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A multilayer perceptron artificial neural network (MLP-ANN) 
was developed to calculate the cracking stress, tensile strength, 
and strain at tensile strength of ultra-high-performance concrete 
(UHPC), using the mixture design parameters and strain rate 
during testing as inputs. This tool is envisioned to provide reference 
values for direct tension test results performed on UHPC speci-
mens, or to be employed as a framework to determine the tension 
response characteristics of UHPC in the absence of experimental 
testing, with minimal computational effort to determine the tensile 
characteristics. A database of 470 data points was compiled from 
19 different experimental programs with the direct tensile strength, 
cracking stress, and strain at tensile strength corresponding to 
different UHPC mixtures. The model was trained, and its accuracy 
was tested using this database. A reasonably good performance 
was achieved with the coefficients of determination, R2, of 0.91, 
0.81, and 0.92 for the tensile strength, cracking stress, and strain at 
tensile strength, respectively. The results showed an increase in the 
cracking tensile stress and tensile strength for higher strain rates, 
whereas the strain at tensile strength was unaffected by the strain 
rate.

Keywords: artificial neural network (ANN); cracking stress; machine 
learning; multilayer perceptron (MLP); tensile strength; ultra-high-perfor-
mance concrete (UHPC).

INTRODUCTION
Ultra-high-performance concrete (UHPC) is widely 

recognized as a cementitious composite with a discontin-
uous pore structure, incorporating steel fiber reinforcement.1 
UHPC is attracting increased use due to its outstanding 
material properties, such as high compressive strength, high 
tensile strength, excellent crack control properties, self- 
consolidating workability, and exceptional durability in 
aggressive environments.2,3 These characteristics make 
it possible, in some cases, to significantly reduce or elim-
inate conventional reinforcement and allow the use of 
thinner concrete sections in practical applications.4 As a 
result, UHPC becomes an advantageous choice in high- 
performance applications, such as long-span precast preten-
sioned elements, bridge decks, offshore platforms, nuclear 
power plant buildings, and blast- and impact-resistant 
structures.5

UHPC was introduced for the first time in 1994,6,7 and it 
differs from ordinary concrete in various aspects, including 
low water-cement ratio (w/c), the incorporation of silica fume 
with optimized quantities of portland cement, fine aggre-
gates, and the absence of coarse aggregates.8 Recent efforts 
have concentrated on the formulation of UHPC mixtures 
that are more economical and have enhanced sustain-
ability characteristics,9-17 resulting in the incorporation of 

additional supplementary cementitious materials (SCMs) 
within the UHPC mixture, such as fly ash (FA), granulated 
blast-furnace slag (GBFS), metakaolin, and the use of lime-
stone powder.13-16

The incorporation of fiber reinforcement in the UHPC 
mixture, such as steel or propylene fibers, results in post-
cracking ductility and enhanced energy absorption capac-
ities that are not superior to conventional concrete. As a 
result, UHPC provides a reliable solution for cases when 
high strain rates are generated by impact loads, blast, 
and seismic loading.18 While the strain-rate sensitivity of 
conventional concrete is known to be strongly dependent on 
the quality of the concrete mixture,19,20 for fiber-reinforced 
concrete, the strain-rate sensitivity is highly influenced by 
additional factors, such as fiber volume percentage, fiber 
type, and fiber bond strength.21,22 Several studies examined 
the tensile behavior of various UHPC mixtures at varying 
strain rates21-26 and shed light on its influence on mechanical 
properties such as the cracking stress, tensile strength, and 
the strain at tensile strength. The findings demonstrate that 
UHPC has a complex behavior, depending on the strain rate, 
and the mixture composition in terms of SCMs, fiber rein-
forcement type, and the overall mixture design.

