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Abstract

Single-neuron gene expression studies may be especially important for understanding

nervous system structure and function because of the neuron-specific functionality

and plasticity that defines functional neural circuits. Cellular dissociation is a prerequi-

site technical manipulation for single-cell and single cell-population studies, but the

extent to which the cellular dissociation process affects neural gene expression has not

been determined. This information is necessary for interpreting the results of experi-

mental manipulations that affect neural function such as learning and memory.

The goal of this research was to determine the impact of cellular dissociation on brain

transcriptomes. We compared gene expression of microdissected samples from the

dentate gyrus (DG), CA3, and CA1 subfields of the mouse hippocampus either

prepared by a standard tissue homogenization protocol or subjected to enzymatic

digestion used to dissociate cells within tissues. We report that compared to homoge-

nization, enzymatic dissociation alters about 350 genes or 2% of the hippocampal

transcriptome. While only a few genes canonically implicated in long-term potentiation

and fear memory change expression levels in response to the dissociation procedure,

these data indicate that sample preparation can affect gene expression profiles, which

might confound interpretation of results depending on the research question. This

study is important for the investigation of any complex tissues as research effort

moves from subfield level analysis to single cell analysis of gene expression.
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1 | INTRODUCTION

Nervous systems are comprised of diverse cell types that express

different genes to serve distinct functions. Even within anatomically-

defined subfields of the brain, there are identifiable subclasses of neu-

rons that belong to distinct functional circuits (Danielson et al., 2016;

Mizuseki, Diba, Pastalkova, & Buzsáki, 2011; Namburi, Al-Hasani, Cal-

hoon, Bruchas, & Tye, 2015). Cellular diversity is even greater when

we consider that specific cells within a functional class can be selec-

tively altered by neural activity in the recent or distant past (Denny

et al., 2014; Garner et al., 2012; Ramirez et al., 2013; Reijmers, Per-

kins, Matsuo, & Mayford, 2007). This complexity can confound the

interpretation of transcriptome data collected from bulk tissue sam-

ples containing hundreds to tens of thousands of cells that represent

numerous cellular subclasses at different levels of diversity.

Recent advances in tissue harvesting and sequencing technologies

have allowed detailed analyses of genome-scale gene expression pro-

files at the level of single-cell populations in the context of brain and

behavior studies (Chalancon et al., 2012; Lacar et al., 2016; Mo et al.,

2015; Moffitt et al., 2018; Nowakowski et al., 2018; Raj et al., 2018).

These approaches have led to systems-level insights into the molecu-

lar substrates of neural function and to the discovery and validation of

candidate pathways regulating physiology and behavior. Current

methods for dissociating tissues into single-cell suspensions include

mechanical and enzymatic treatments (Jager et al., 2016). To comple-

ment the efforts allowing for single-neuron analysis of transcriptional

activity, it is necessary to understand the extent to which the dissocia-

tion treatment of tissue samples prior to single-cell transcriptome

analysis might confound interpretation of the results.

Our experiment was designed to determine if enzymatic dissocia-

tion itself alters the transcriptome of the hippocampus. We did not

compare single-cell RNA-seq data to bulk tissue RNA-seq data because

that is orthogonal to the present research question. Instead, we com-

pared transcriptome data from the CA1, CA3, and dentate gyrus

(DG) subfields of the hippocampus subjected to one of two treatments

(a) homogenized (HOMO) or (b) dissociated (DISS). Samples were pre-

pared by a standard homogenization protocol and the sequencing

results were compared to corresponding samples that were dissociated

as if they were being prepared for single-cell sequencing (Figure 1a).

Importantly, the dissociated tissue was not sorted or differentially

treated in any way further, which would of course defeat the purpose

of dissociation for single cell or single cell population studies, but is

essential for the task at hand. Accordingly, we could expect the same

tissue constituents in the two groups, and can therefore attribute dif-

ferences in gene expression to the treatment procedure. We used the

Illumina HiSeq platform for sequencing, Kallisto for transcript abun-

dance estimation (Bray, Pimentel, Melsted, & Pachter, 2016) and

DESeq2 for differential gene expression profiling (Love, Huber, &

Anders, 2014). Data and code are available at NCBI's Gene Expression

Omnibus Database (accession number GSE99765), as well as on

GitHub (https://github.com/raynamharris/DissociationTest) with an

archived version at the time of publication available on Zenodo (Harris,

2019). A detailed description of the methods is provided below.

