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Abstract

Understanding animal decision-making involves simulta-
neously dissecting and reconstructing processes across levels
of biological organization, such as behavior, physiology, and
brain function, as well as considering the environment in which
decisions are made. Over the past few decades, foundational
breakthroughs originating from a variety of model systems and
disciplines have painted an increasingly comprehensive pic-
ture of how individuals sense information, process it, and
subsequently modify behavior or states. Still, our understand-
ing of decision-making in social contexts is far from complete
and requires integrating novel approaches and perspectives.
The fields of social neuroscience and cognitive ecology have
approached social decision-making from orthogonal perspec-
tives. The integration of these perspectives (and fields) is
critical in developing comprehensive and testable theories of
the brain.
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Social neuroscience has made great strides in under-
standing the key pathways and neuromodulators of
important social, behavioral processes like affiliation,
reproduction, and aggression. Independently, cognitive
ecology has examined a diverse set of taxa to analyze
behavior in social groups, determine decision-making
rules and the factors that modulate them, and contex-
tualize these processes in naturalistic scenarios to un-
derstand their adaptive value. The integration of these
perspectives (and fields) is critical in developing
comprehensive and testable theories of the brain

[5,31,14]. Here we review complementary insights into
social decision-making from the perspectives of both
social neuroscience and cognitive ecology. We describe
each area of research and its development in recent
decades, including a brief discussion of studies that have
attempted to integrate both fields. We then outline
several steps to further integrate social neuroscience
and cognitive ecology toward a complete understanding
of social decision-making,.

What is social neuroscience?

Social neuroscience is the study of the neural mecha-
nisms of social behavior, and as such, is situated within
the tradition of neuroethology [66,65], which histori-
cally has included the study of social behavior, as well as
investigations of reward, motivation, and decision-
making (e.g. Ref. [56]). From this foundation, social
neuroscience emerged as an independent field of
research in the early 1990s [6] with the aim of under-
standing the neural, hormonal, cellular, and genetic
underpinnings of social behavior [7]. It is this integra-
tion across levels of biological organization, and how they
relate to the social realm, that separates social neuro-
science from the more reductionist approaches in much
of modern neuroscience (where behavior is often an
afterthought, see Ref. [22]) and from the organism-level
outlook characteristic of animal behavior research and
psychology [17]. Importantly, almost from its inception,
social neuroscience has embraced a diversity of model
systems and attempted to infer evolutionary insights.

Current research in social neuroscience primarily stems
from two areas of research [17]: a neuroethological
perspective on sensory processing and a neuroendocri-
nological perspective on suites of social behaviors such
as sexual behavior (including sexual signaling, mate
choice, and courtship), aggression (including domi-
nance, competition, and territoriality), parental care,
and affiliation/avoidance (including cooperation and
prosociality) (see Refs. [49,58]). Research on sensory
processing has amassed a comprehensive and detailed
inventory of the pathways, cells, and circuits that pro-
cess social information from a multitude of modes (e.g.
pheromones, acoustic, and visual courtship signals and
cues) [53] Conversely, research in the neuroendocri-
nology realm has demonstrated how remarkably
conserved (in form, function, and occasionally both) the
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mechanisms of social behaviors are across taxa, from sex
steroids to nonapeptides to reward neuromodulators
(dopamine, serotonin), to stress modulators (cortisol)
[13,25,26,21,52].

A decade ago, Adolphs [1] proposed a set of ‘next steps’
in research on social neuroscience. These included new
model systems, an emphasis on region mapping of
socio-cognitive processing in the brain, and investi-
gating generality versus domain-specificity in social
information processing. All these suggestions reflected
a need to more closely integrate a more naturalistic (or
ecological) perspective into the field, as we discuss
later. More specifically, Adolphs [1] identified that one
strength of social neuroscience is its grounding in
animal studies, then subsequenr extension to humans,
rather than the other way around. This is one challenge
that social neuroscience encounters: studies amass a
vast and often bewildering array of relationships be-
tween mechanisms and complex behavior, emotion, or
personality traits, yet it only rarely addresses the
functional implications, evolutionary constraints, or
fitness consequences of the identified relationships
[25,7]. We posit that a cognitive ecology framework will
prove beneficial in contextualizing the results within a
larger evolutionary framework.

What is cognitive ecology?