Numerous empirical models were developed to estimate 
the dynamic increase factor for UHPC,27,28 all indicating that 
the response of UHPC is even more sensitive to the strain 
rate than conventional concrete due to the presence of the 
fiber reinforcement.29 In addition, the low w/c and inclusion 
of SCMs promote the formation of a denser structure,30,31 
which in turn increases strain-rate sensitivity according to 
the Stefan effect.32

The direct tension tests, splitting tensile tests, and flexural 
tests are the three most commonly used testing procedures 
for characterizing the behavior of UHPC in tension.32-34 
The experimentally measured tensile strength values vary 
depending on the tensile stress distribution and boundary 
conditions corresponding to these different tests.35 Among 
them, the direct tension test presents the advantage of 
a uniform stress condition and the ability to record the 
complete stress-strain response before and after cracking. 
As such, in terms of insight for material characterization, the 
authors view the direct tension test as superior compared to 
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the splitting tensile and flexural tests. Nevertheless, it pres-
ents well-known challenges pertaining to the execution of 
the test, especially, ensuring a uniform uniaxial stress condi-
tion before and after cracking.

Typically, UHPC mixtures are classified according 
to their post-cracking stress-strain response into strain- 
softening or strain-hardening materials.36 Figure 1 displays 
typical strain-softening and strain-hardening behavior. The 
cracking stress (fcr) is defined as the stress at which the 
first crack occurs, the tensile strength (ft′) is defined as the 
maximum tensile stress, and the strain at tensile strength 
(εt′), refers to the strain corresponding to ft′. The work 
presented herein was performed to provide values for the 
cracking stress, tensile strength, and the strain at peak stress 
of UHPC mixtures tested under different strain rates, based 
on information related to the mixture design.

Overall, the tensile response of UHPC is highly influenced 
by numerous factors, including the w/c, SCMs-to-cement 
ratio, high-range water-reducing admixture-to-cement ratio, 
and fiber volume and type, in addition to the tensile strain 
rate. These factors were observed from previous exper-
imental programs to have a higher impact on the  tensile 
strength than the compressive strength of UHPC; conse-
quently, the empirical approaches commonly used to esti-
mate the tensile strength of conventional concrete as a 
function of the compressive strength only would not be 
adequate for UHPC.37 For example, the fiber volume of a 
mixture was shown to have a higher degree of influence 
on the tensile strength than the compressive strength.25-27 
At the same time, in the design of structural elements cast 
with UHPC, the tensile strength of the UHPC material is 
usually considered as a contributing factor to the strength 
of the element. Therefore, there is an urgent need for a reli-
able approach to determine the tensile strength of UHPC. 
The work presented herein is an effort toward this endeavor. 
Previously, multilayer perceptron artificial neural network 
(MLP-ANN) models have been effectively used in a 
variety of UHPC applications, including the prediction of 
the mechanical properties of UHPC mixtures, such as their 
compressive strength, modulus of elasticity, flowability, and 
porosity.38-42 The goal of this research was to develop an 
MLP-ANN framework for calculating the cracking stress, 
tensile strength, and the strain at tensile strength of UHPC, 
using as inputs the parameters found to be influential, as 
previously mentioned. This tool is envisioned to provide 
reference values for direct tension test results performed on 
UHPC, or to be employed as a framework to determine the 
tension response characteristics of UHPC in the absence of 
experimental testing.

RESEARCH SIGNIFICANCE
In contrast to structural elements cast with conventional 

concrete, the tensile strength of UHPC is typically a design 
factor contributing to the strength of UHPC members. 
Determining the tensile strength of UHPC, however, poses 
several challenges and introduces a degree of uncertainty 
that is not yet well understood. An MLP-ANN model 
was developed for calculating the cracking stress, tensile 
strength, and the strain at the tensile strength of UHPC using 
as input information pertaining to the mixture design. To the 

authors’ best knowledge, no previous studies address the 
prediction of the aforementioned tensile properties of UHPC 
using MLP-ANN. The authors believe that the procedures 
proposed in this study will be of general interest to the prac-
ticing engineers and standards committees, with the goal of 
accelerating the widespread adoption of UHPC components 
in structural applications. The MLP-ANN presented herein 
was developed based on a database of 470 data points, and it 
is hoped to be used to provide a baseline for the experimen-
tally determined tensile properties in an effort to reduce the 
inherent uncertainty associated with tensile testing, or to be 
employed as a framework to establish the tension response 
characteristics of UHPC in the absence of experimental 
testing.