The RNA concentration of samples from homogenized samples

(1.45 ± 0.68 ng/μL) was significantly higher than the concentration of

samples from dissociated samples (0.48 ± 0.67 ng/μL; F1,8 = 7.47,

p = .026). There was no significant difference in the mean RNA concen-

tration between different subfields (F2,8 = 1.15, p = .36; or the treat-

ment X subfield interaction F2,8 = 0.001, p = 1.0). The number of RNA

F IGURE 1 Experimental design and global gene expression patterns. (a) Experimental design. Two tissue samples were taken from three
hippocampal subfields (CA1, CA3, and DG) from 300 μm brain slices. Two adjacent samples were processed using a homogenization (HOMO)
protocol or dissociated (DISS) before processing for tissue level gene expression profiling. (b) Dissociation does not yield subfield-specific changes
in gene expression between homogenized (HOMO, open circles, dotted ellipse) and dissociated tissues (DISS, filled circles, solid ellipse). PC1
accounts for 40% of all gene expression variation and by inspection, separates the DG samples (orange circles) from the CA1 (purple circles) and
CA3 samples (green circles). PC2 accounts for 22% of the variation in gene expression and varies significantly with treatment. The ellipses
estimate the 95% confidence interval for a multivariate t-distribution for homogenized (dashed line) and dissociated (solid line) samples [Color
figure can be viewed at wileyonlinelibrary.com]
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million reads per sample was not significantly greater in the homoge-

nized (6.30 ± 2.37) compared to the dissociated samples (3.54 ± 2.17;

F1,8 = 3.81; p = .087), nor was there a significant difference in the mean

number of reads between different subfields (F2,8 = 0.045, p = .96) or

the interaction between the treatments and subfields (F2,8 = 0.38,

p = .70). On average, 61.2 ± 20.8% of the trimmed reads were

pseudoaligned to the mouse transcriptome. Although the sequencing

depth was different for each treatment group, this was accounted for

by DESeq2, which normalizes counts by sequencing depth to estimate

differential gene expression.

The null hypothesis is that treatment effects will not be different

between hippocampal subfields, whereas there will be subfield expres-

sion differences, as reported previously (Cembrowski, Bachman, et al.,

2016; Cembrowski et al., 2018; Cembrowski, Wang, et al., 2016;

Hawrylycz et al., 2012; Lein, Zhao, & Gage, 2004). DNA microarray

followed by in situ hybridization was used to validate subfield-specific

expression patterns of 100 differentially expressed genes (DEGs; Lein

et al., 2004). Hierarchical clustering was used to visualize the top 5,000

DEGs (p < .01) across hippocampal subfields (Hawrylycz et al., 2012).

RNA-seq experiments on spatially distinct hippocampal subfield sam-

ples gave good agreement with immunohistochemical (IHC) data, cor-

rectly predicting the enriched populations in ~81% of cases (124/153

genes) where coronal IHC images were available (Cembrowski, Wang,

et al., 2016). Because the CA1 subfield is more vulnerable to anoxia

than other hippocampus cell regions (Pulsinelli, Brierley, & Plum, 1982;

Smith, Auer, & Siesjö, 1984), subfield-specific differences in the influ-

ence of treatment type might also be expected.

We first quantified the effects of treatment and hippocampus sub-

field on differential gene expression using principal component dimen-

sionality reduction. Samples with similar expression patterns will cluster

in the space defined by principal component dimensions. If there are

large differences in expression according to treatment, the samples will

separate into two nonoverlapping clusters. Principal component analysis

(PCA) suggests that dissociation does not have a large effect on gene

expression because the samples do not form distinct, nonoverlapping

clusters of homogenized and dissociated samples (Figure 1b).

In this analysis the first principal component (PC1) accounts for

40% of the variance and, mostly notably, distinguishes DG samples

from the CA1 and CA3 samples. A two-way treatment-by-subfield

ANOVA confirmed a significant effect of treatment (F1,8 = 5.36,

p = .049) and subfield (F2,8 = 22.48, p = .0005) but not the interaction

(F2,8 = 0.31; p = .74). Post hoc Tukey tests confirmed CA1 = CA3 < DG.

