (5) a mark for its location within
the digital tissue (analogous to a chemical); (6) a message that will
be shared with its cardinal neighbors. To avoid conflicts, a cell first
moves and then reproduces ensuring it does not attempt to move
over the offspring cell it has just created.

For all experiments using the complex system we used replicate
populations of evolving Markov Brains (N = 100). Each genome

Figure 4: Time to patternA vs. time to pattern B, dashed line
is the point equivalency where time to patternA is as fast as
time to pattern B.

began as length 10, 000 and 10 initial gates. We used a Moran Pro-
cess, where 5% of the population was replaced every update. In
particular, parents were selected using Roulette Wheel selection
and survivors were selected randomly. The population replicated
asexually. Mutations were applied at the time of replication. Each
genome had a 5% chance of receiving one insertion and one deletion
mutation. Each site within the genome had a 5% chance of receiving
a copy mutation.

3 RESULTS: THE SIMPLIFIED MODEL
We use the simplified model to perform a suite of experiments
studying the effects of serendipitous scaffolding. In particular, we
performed serial transfer between targets: Evolution was allowed
to continue until the population achieved 32 matches of the total
36 for their one pattern, then after all populations achieved 32
they were transferred into those 99 environments they had not
yet experienced. Replication was N = 100, which were sorted and
the 5% longest-running results were removed as they were likely
extremely long and unrepresentative outliers [11, 13]. We then
compared the elapsed time for a population to achieve 32 matches
on the first pattern (from native to pattern A) with the time to get
32 matches on the second pattern (see Figure 4). As it turns out, the
second pattern is generally achieved faster than the first.

The skew in Figure 4 suggests that regardless of which two
patterns were chosen, the patterns share common elements general
to the problem domain allowing populations to partially preadapt to
the novel second pattern. In addition, the wide spread of adaptation
times suggests that scaffolding is possible: Maybe an intermediary
pattern X can be found such that the sequence A to X to B might
take less time than A to B directly?

To estimate if these paths with an intermediary step exist, the
ratio between the time it takes to go from A to X to B and the time
it takes to go from A to B directly is computed:

r =
t(A,X ,B)

t(A,B)
(2)

This ratio is r = 1 if the detour over the intermediary X takes as
long as evolving from pattern A to B. A naïve expectation is that
each transition takes the same amount of time and that a path with
2x more transitions results in a 2x increase in the r ratio. We find
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Figure 5: Distribution of time ratios (see 2 for all possible
paths A to X to B, the vertical green line indicates the naïve
assumption that a path with two transitions takes twice the
time of a path that contains only one. Ratios smaller than
r = 1.0 (red line) indicate paths that contain three steps and
evolve faster than the original path.

Figure 6: Correlation between the predicted time for evolu-
tion (x-axis tAX+tXB ) and the actual time it takes to evolve (y-
axis tAXB ). The dashed line represents a ration of 1.0 where
the speed of prediction and measurement are identical. 100
experimental replicates per condition, changing the pattern
when 32 out of 36 cells matched between the patterns.

that indeed most paths containing 2 transitions would take about
twice as long as those with 1 transition (See Figure 5).

While we found that adding an intermediary step generally in-
creased the time to evolve to the final pattern (the mean is 2.1287
with a standard deviation of 0.6476 and a variance of 0.4194), there
were also a small number of length three paths that evolved signifi-
cantly faster than the original (see the Figure 5; ratios left of the
red line).

This increase in efficiency begs the question if our estimates
have any power to predict the time to evolve from A to B by going
through an intermediary environment rewarding similarity to pat-
tern X . As validation, we picked 1, 800 triplets of patterns (A to B
to X ) in such a way that each ratio (see 2) was represented equally
often. When we then evolved these populations over the triplet
paths from A to X to B and compared that with the predicted time,
we found a correlation between prediction and empirical measure-
ment (Pearson correlation coefficient of 0.6679 with a p-value of
6.3975x10−233, see Figure 6). In fact, populations evolved faster
than expected in most cases.

Figure 7: Comparison of evolutionary time elapsed for pop-
ulations to reach 32 matches. Evolution from pattern A to B
in black (actual numbers shown as labels on the x-axis), Evo-
lution with three extra intermediate stepsX , Y , and Z in red,
and evolutionwith intuitively-generated intermediate steps
based on Hamming distance in blue. The gray backgrounds
for each line represent the standard errors.

This optimization strategy may hold for even longer intermedi-
ary path lengths that yield shorter evolution times, but there may
reasonably be an upper bound on path length beyond which no
improvements are observed. In other words, it might be that our
prediction method is only applicable to pathways of single interme-
diary patterns, such as A to X to B. To see if predictive capability
holds for longer pathways we performed a similar analysis with
3 intermediary patterns between A and B: A, X , Y , Z , B. When
searching through the space of our initial measurement, we find
10 pathways where 3 intermediary patterns produces a shorter
evolutionary run than 0 intermediary patterns. For each predicted
sequence we tried N = 100 empirical replicates and compared the
elapsed time to the prediction. As a comparison, we also generated
3 intermediary patterns X ′, Y ′, and Z ′ for all 10 pathways. These
intermediary patterns differ in a graduated fashion, and represent
possible transition stages one would intuitively create in order to
speed up evolution through naïve interpolation.