ARTIFICIAL NEURAL NETWORKS
Overview

An artificial neural network (ANN) is a data processing 
paradigm inspired by the biological neural system. This para-
digm is reliant on the shape of the information processing 
system. ANNs have a mechanism for extracting interconnec-
tions from complex data and can be used to discover patterns 
and identify trends that would typically be obscured.43 An 
ANN is a type of nonlinear function approximator that 
creates mapping between the input and output parameters. 
The network uses learning capabilities derived from the 
given inputs,44 making this approach ideal for predicting the 
UHPC tensile properties due to the relatively large number 
of input parameters controlling these properties and the 
nonlinear relationship between the given inputs and outputs. 
A flowchart representing the general design and develop-
ment procedure for an ANN is shown in Fig. 2.

The perceptron is the most basic type of neural network 
architecture and is being used in numerous advanced neural 
network applications. It is composed of multiple weighted 
connections and an activation function that connects the 
input and output layers.45,46 The activation function decides 
whether to activate the neuron based on the input values and 
their weights, as explained in the following section. The 

Fig. 1—Typical UHPC stress-strain response in tension: 
(a) strain-softening behavior; and (b) strain-hardening 
behavior.36
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basic mechanism of the artificial neuron used in ANNs is 
shown in Fig. 3.

Feed-forward networks and recurrent networks are the 
two main types of ANNs. The MLP-ANN is one of the most 
widely used feed-forward ANNs,47 and it represents a modifi-
cation of Rosenblatt’s perceptron model that includes hidden 
layers between the input and output layers. The goal of the 
architecture is to optimize the number of layers and neurons 
in each layer so that the network can solve the regression or 
classification problem with the given parameters.48 Figure 4 
shows the input layer variables, hidden layers, and output 

layer variables in a schematic diagram of the preliminary 
layout of the MLP-ANN structure used in this study. The 
algorithm was developed using the Python programming 
language.

Activation functions
The challenge with employing neural network architec-

tures consists of the difficulty in designing algorithms that 
successfully learn patterns in data sets. Numerous strategies 
were explored to increase the effectiveness of these learning 
algorithms, such as normalizing the data points and opti-
mizing the activation functions used in the ANN. An acti-
vation function determines whether to activate the given 
neuron, providing an output depending on the input values 
multiplied by their corresponding weights.

The hyperbolic tangent, sigmoid functions, and the 
rectified linear unit function (ReLU) are some of the most 
commonly used activation functions. The ReLU has been 
shown to be the most effective activation function for both 
regression and classification purposes.49 The graphical 
representation of the ReLU activation function is depicted in 
Fig. 5; the function receives modified inputs, multiplying by 
their respective weights and adding the bias values. Finally, 
the neuron outputs a value depending on the weighted values 
of the inputs. The benefit of using the ReLU consists of 
its capacity to discard neurons with negative weights and 
biases in the learning process, allowing for a faster and more 
precise learning process. The ReLU function was employed 
as the activation function for the hidden layers in this study, 
whereas a linear activation function was used for the output 
layer.

Training model
The ANN’s training phase is critical, and it represents a 

function minimization problem in which an error function is 
minimized, assisting in the selection of the optimal weights. 
Rumelhart et al.50 developed one of the most widely used 
training algorithms, the backpropagation method for neural 
networks, in which the neural network procedure repeatedly 
customizes the weights of the connections in the network 
to minimize the difference between the actual output vector 
(experimentally measured tensile properties) and the 
predicted output vector (predicted tensile properties).

The backpropagation technique analyzes the information 
in two steps: initially, in the forward pass, it calculates the 
outputs and the error at the output layer. This is followed 
by the backward pass, as it updates the weights of the same 
units using the error at the output layer. This technique is 
repeated until the error converges to a minimum value, at 
which point the cost function is specified. For convergence, 
several optimization techniques are generally applied, 
including the schematic gradient descent51-53 and the Adam 
optimizer.54 In this work, the Adam optimizer was used as 
the optimization algorithm.