Cognitive ecology has its roots in classical ethology’s
emphasis on an integrative understanding of narural
behavior [51]. The distinction of cognitive ecology from
neuroethology and behavioral ecology was articulated by
Real. [33], who put forward a ‘cognitive approach’
toward understanding animal decision-making. Inten-
ded as an alternative to a strictly behaviorist/adapta-
tionist approach, an individual’s decision is no longer
seen as an objective weighing of external stimuli but
rather a product of a series of processes (perception,
encoding, storage, and representation) that are the
product of evolution [33]. Later, Shettleworth defined
cognition as “@// [the] ways in which animals take in infor-
mation through the senses, process, retain and decide to act on it.”
[43]. Behavioral ecologists have increasingly embraced
the implications of cognitive processes in their experi-
mental designs, thus integrating research into animal
cognition with behavioral ecology, a research field now
often referred to as cognitive ecology [12]. Cognitive
ecology has oscillated between a more ecological and a
more psychological perspective [16,20]. The ecological
approach has proven invaluable in structuring testable
and discrete hypotheses for cognitive processes (e.g.
bird food caching [47], fish transitivity in mate choice
decisions [34], bat prey cue assessment [29]). In
contrast, a psychological approach has increased our
understanding of the cognitive processes that human
and nonhuman animals share, primarily through the
assessment of primate cognition [60].

Different cognitive domains are those that require
different types of cognitive performance [9]. Common
domains assessed in cognitive ecology literature include
spatial  learning, associative learning (including
discrimination learning), cognitive flexibility (such as
inhibitory control and reversal learning), and innovative
problem solving/novel motor learning. Many studies
employ multiple cognitive assays to compare perfor-
mance across domains, and there has been a recent call
to improve the universality of such cognitive test bat-
teries (as well as expand this type of testing to additional
animal models) [42].

Model systems in cognitive ecology are often selected
based on their unique behavioral repertoire (e.g. cleaner
mutualism in fish and shrimp [46,55], bats navigating via
echolocation [48], vocal learning in songbirds [41].
Given the diverse species studied, numerous often
ingenious assays have been developed to assess cogni-
tion in a manner most appropriate for and relevant to the
model system. However, examining cognitive behavior
in a way that is efficient, robust, and relevant across
species given their differences in natural and evolu-
tionary history poses another great challenge [32].
Designing an experimental paradigm that is ‘fair’, i.e.,
not biased toward any one of the species under inves-
tigation, is difficult as species differences that are not
directly relevant to the behavior under study might
interfere in nonobvious ways. For example, in studies on
spatial learning using a food reward, one species might
simply be more motivated by the food reward used and
yet would appear to be superior at spatial learning [27].
Nevertheless, the diversity of model systems has been
an obvious boon for the field, yet inferring the mental
processes taking place inside an animal’s brain from
behavioral observations alone remains another major
challenge [43]. This is particularly true when we
consider different social environments where cognitive
processes — such as the assessment of valence and
salience, associative learning and memory retention, and
the speed and accuracy of decision making — can
change dynamically across social contexts [59]. Inte-
grating proximate mechanisms into the research agenda
of cognitive ecology has long been seen as critical [43],
yet progress in this direction is ripe for additional
exploration.

Integrating social neuroscience and
cognitive ecology

"To assess where integration between social neuroscience
and cognitive ecology is already occurring, we conducted
a quantitative literature search in both Google Scholar
and PubMed, using representative search terms (see
Figure 1 legend for details). Here, we only report the
analysis for PubMed as the two databases yielded
concordant results. We identified 19,669 publications for
the search term ‘social neuroscience,” 17,883

www.sciencedirect.com

Current Opinion in Neurobiology 2021, 68:152—158


https://scholar.google.com/
https://pubmed.ncbi.nlm.nih.gov/
www.sciencedirect.com/science/journal/09594388

154 The Social Brain

publications for ‘animal cognition,” and 1068 publications
for ‘cognitive ecology.” The fields of social neuroscience
and animal cognition have been growing steadily since
the mid-1990s, with the latter initially outpacing the
former (Figure 1a). In contrast, cognitive ecology began
to accelerate only about 15 years ago, albeit at a slower
pace. To examine the state of integration of these fields,
we then scaled each separately to its respective year with
the most publications (Figure 1b). Interestingly, the
intersection of social neuroscience and animal cognition
(2564 publications) largely follows the trajectory of social
neuroscience, while the intersection between social
neuroscience and cognitive ecology (113 publications)
began to accelerate only in the last decade (Figure 1b).
Our analysis shows that both social neuroscience and
cognitive ecology are thriving disciplines and that the
very recent and ongoing integration of cognitive ecology
and social neuroscience is an exciting and promising
frontier.
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Quantitative analysis of the publication effort in Social Neuroscience,
Animal Cognition, and Cognitive Ecology. Three searches were con-
ducted in PubMed (selecting ‘all fields’ and restricting the year to before
and including 2019): * (social neuroscience) AND (animal)’, ‘(cognitive
ecology) AND (animal)’, and ‘(animal cognition)’. Two additional searches
assessed the intersections between the fields: ‘(social neuroscience)
AND (cognitive ecology) AND (animal)’, and ‘(social neuroscience) AND
(animal cognition)’. Shown are total research effort over time (a) and
scaled research effort to facilitate comparison (b). Primary data and
analysis code can be found at: https://github.com/kellyjwallace/Wallace
Hofmann_literature_analysis.