We find that the evolutionary path through a specific extra 3
intermediary patterns takes less time than the original path with 0
intermediary patterns in 9 of 10 observations (See Figure 7 red). At
the same time the purposefully designed intermediate patterns all
evolve even faster, as expected (See Figure 7 blue).

It is noteworthy that the faster paths discovered by this search
technique do not fit preconceived notions typically attributed to
intermediary steps that “scaffold” to the end target, since they are
very different from the hand-designed intermediary patterns (see
Figure 8). This confirms the original idea that even serendipitous
intermediary fitness functions or objectives can accelerate evolu-
tionary adaptation.
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Figure 8: Pattern comparison. The left column represents
the 10 start patterns A, and the right column presents the
target patterns B, the intermediary patterns in the middle
are the extra introduced stepsX ,Y , andZ , which shorten the
time to evolve from pattern A to B. For each start and target
pair (A to B) there are two possible paths, the upper (high-
lighted in red) is the serendipitous path generated from the
100 initial patterns (see Figure 1, the lower ones (highlighted
in blue) are the generated intermediary patterns (the red and
blue color reflect themeasurements from Figure 7. The gray
backgrounds for each line represent the standard errors.

There could be various explanations for why this method works.
While it is possible that intermediary patterns provide a smoother
path through the fitness landscape detouring potential local max-
ima, it is also possible that evolvability itself is improved. There
is no computationally tractable way to map a highly dimensional
fitness landscape, but we can assess evolvability. For the 100 initial
patterns we can create a sequence of patterns with an increasing
transition time. We first identified the pair with the longest tran-
sition time, moved that pair to a list, and kept searching for the
next longest time adding that to the list and so forth until we had
a list of unique patterns. This list as a sequence predicts an ever-
increasing transition time (slope of 22.49, r-value 0.62 see Figure

Figure 9: Evolution of evolvability. Black dots show the
time to adapt to each pattern sequentially chosen from a se-
quence for which we predicted an steady increase in adap-
tation time (slope 22.49, fit not shown). Black + shows the
average time it takes to evolve from pattern to pattern over
100 replicate experiments. The slope for the experiment was
fitted and shown as a dashed line (slope −1.66).

9). We performed 100 replicate experiments evolving from one to
the next pattern until we reached the final pattern following the
predicted path, transitioning again when 32 out of 36 colors match.
We found that the time it took for each pattern to evolve to the next
did not increase in time, but instead became shorter the more transi-
tions had been made (see Figure 9, slope -1.66, r-value -0.09). While
this experiment did not exclude the idea that additional scaffolding
patterns flatten the fitness landscape, it shows that evolvability
improved.

4 RESULTS: DIGITAL TISSUE
For these experiments, we use Markov Brains to evolve the pat-
terns depicted in Figure 2. For the simplified developmental model
portion of the work, we quantified the desirability of the approach
based on the time it took to reach 88.8% pattern similarity (32 of
36 possible cell matches). For this portion, there are some patterns
where the overall fitness does not reach 32/36, the benchmark for
the simplified model. Thus, rather than using time, all measure-
ments are of total fitness achieved over a given period of time.

To start, we observe how transferring between environments
affects fitness. Here we compare the total fitness achieved when
evolving directly within an environment B and when adding an
earlier environment A producing the path AB. Figure 10 depicts
these results. In general, adding an earlier pattern A can either im-
prove or disrupt fitness. This suggests that even within the complex
developmental model, which exhibits a higher degree of epistasis,
there are cases where intermediary fitness functions will improve
overall results and showing scaffolding can aid evolution.

Furthermore, we can also demonstrate that the paths through
patterns selected in this fitness landscape are not always intuitive.
Adding intermediary scaffolding patterns has the potential to either
improve or decrease final fitness values as expected. See Figure 11
for further details. The pathways that improve the final fitness
values for the end state are not always intuitive to users.

To explore the role of intermediary states, we first identified
paths AB through the fitness landscape that had poor performance
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Figure 10: Transition fitness values. The x-axis represents
the fitness of replicates evolved directly to a particular pat-
tern. The y-axis represents the fitness of replicates evolved
first to one pattern and later to the target pattern. Pre-
evolving in a different environment in this way produces
negative and positive fitness benefits depending on the en-
vironment.