Model performance evaluation
After the training phase, the accuracy of the model was 

verified with respect to calculating the cracking stress, the 
tensile strength, and the strain at the tensile strength. The 

Fig. 2—ANN design and development procedure flowchart.
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root-mean-square error (RMSE) and coefficient of determi-
nation (R2) were used as statistical parameters to determine 
the accuracy of the predictions of the model, calculated as 
shown in Eq. (1) and (2)

	​ RMSE   =  ​√ 

_______________

  ​ 
​∑ i=1​ n  ​​ ​​(​Y​ pred​​ − ​Y​ ref​​)​​​ 2​

  _______________ n  ​ ​​	 (1)

	​ ​ R​​ 2​  =  1 − ​ 
​∑ i=1​ n  ​​ ​​(​Y​ pred​​ − ​Y​ ref​​)​​​ 2​

  _______________  ​∑ i=1​ n  ​​ ​​(​Y​ ref​​)​​​ 2​  ​​	 (2)

where n is the total number of data points; Ypred is the calcu-
lated value; and Yref is the experimental value.

The RMSE is one of the most frequently used error-index 
statistics.55 RMSE compares experimental and predicted 
values and evaluates the square root of the mean residual 
error, indicating the error in units of the constituent of interest. 
The optimum RMSE value is zero, indicating a perfect 
match. The coefficient of determination (R2) compares the 
accuracy of the model to that of a basic benchmark model, 
where the prediction is the mean of all samples.56 The R2 
statistics are based on linear relationships between experi-
mental and predicted values and may produce biased find-
ings when the relationship is not linear or when the database 
contains numerous outliers. The value of R2 is unity when 
there is equality between the observed and predicted values. 
A combination of the performance indicators described 
previously can provide an impartial estimate of the neural 
network models’ prediction ability.

DATABASE
Whereas recently, the focus in the literature has been 

primarily on the prediction algorithms in machine learning 
applications and the optimization of these algorithms, the 
importance of a dependable, representative, and sufficient 
database is oftentimes neglected, even though the database 
characteristics have a crucial role in developing a successful 
model. Sufficient data size is regarded as data that cover Fig. 3—Mechanism of artificial neuron depicting biological 

neuron.

Fig. 4—Schematic representation of MLP-ANN.
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all possible parameter combinations that determine the 
outputs the model is to predict, allowing the entire problem 
to be effectively simulated. A reliable database is especially 
important in the case of experimental databases, which 
frequently exhibit a considerable variance between results 
due to both unforeseen errors that were not accounted for 
while planning the experiment and inherent biases while 
implementing the experiment.

A database of 470 data points was compiled from 
19  different experimental programs with the direct tensile 
strength,18,25,26,57-72 cracking stress, and strain at the tensile 
strength of UHPC mixtures. These values were obtained 
from tests conducted on UHPC specimens that were tested 
under uniaxial tension at different strain rates. Table A1 in 
the Appendix summarizes the specimens compiled from the 
literature. Using this database, each input training vector was 
assigned 16 parameters, summarized in Table 1. The output 
vector includes the value of the tensile strength, cracking 
stress, and the strain at the tensile strength. The range, mean, 
and standard deviation values of the parameters included in 
the database are listed in Table 1.

A nonlinear relationship was found between the fiber aspect 
ratio (fiber length/fiber diameter) and the UHPC mechan-
ical properties characterizing the tensile response. This is 
primarily due to the fact that the fiber diameter has a more 
pronounced influence compared to the fiber length.29,66,72 
For example, Park et al.70 tested UHPC specimens cast with 
fibers having the same aspect ratio but different lengths 
and diameters and observed different tensile responses. As 
such, in this study, the fiber aspect ratio was disaggregated 
to capture the fact that the length and diameter of the fibers 
influence the tensile response differently and, therefore, need 
to be assigned different weights in the MLP-ANN model.

For the mixtures that contained fibers of the same type 
but with different lengths or diameters, a weighted average 
length or diameter was set as representative for the sample. 
The number of threads of the twisted fibers, the number of 
bends on hooked fibers, and the ultimate tensile strength of 
the fibers were not considered as parameters in the predic-
tion model, as observations from experimental testing in 

the literature indicate they have negligible effects on the 
tensile strength properties.66,72 Following similar reasoning, 
the influence of the curing regime and duration were also 
neglected in the formulation of the model, as were the 
constituents of the fine aggregate component, such as silica 
flour and glass sand.