The second principal component (PC2) accounts for 22% of the varia-

tion in gene expression but does not vary significantly with treatment

(F1,8 = 5.06, p = .055), subfield (F2,8 = 0.89, p = .45), or the interaction

(F2,8 = 0.062, p = .94). None of the higher principal components

showed significant variation according to either subfield or treatment.

Thus, enzymatic dissociation causes differential gene expression, but

the magnitude of the difference is only a fraction of the gene expres-

sion differences between hippocampal subfields.

Next, we identified the 344 DEGs between homogenized and dis-

sociated tissues, accounting for 2.1% of the 16,709 measured genes

(Table 1 and Table S1). Most DEGs showed increased expression

(288 genes) rather than decreased expression (56 genes) in response

to dissociation (Figure 2a). We found that 2.9% of the transcriptome

is differentially expressed between CA1 and DG, with a roughly

symmetric distribution of differential gene expression (not shown).

A heatmap of the top 30 DEGs illustrates the fold-change differences

across samples (Figure 2b). Enzymatic dissociation appears to activate

gene expression, suggesting the process overall, induces rather than

suppresses a cellular response.

Because the hippocampus is central to learning and memory, we

asked whether the expression of genes and pathways known to be

involved in learning and memory is affected by dissociation. We first

examined expression of 240 genes that have been implicated in long-

term potentiation (LTP; Sanes & Lichtman, 1999; Table S2) and found

that the expression of only nine of these genes was altered by enzy-

matic dissociation treatment. The expression of CACNA1E, GABRB1,

GRIN2A was downregulated in response to dissociation treatment

(meaning that their activity could be underestimated in an experiment

using enzymatic treatment to dissociate tissue) while IL1B, ITGA5,

ITGAM, ITGB4, ITGB5, and MAPK3 were upregulated in response to dis-

sociation. CACNA1E is a subunit of L-type calcium channels, which are

necessary for LTP induction of mossy fiber input to CA3 pyramidal neu-

rons (Kapur, Yeckel, Gray, & Johnston, 1998). GABRB1 encodes the

gamma-aminobutyric acid (GABA) A receptor beta 1 subunit, and

GRIN2A encodes the glutamate ionotropic receptor NMDA Type 2A

subunit. Because GABA receptors and NMDA receptors mediate inhibi-

tory and excitatory neurotransmission in hippocampus, respectively,

enzymatic dissociation could itself alter accurate estimation of the roles

of these receptors. IL1B encodes interleukin-1beta, a cytokine that

plays a key role in the immune response to infection and injury but is

also critical for maintaining LTP in healthy brains (Schneider et al.,

1998). The integrin class of cell adhesion molecules plays an important

role in synaptic plasticity, particularly in stabilization and consolidation

of LTP (Bahr et al., 1997; McGeachie, Cingolani, & Goda, 2011). Overall,

our analysis demonstrates that the expression of only a few cannonical

LTP-related genes is affected by the tissue prepraration method.

TABLE 1 Differentially expressed genes by subfield and
treatment

Two-way
contrast

Increased
expression

Decreased
expression

% DEGs/
Total

CA1 vs. DG 222 262 2.90%

CA3 vs. DG 45 53 0.50%

CA1 vs. CA3 17 1 0.10%

DISS vs. HOMO 288 56 2.10%

The total number and percent of differentially expressed genes (DEGs) for

four two-way contrasts were calculated using DESeq2. Increased

expression cutoffs are defined as log fold-change >0; p < .1 while

decreased expression is defined as log fold-change <0; p < .1. %

DEGs/Total: The sum of up and down regulated genes divided by the total

number of genes analyzed (16,709) multiplied by 100%. This table shows

that differences between dissociated (DISS) tissue and homogenized

(HOMO) tissues are on the same scale as those between the CA1 and DG

subfields of the hippocampus.
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More recently, RNA sequencing was used in combination with ribo-