Figure 11: Examples of scaffolding positively and negatively
affecting final fitness scores. Here each node represents a
pattern. Arrows denote the direction of evolution. Arrow
values denote the fitness in the final state. (a) The transition
from pattern 14 to pattern 7 is quite challenging, achieving
a fitness of 15.92 on pattern 7. However, by adding an in-
termediary (patterns 1, 2, 4, 5, 9, 10, 11, 12, or 15) fitness is
substantially improved. (b) Similar to part (a), fitness is im-
proved by adding scaffolding. However, as part (c) demon-
strates adding intermediaries does not always improve final
fitness.

and achieved low fitness values over 40, 000 updates. We then ex-
amined alternative pathways AX and XB, where X could be any
of the other patterns, and focused on those pathways where AX
and XB both achieved fitness scores greater thanAB+delta, where
delta is a fitness offset used to make sure the transition truly had a
greater chance of outperforming the more direct approach. Note
that similarly to our experiments in the simplified model, these

Figure 12: A comparison of the performance of direct paths
AB with indirect paths AXB for the complex model of devel-
opment. In general, adding an intermediary step in over 75%
of cases improved fitness. Along the x-axis are paths that
were identified as being able to be improved (AB). Along the
y-axis is fitness. Black dots represent the predicted fitness
values for the path based on original test results. Blue dots
represent a direct path between the two states (AB). Red dots
represent a scaffolded path (AXB). In the same amount of
time, the majority of the scaffolded paths were more effec-
tive at achieving higher fitness.

predictions are based on the independent evolution of AX and XB,
not the combined result.

To assess our approach for selecting scaffolding steps, we ana-
lyzed 12 different pathsAB, where each path had one or more poten-
tial AXB improvements (49 potential improvement paths overall).
We performed replicated N = 5 for each pathAB and each potential
improvementAXB. We then compared the fitness of the direct route
(AX ) with the fitness of the indirect route (AXB). Both approaches
were constrained to the same amount of evolutionary time. In short,
if the direct route used 60, 000 updates to go from pattern A to B
(30, 000 updates in each environment), then the indirect route from
pattern A to pattern X to pattern B also used 60, 000 updates total
(20, 000 updates in each environment). Of the 49 potential improve-
ment paths, over 75% (37 paths) resulted in an improvement, where
the fitness of the indirect scaffolded (AXB) path was greater than
the fitness of the direct path (AX ). Figure 12 shows our results.

We extended this approach by examining paths with two inter-
mediary steps (AXYB). We used the same method as previously
for identifying potential intermediary patterns. In particular, we
identified partial paths where the fitness of AX , XY , and YB all
had a fitness greater than AB + delta. We then evolved these direct
(AB) and indirect routes (AXYB) for the same amount of time, i.e.,
80, 000 updates. The scaffolded approach had 20, 000 updates per
pattern, while the direct approach had 40, 000 updates per pattern.
We explored 169 potential indirect paths (AXYB) for improving
fitness results over 6 direct paths (AB). Of these, over 65% improved
final fitness compared with the direct approach. Moreover, 100%
improved fitness compared with the shorter runs used to identify
paths with low fitness values. This suggests scaffolding steps do
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Figure 13: Adding two scaffolded steps in over 65% of cases
improved fitness. Along the x-axis are paths that were iden-
tified as being able to be improved. Along the y-axis is fit-
ness. Black dots represent the predicted fitness values for
the path based on original test results. Blue dots represent a
direct path between the two states. Red dots represent a scaf-
folded path. In the same amount of time, themajority of the
scaffolded paths were more effective at achieving higher fit-
ness.

help improve fitness. Unsurprisingly, simply allowing more evo-
lution of the population in the desired target environment also
improves fitness. Figure 13 depicts our results. These results also
suggest that epistatic interactions may make the identification of
desirable paths more complicated than in the simplified model.

5 CONCLUSIONS
One of the most intuitive ideas for improving GA performance
is scaffolding. When evolution is unable to produce satisfactory
results the improvement is often to decompose the problem to allow
evolution smaller, and presumably easier, intermediary goals that
build on each other to more quickly reach the final goal.

We showed that the intermediary goals humans would design
can indeed accelerate evolutionary adaptation, but that even ran-
domly generated ones can serve the same purpose. However, not
any set of random patterns suffices, these patterns need to be care-
fully selected. In this case, we measured the elapsed time to evolve
from one pattern to the other, and constructed paths based on these
predictions. This approach is computationally expensive, so for
future applications we suggest to fit this equation [17]:

W̄ = (βt + 1)α (3)

to the fitness data from short evolutionary experiments in order
to estimate how mean performance (W̄ ) would have behaved with
more run-time (t ).

We also showed that this method not only works in a simple
model with little epistasis and smooth fitness landscape, but also
in a complex model with high epistasis. While we can distinguish
what phenomenon explains this acceleration due to serendipitous
intermediary patterns, we found evidence that evolvability of the
system improves overmultiple transitions. Themodel we used lends
itself to this kind of experiment, since new intermediary patterns

are easily created. Obviously, one can not apply this method to a
new application without some adjustments. We think this method
is particularly useful in cases where the fitness function is not well-
understood and the intermediary steps are counter intuitive. In
these cases the experimenter can discover and utilize such serendip-
itous paths to either accelerate adaptation or, like shown for the
complex model, allow for an increase of performance or complexity
of the final solution. For example, the Handwritten Digit problem
may benefit from this approach. Some constructed lines and curves
could be scaffolds, but it is not intuitive which ones to use and in
what order to use them.
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