The reliability of this database stems from the fact that 
its data points are based on experimental results reported in 
the literature rather than simulated values, which can often 
be subjective based on the models selected. A frequency 
assessment conducted on the database showed that the input 
parameters captured a reasonably acceptable range for the 
model to be accurate in predicting the dependent variables. 
This is illustrated in Fig. 6, which shows a pairplot distribu-
tion graph, constructed using Python’s seaborn module.73,74 
Figure 6 allows the visualization of the given data such 
that the interrelationships between the different input and 
output parameters are illustrated. In addition, the range of 
the collected data is also displayed. For example, for the 
collected database, the average tensile strength of the UHPC 
mixtures is approximately 10 MPa and the w/c is approxi-
mately 0.2. These ranges can also help identify the limita-
tions of the current database—for instance, more data are 
needed to fully analyze the effect of FA on the tensile prop-
erties of UHPC. This is illustrated by the frequency distribu-
tion plot for FA, with the majority of the data points having 
no FA in the mixture design. Only a minor portion of the 
data points have FA, with a percentage of up to 25% replace-
ment. Overall, Fig. 6 illustrates that the constructed database 
covers a wide range of parameters that are used in UHPC 
mixtures. The relationships between the input and output 
parameters can also be visualized from Fig. 6. For example, 
for the tensile strength, analyzing the plot including the w/c 
and tensile strength, an inverse correlation can be observed. 
On the other hand, a positive correlation is revealed between 
the strain rate and tensile strength.

It should be noted that some of the concrete variables can 
be dependent on each other. Hence, the correlation coeffi-
cients between all possible variables have been derived and 
are presented in Fig. 7. Positive unity indicates a perfect 
positive correlation, negative unity shows a perfect nega-
tive correlation, and zero shows no correlation between the 
parameters. As expected, there is a strong positive correla-
tion, with values higher than 0.75 between the strain rate 
and the cracking stress and tensile strength, whereas there 
is no clear correlation between the strain rate and the strain 
at tensile strength. In addition, the preliminary analysis indi-
cates that the polyethylene fibers have a more pronounced 
influence on the strain at tensile strength of UHPC, compared 
to the steel fibers.

As part of data processing, outliers were identified and 
removed from the database. For the experimental studies that 
performed tests on multiple specimens of the same mixture 
design, the standard deviation and the mean values were 
calculated for the tensile properties. The experimental data 
with values that were higher or lower than twice the standard 
deviation difference from the mean value were considered 
outliers and were removed accordingly.

Fig. 5—Graphical representation of ReLU activation 
function.
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Data normalization
Following the removal of outliers from the database, the 

next stage was data normalization. In general, the input and 
output data have different identities with no or minimal 
similarities. Data normalization removes the risk of neural 
network bias toward various identities. To prevent difficul-
ties connected with the learning rate of the MLP-ANN, the 
min-max normalization method was used in this work73; 
data scaling between 0 and 1 was performed.

Data leakage
Data leakage is one of the main challenges facing machine 

learning applications75; it occurs when the data used to train 
a machine learning algorithm contains the information about 
the validation model that might not be available in the prac-
tical applications of the model. Data leakage can cause the 
machine learning algorithm to show good prediction results 
in both the test and training data sets but perform poorly in 
practical prediction applications.

There are mainly two types of data leakage76: feature and 
train-test leakage. Feature leakage is common in classifica-
tion problems and occurs when one of the parameters used 
includes data that will not be available in the practical appli-
cations. Train-test leakage is more common in regression 
problems and occurs when training data has leaked infor-
mation of the test data; this can be avoided by removing 
the randomization in sectioning the test and train ing sets 
to ensure that the algorithm is not trained on data similar to 

the one the algorithm is to be tested on. Train-test leakage 
was avoided by using different experimental programs in the 
training and testing phases.