Promising approaches for further
integration

We propose four approaches that cognitive ecologists
and social neuroscientists may want to consider as they
conduct integrative work between these two areas.
These suggestions are not meant to be exclusive, and
rather they reflect research directions that have already
yielded novel insights — as demonstrated by the ex-
amples we provide — and are likely to play an important
role in the future integration of these fields.

1) Assess social behavior and cognitive performance in
the same subjects across cognitive and social
domains.

The social environment is a rich landscape and in-
dividuals that navigate it rely on cognitive processes.
When possible, assessing the same individuals in
social behavior assays and cognitive tasks can facili-
tate a better understanding of the social factors that
are relevant for certain cognitive abilities. The ability
to correlate social factors with cognitive processes
then allows researchers to generate specific hypoth-
eses on how proximate mechanisms (such as neuro-
modulators) should vary across individuals and across
these social factors.

For example, the prairie vole, Microtus ochrogaster, has
become a model system for understanding social
monogamy and the role of nonapeptides in social affili-
ation and salience. In this model system, a series of
elegant studies of behavioral, neuromolecular, and ge-
netic mechanisms have transformed our understanding
of the role of nonapeptides in both social behavior [11],
and spatial memory [35]. Further work comparing these
social categories and cognitive domains is a critical step
in identifying relationships between social behavior and
cognition that can then be explored at a mechanistic
level (e.g. Ref. [28]). The evolution of our under-
standing of the function of the nonapeptides [11,13,37]
exemplifies the utility of investigating mechanisms in
alternative contexts. Oxytocin was originally considered
a neuromodulator of ‘social affiliation.” But further
exploration provided evidence for an expanded role, and
now we more clearly understand its role in ‘social
salience,” or the orienting of responses to social cues.
This expanded role explains the role of oxytocin in both
the typical prosocial aspects of social behavior (such as
trust and empathy), as well as antisocial aspects (such as
aggression and envy) [44]. It is important that mecha-
nisms are not pigeon-holed into the investigation only
within traditional contexts and traditional model or-
ganisms. It is also important to record noncognitive
behavioral traits during assays, as they may be influ-
encing the perceived cognitive performance [54].
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2) Compare social phenotypes over time and across
developmental trajectories

As mentioned previously, study systems that display
variation in a social attribute can be very useful for
studies of cognitive ecology and social neuroscience, and
this is even more the case when this variation can be
organized into discrete phenotypes (e.g. male/female,
parenting/nonparenting, dominant/subordinate,
breeder/helper). Once the behavioral and mechanistic
repertoires of social phenotypes are distinguished, it is
then useful to employ repeated measures designs to
understand the repeatability versus flexibility of the
phenotypes. Employing repeated measures across con-
texts (e.g. across time or development) facilitates un-
derstanding the limits of phenotypic variation in
behavior and underlying mechanisms.

The African cichlid fish Astatotilapia burtoni has emerged
as a model system in social neuroscience [23]. Studies
have disentangled the relevant modalities and social
information males individuals use to ascend or descend
in social dominance status, as well as detailing the
physiological and neural transitions that parallel social
change. Recent literature in this species has additionally
disentangled how these social dominance phenotypes
influence group learning [38].

Social neuroscience has extensively studied develop-
mental aspects of social behavior and trajectories, a
perspective cognitive that can benefit ecologists.
Furthermore, investigating developmental trajectories
can be a useful tool in understanding the evolutionary
origins and conservation of social decision-making. In
zebra finches (laeniopygia guttata), as well as other
songbird species, the neural circuits and critical devel-
opmental periods of song learning have been well char-
acterized, as well as the ecological consequences (e.g.
mate preference behavior). Care has been taken to
disentangle the learned versus innate aspects of
song and attention and interpretation of stimuli. Addi-
tionally, explorations on this topic have characterized
the anatomical constraints of song production [36].

3) Increase the number of model systems studied in
naturalistic communities.