somal profiling to quantify the translational status and transcript levels

in the mouse hippocampus after contextual fear conditioning (Cho et al.,

2015). The analysis revealed that memory formation was regulated by

learning-induced suppression of ribosomal protein-coding genes and

suppression of a subset of genes via inhibition of estrogen receptor

1 signaling in the hippocampus. We cross-referenced learning-induced

differential gene expression from Cho et al., 2015, to identify genes that

are altered by both fear-conditioning and enzymatic dissociation. We

found that BTG2, FOSB, FN1, IER2, and JUNB were all upregulated in

response to enzymatic dissociation and fear-conditioning while Enpp2

was upregulated in response to enzymatic dissociation but down-

regulated in fear-conditioning via estrogen receptor 1 inhibition. BTG2 is

required for proliferation and differentiation of neurons during adult hip-

pocampal neurogenesis and may be involved in the formation of contex-

tual memories (Farioli-Vecchioli et al., 2009). FOSB and JUNB are

dimers that form the transcription factor complex AP-1 that is often

used as a marker for neural activity (Alberini, 2009). IER2 is also a tran-

scription factor that, along with FOS and JUN, as well as FN1, which

encodes the adhesion molecule Fibronectin, was not included in the

Sanes & Lichtman, 1999 list as important for LTP but was differentially

expressed following fear-conditioning in Cho et al., 2015. These com-

parisons show that tissue preparation methods can alter expression in a

small subset of genes that may be important for LTP and memory.

This study was motivated by the possibility of single cell sequenc-

ing, although we did not conduct single-neuron sequencing in this

study. A single-cell study would not have made it possible to test our

hypothesis of how the process of cellular dissociation affects gene

expression relative to tissue homogenization, because the RNA from

single cells cannot be recovered after tissue homogenization. To com-

pare single cell transcriptomes that are obtained without dissociation,

we could have used mechanical dissociation, for example, by laser

microdissection and capture or by microaspiration but this was not

deemed practical because these are substantially more difficult, expen-

sive, and low-throughput procedures compared to enzymatic dissocia-

tion of cells. Given the present findings that enzymatic dissociation

may itself induce changes in gene expression, it may be useful to first

prepare tissues with transcription and translation blockers like puromy-

cin and actinomycin to arrest gene expression activity before cellular

dissociation (Flexner, Flexner, & Stellar, 1963; Solntseva & Nikitin,

2012), but potential additional effects of these treatments will also

need to be investigated and controlled using appropriate experimental

designs.

We set out to identify the extent to which the process of enzymatic

dissociation affects neural gene expression profiles because the process

necessarily precedes high-throughput single cell analysis of complex

tissues. One possible confounding factor is that the process of

dissociation could kill some cell classes in the hippocampus, either indis-

criminately or preferentially, which could explain the lower RNA con-

tent after the dissociation treatment. Accordingly, we examined

whether well-described marker genes for astrocytes, oligodendrocytes,

microglia, and neurons were over- or under-expressed in the dissoci-

ated samples compared to the homogenized samples (Cahoy et al.,

2008). None of the marker genes for astrocytes or neurons was

F IGURE 2 Enzymatic dissociation has a moderate effect on hippocampal gene expression patterns compared to homogenized tissue.
(a) Volcano plot showing gene expression fold-difference and significance between treatment groups. We found that 56 genes are up-regulated
in the homogenization control group (open circles) while 288 genes are up-regulated in the dissociated treatment group (filled dark grey circles).
Genes below the p-value <0.1 (or –log p-value <1) are shown in light grey. (b) Heatmap showing the top 30 differentially expressed genes
between dissociated and homogenized tissue. Square boxes at the top are color coded by sample (white: homogenized, grey: dissociated, purple:
CA1, green: CA3, orange: DG. Within the heatmap, log fold difference levels of expression are indicated by the blue–green–yellow gradient with
lighter colors indicating increased expression [Color figure can be viewed at wileyonlinelibrary.com]
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differentially expressed, but 1 of 3 and 7 of 10 markers for microglia

and oligodendrocytes, respectively, were over-expressed in the dissoci-

ated samples (Table S3). This overexpression could arise if these cells

were more resilient during the dissociation. Because neural makers

were not over-expressed in the homogenized tissue, it is unlikely that

dissociation preferentially kills neurons.

In summary, we found that gene expression in hippocampal sub-

fields is changed by tissue preparation procedures (enzymatic dissocia-

tion vs. homogenization) and cross-referenced the DEGs with genes and

pathways known to be involved in hippocampal LTP, learning and mem-

ory. While it is encouraging that the activity of only a small number of

genes and pathways involved in LTP, learning and memory appears

affected by dissociation, it is also important to effectively use experi-

mental design to control for technical artifacts. The present findings pro-

vide insight into how cellular manipulations influence gene expression,

which is important because it is increasingly necessary to dissociate cells

in tissue samples for single cell or single cell-type studies.