Data fitting
Figure 8 depicts the three possible outcomes for data 

fitting. Underfitting occurs when the learning algorithm 
is unable to find a solution that fits the training examples 
well, while overfitting occurs when the learning algorithm 
finds an excellent solution for the training data but predicts 
unusual results in terms of new data other than the data for 
which it was trained. Overfitting can be a major issue in the 
machine learning process as it hinders the ability to gener-
alize models. This can be caused due to a variety of reasons, 
such as presence of noise in the data set, insufficient data 
used for the training phase, or overly complex prediction 
algorithms.77,78

To avoid overfitting in the developed MLP-ANN model, 
the data was partitioned into two sets: training and test data 
sets. The training data set included 80% of the total data 
points and was used to aid the model in learning the predic-
tion patterns, while the test data set comprised 20% of the 
total data. Underfitting would show the model having low 
accuracies in both the training and test data sets, while over-
fitting would show the model having high accuracy in the 
training phase with low accuracy in the test phase. Neither 
issue is observed for the model developed in this study.

Table 1—Descriptive statistics of input and output variables in database

Parameter Symbol Units Category Min. Mean Max. Standard deviation

Water-cement ratio w/c — Input 190 22.2 35 4.25

Fly ash-cement ratio FA/C — Input 0.0 1.5 25 5.4

Sand-cement ratio Sa/C — Input 12.5 134 164 22.2

Silica fume-cement ratio SF/C — Input 0.0 23.6 39 8.0

GGBFS-cement ratio BFS/C — Input 0.0 5.0 107 19.5

High-range water-reducing admixture S/B — Input 0.5 3.6 6.7 2.6

Straight fiber, %* SF ― Input 0.0 1.0 3 0.9

Straight fibers length SFL mm Input 0.0 11.3 30 9.2

Straight fibers diameter SFD mm Input 0.0 0.1 0.40 0.1

Hooked fiber, %* HF ― Input 0.0 0.26 3.6 0.6

Hooked fibers length HFL mm Input 0.0 7.1 62.0 14.3

Hooked fibers diameter HFD mm Input 0.0 0.1 0.9 0.2

Twisted fiber, %* TF ― Input 0.0 0.4 3.0 0.8

Twisted fibers length TFL mm Input 0.0 4.9 30.0 9.6

Twisted fibers diameter TFD mm Input 0.0 0.06 0.3 0.1

Polyethylene fibers, %* PE ― Input 0.0 0.2 2.1 0.6

Tensile strain rate SR s–1 Input 0.00006 18.5 161 39.4

Tensile strength TS MPa Output 3.8 17.3 68.1 9.6

Cracking stress CTS MPa Output 4.8 11.3 32.7 4.8

Strain at tensile strength STS ×10–3 Output 0.2 11.8 80 13.2

*Fibers are provided by percentage of fiber volume to entire mixture volume.

Note: C is percentage relative to cement weight; B is percentage relative to total binder weight; 1 mm = 0.039 in.; 1 MPa = 145 psi.
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DISCUSSION OF RESULTS
The architecture of the MLP-ANN was developed 

to achieve the lowest mean squared error (MSE) in the  
development phase and the corresponding R2 and RMSE 
when comparing the experimental and predicted results. 
Table 2 shows the corresponding MSE with the different 
number of neurons for the MLP-ANN model predicting 
the cracking stress, tensile strength, and the strain at tensile 
strength. Using a trial-and-error approach, testing neuron 
configurations with numbers ranging from five to 40 
neurons, the optimum number of neurons converged to 25 
neurons in each hidden layer, reaching the minimum MSE 
of 6.8, as shown in Table 2.

The results of the performance evaluation of the selected 
models are presented in Table 3; similar values were obtained 

in terms of the performance measures for the training and 
test sets discussed previously, indicating a proper perfor-
mance of the MLP-ANN model developed. Figure 9 shows 
the comparison between the experimental and predicted 
results for the cracking stress, tensile strength, and the strain 
at tensile strength. The model shows accurate results in 
predicting the tensile strength characteristics based on the 
mentioned input parameters. In addition, the similarity of 
the R2 and RMSE values between the training and test data 
sets indicates overfitting was not an issue in the prediction 
process, with no need for compensating techniques such as 
regularization.