As we noted above, diverse and unique study species
have featured prominently in both social neuroscience
and cognitive ecology, suggesting that investigating
nontraditional model systems can be particularly fruit-
ful. Often, model systems are chosen due to complex
behavior or extreme social phenotypes that they exhibit,
such as archerfish [39] or naked mole rats [15]. Addi-
tionally, species often vary considerably in social attri-
butes (that potentially change over time), which allows

researchers to explicitly test evolutionary hypotheses
and infer which mechanisms are similar (and possibly
conserved) across species (see approach 4) below). This
requires extensive knowledge of the social environment
of the system. It is easy to overlook basic naturalistic
characterizations, but the initial description of a species’
life history, social organization, and naturalistic behavior
is critical in establishing baseline predictions regarding
cognitive performance. For example, in honeybees,
studies of the relationship between spatial navigation
and social communication, as well as the underlying
neural mechanisms, have a rich history grounded in
painstaking observations of behavior in nature [24,64].
Studies of primate societies, particularly geladas, rhesus
macaques, and savannah baboons, have turned the lim-
itations of studies conducted in the wild into a strength
through detailed recording of social interactions paired
with  physiological and molecular assessments
[62,45,18]. Importantly, research on primates has been
instrumental in building our understanding of higher
order cognitive processes, such as the theory of mind
and subjective mental states, from an ecological rather
than anthropocentric perspective. In addition to estab-
lishing new model systems via basic naturalistic char-
acterizations [19], longstanding biomedical model
systems (e.g., the nematode worm Caenorhabditis elegans,
the fruit fly Drosophila melanogaster, and the mouse Mus
musculus) will greatly benefit from more ecological per-
spectives that historically have not been central in their
literature (e.g. Refs. [50,61]).

Importantly, new technologies such as automated
tracking and machine learning have facilitated a re-
naissance of detailed behavioral observations, often in
naturalistic contexts [10]. Scientists are also swiftly
advancing neural recordings of freely interacting animals
(e.g. Ref. [40] as an alternative to more restrictive
techniques that require animals to be fixed to a stage.
Often, the analysis of these complex datasets requires
new statistical approaches. Social network analysis, for
example, has been a particularly fruitful subfield within
the study of ecologically relevant social behavior. The
observation of complex group social dynamics yields
equally complex datasets and requires sophisticated
statistical approaches [61,30]. These statistical ap-
proaches have undergone rapid development and have
vastly improved our ability to interpret group social
dynamics [57]. The rapid pace at which these techno-
logical and statistical advances occur provides exciting
opportunities for the integration of social neuroscience
and cognitive ecology [2].

4) Employ phylogenetic comparative analyses of mech-
anisms and behaviors

It is clear that for both social neuroscientists and
cognitive ecologists, understanding animal behavior
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(in particular social decision-making) requires an
evolutionary framework. From the social neurosci-
ence perspective, understanding the shared path-
ways and brain region homologies [13,25,26] is
critical in determining the roles of key mechanisms
and circuits. From the cognitive ecology perspective,
understanding the fitness consequences of behavior
provides insight into its maintenance in any given
population.

Poeciliid fishes (a family of freshwater livebearing fish
encompassing guppies, mollies, swordtails, and platys)
initially became a model system for understanding life-
history tradeoffs in response to predation, and have
since emerged as a model system for mate choice, as
closely related species vary in mating system. Studies on
male visual ornaments and coloration paired with
experience-dependent female mate choice and its
neural mechanisms have all been grounded in an
evolutionary framework of sexual conflict and alternative
reproductive tactics [8].

There is a ripe opportunity for researchers of social
behavior to employ more rigorous phylogenetic methods
on large datasets across taxa to explicitly test observed
conservation (see Ref. [63]). Phylogenetic analyses can
more clearly paint an evolutionary trajectory of critical
social attributes and their mechanisms across time. For
example, many hypothalamic neuropeptides and
releasing hormones are not only evolutionarily ancient
but often show conserved functions, including their
effects on behavior [37].

Conclusion

To understand how human and nonhuman animals make
decisions in a social world, scientists must integrate
across biological levels and diverse perspectives. This
integrative approach is not a new concept, rather, inte-
grative frameworks such as Tinbergen’s four questions
[51] have facilitated enormous conceptual progress in
our understanding of animal behavior [3]. But given the
recent advances in neuroscience and behavioral analyses
[4], the ability to integrate these topics within single
studies has become much more accessible [14]. We have
described here the complementary approaches that
social neuroscientists and cognitive ecologists have used
to social decision-making, detailing their methodological
strengths and weaknesses. The intersection of these
two fields is ripe for more integration, which no doubt
will yield important new insights.
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