2 | DETAILED METHODS

All animal care and use comply with the Public Health Service Policy

on Humane Care and Use of Laboratory Animals and were approved

by the New York University Animal Welfare Committee. A 1-year-old

female C57BL/6J mouse was taken from its cage, anesthetized with

2% (vol/vol) isoflurane for 2 min and decapitated. Transverse 300 μm

brain slices were cut using a vibratome (model VT1000 S, Leica Bio-

systems, Buffalo Grove, IL) and incubated at 36�C for 30 min and then

at room temperature for 90 min in oxygenated artificial cerebrospinal

fluid (aCSF in mM: 125 NaCl, 2.5 KCl, 1 MgSO4, 2 CaCl2, 25 NaHCO3,

1.25 NaH2PO4 and 25 Glucose) as in Pavlowsky and Alarcon (2012).

Tissue adjacent samples were collected from CA1, CA3, and DG,

respectively in the dorsal hippocampus by punch (0.25 mm, P/N:

57391; Electron Microscopy Sciences, Hatfield, PA).

The homogenized (HOMO) samples were processed using the

manufacturer instructors for the Maxwell 16 LEV RNA Isolation Kit

(Promega, Madison, WI). The dissociated (DISS) samples were incu-

bated for 75 min in aCSF containing 1 mg/mL pronase at room tem-

perature, then vortexed and centrifuged. The incubation was

terminated by replacing aCSF containing pronase with aCSF. The sam-

ple was then vortexed, centrifuged, and gently triturated by 200-μL

pipette tip twenty times in aCSF containing 1% FBS. The sample was

centrifuged and used as input for RNA isolation using the Maxwell

16 LEV RNA Isolation Kit (Promega, Madison, WI).

RNA libraries were prepared by the Genomic Sequencing and

Analysis Facility at the University of Texas at Austin using the Illumina

HiSeq platform. Raw reads were processed and analyzed on the Stam-

pede Cluster at the Texas Advanced Computing Facility (TACC). Read

quality was checked using the program FASTQC. Low quality reads

and adapter sequences were removed using the program Cutadapt

(Martin, 2011). We used Kallisto for read pseudoalignment to the

Gencode M11 mouse transcriptome and for transcript counting (Bray

et al., 2016; Mudge & Harrow, 2015). Two-way ANOVAs were used

to test for significant differences (p-value <.5) in RNA concentration

and read counts for treatment and subfield.

Kallisto transcript counts were imported into R (R Development Core

Team, 2013) and aggregated to yield gene counts using the “gene” iden-

tifier from the Gencode reference transcriptome. We used DESeq2 for

gene expression normalization and quantification of gene level counts

(Love et al., 2014). We used a threshold of a false discovery corrected

(FDR) p-value <.1. Statistics on the PCAwere conducted in R. The hierar-

chical clustering analysis was conducted and visualized using the R pack-

age pheatmap (Kolde, 2015) with the RColorBrewer R packages for

color modifications (Neuwirth, 2014). PCA was conducted in R using the

DESeq2 and genefilter R packages (Gentleman, Carey, Huber, & Hahne,

2017; Love et al., 2014) and visualized using the ggplot2 and cowplot R

packages (Wickham, 2009; Wilke, 2016). Two-way ANOVAs were used

to test whether or not a significant amount of variance in PC1 and PC2

is explained by treatment, subfield, or their interaction.

The raw sequence data and intermediate data files are archived

in NCBI's Gene Expression Omnibus Database (accession numbers

GSE99765). The data and code are available on GitHub (https://github.

com/raynamharris/DissociationTest), with an archived version at the

time of publication available at Zenodo (Harris, 2019). A Jupyter note-

book containing a cloud-based, open-access analysis of GEO dataset

GSE99765 (https://www.ncbi.nlm.nih.gov/gds/?term=GSE99765) cre-

ated using BioJupies (Torre, Lachmann, & Ma'ayan, 2018) is available at

http://amp.pharm.mssm.edu/biojupies/notebook/zySloEXuZ.
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