Shown in Fig. 9 is the comparison between experimental 
and predicted values of the tensile properties, differen-
tiating based on the strain rate employed during testing 

Fig. 6—Pairplot distribution analysis between database variables. (Note: Abbreviations are provided in Table 1.)
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and identifying the values obtained at strain rates below 
or above 0.1 s−1. A strain rate of 0.1 s−1 was shown to be 
the threshold  beyond which the strain rate effects become 
significantly more pronounced for UHPC materials.79,80 The 

overall accuracy for predicting the cracking stresses and 
the tensile strength decreases for UHPC specimens tested 
under higher strain rates (over 0.1 s−1), illustrated in Fig. 9. 
The prediction of the strain at the tensile strength, however, 

Fig. 7—Correlation analysis between database variables.

Table 2—Corresponding MSE relative to number of neurons in first and second hidden layer

Number of neurons in first layer

Number 
of neurons 
in second 

layer

― 5 10 15 20 25 30 35 40

5 22 10.5 11.3 11.5 9 8.2 8.4 7.6

10 14.3 10.8 9.5 10.2 7.9 7.8 7.8 7.8

15 12.4 12.5 8.9 9.2 7.7 8.7 7.4 7.5

20 17.2 10.4 8.5 7.8 7.5 7.5 7.2 9

25 16.5 12.3 8.2 7.6 6.8 8.6 7.1 8.4

30 16.2 12 9.2 7.1 7.2 7 8.3 7.8

35 10.7 11 8.5 7.5 8.6 7.5 7 7.3

40 11 9.1 7.7 9.3 7 6.9 7.3 7
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does not appear to be impacted by the higher strain rates. As 
shown in Fig. 9 and reported in previous studies,56-59,64 
increased tensile strengths are obtained for higher strain 
rates. This is likely due to UHPC’s dense structure and the 
increased bond strength between the cement matrix and the 
fiber reinforcement at elevated tensile strain rates.80

The model successfully differentiates between strain- 
hardening and strain-softening behavior based on the calcu-
lated values for the cracking stress and the tensile strength. 
Strain-softening mixtures result in equal values between 
the cracking stress and the tensile strength, whereas strain- 
hardening mixtures display a lower cracking stress compared 
to the tensile strength, as expected.

As shown in Fig. 9, the accuracy of the prediction algo-
rithm was not significantly impacted by the assumptions 
made to characterize the database, including the use of the 
weighted average approach for UHPC mixtures containing 
fibers of the same type (straight, hooked, or twisted) but with 
different lengths and diameters. In addition, assumptions 
such as neglecting the number of bends in hooked fibers and 
threads in twisted fibers, not including the curing regime 
and duration, also had a minor effect on the accuracy of the 
predicted tensile properties.

The limitations of the proposed algorithm are largely 
related to the range of parameters covered in the database 
compiled. This model should not be expected to perform 
adequately for UHPC mixture designs that differ signifi-
cantly from the ones analyzed herein. For example, there was 
insufficient data in the literature on the response of mixture 
designs that include basalt or cellulose fibers or metakaolin 
as SCMs. As such, the authors recommend against using 
the proposed model for these types of mixtures. However, 
should more data be available, the model could be expanded 
to include a broader range of mixture designs.

CONCLUSIONS
A multilayer perceptron artificial neural network (MLP-

ANN) was developed for the prediction of cracking stress, 
tensile strength, and strain at tensile strength of various 
ultra-high-performance concrete (UHPC) mixtures. The 
following can be concluded:

1. The proposed MLP-ANN model proved to be an effec-
tive tool in predicting the tensile behavior of UHPC mixtures. 
An indication of the accuracy of the model consists of the 
coefficient of determination. The results of the predictions 
for the MLP-ANN algorithm showed R2 values of 0.91, 
0.81, and 0.92 for the tensile strength, cracking stress, and 
strain at tensile strength, respectively.

2. This procedure has the potential to decrease the 
effort, costs, and time to design a UHPC mixture without 

performing multiple mixture trials. This method should also 
be useful in the preliminary design and analysis of struc-
tural members by providing an initial estimate of the tensile 
strength based on the used UHPC mixture design.

3. The model was developed to achieve the lowest 
mean squared error (MSE) in the development phase and 
the corresponding R2 and root-mean-square error (RMSE) 
when comparing the experimental and predicted results. 
Employing a trial-and-error approach and testing various 
configurations of neurons ranging from 5 to 40 neurons, the 
optimum number of neurons converged to 25 neurons in 
each hidden layer, reaching the minimum MSE of 6.8.

4. The similarity of the R2 and RMSE values between the 
training and test data sets indicates overfitting was not an 
issue in the prediction process, with no need for correction 
techniques such as regularization.

5. The correlation analysis and the test results displayed 
the strain rate’s pronounced influence on the cracking stress 
and the tensile strength of UHPC mixtures. In contrast, the 
strain rate has minimal effect on the strain at tensile strength 
of the mixtures investigated in this study.

6. A nonlinear relationship was found between the fiber 
aspect ratio (fiber length/fiber diameter) and the UHPC 
tensile properties. As such, in this study, the fiber aspect ratio 
was disaggregated to capture the fact that the length and 
diameter of the fibers influence the tensile response differ-
ently and, therefore, were assigned different weights in the 
MLP-ANN model.

7. The mixture design constituents, including the water- 
cement ratio (w/c), high-range water-reducing admixture 
ratio, supplementary cementitious materials (SCMs) ratio, 
sand ratio, and fiber reinforcement characteristics, in addi-
tion to the tensile strain rate, proved to be sufficient in accu-
rately predicting the tensile behavior of UHPC mixtures.

DATABASE AND ALGORITHM AVAILABILITY
The database, MLP-ANN algorithm, and user instruc-

tions are available for sharing upon request from the corre-
sponding author.
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Fig. 9—Comparison between experimental and calculated values of UHPC in terms of train-test and strain rates. (Note: 1.0 MPa 
= 145 psi.)
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Table A1—Database description

Ref.
Speci-
mens w/c FA/C Sa/C SF/C 

GGBFS
/C S/B SF SFL SFD HF HFL HFD TF TFL TFD PE SR DTS CTS SC 

Unit N/A % % % % % % % mm mm % mm mm % mm mm %
S-1 

(×10–3) MPa MPa με

Park 
et al.57 53

20 
to 
35

0 to 
25

100 
to 

125

0 to 
25 0 0.9 to 

6.7 1 13 0.2 1 30 0.375 0 0 0 0 0.3 to 
161,000

10.4 to 
43.2 N/A 4 to

 2.1

Pyo 
et al.25 36 22 0 134 25 0 0.5 0 to 

3
0 to 
25

0 to 
0.4 0 0 0 0 to 3 18 to 

25 0.3 0 0.1 to 
100

8.11 to 
24.1

6.22 
to 

14.6

1.7 to 
48

Reanade 
et al.58 36 20.8 0 70 39 0 1.8 0 0 0 0 0 0 0 0 0 2.14

0.1 to 
10,000

14.5 to 
22.8

6.6 to 
14.6

22 to 
48

Tran 
and Kim59 46 20 0 110 25 0 6.7 0 to 

1.5
0 to 
30

0 to 
0.3

0 to 
1.5 30 0.375 0 to 

1.5

24.3 
to 
30

0.27 
to 
0.3

0 0.167 to 
37,000

9.2 to 
39.4 N/A 2.3 to 

20

Tran 
et al.60 72 20 0 110 25 0 6.7 0 to 

1.5
0 to 
19

0 to 
0.2 0 0 0 0 to 

1.5 20 0.2 0 0.167 to 
23,700

10.1 to 
37.4 N/A 44,606

Wille 
et al.26 36 19 0 92 25 0 6.7 0 to 

3
0 to 
13

0 to 
0.2

0 to 
3 30 0.38 0 to 3 18 0.3 0 0.1 to 

100
11.1 to 
24.9

7.3 to 
17.1 44,659

Chun and 
Yoo61 12 25 0 110 25 0 2 0 to 

2
13 to 

30
0.2 to 

0.3
0 to 

2 30 0.38 0 to 2 30 0.3 0 0.083
12.25 

to 
17.68

5.91 
to 

11.35
44,720

Bian and 
Wang62 6 20 0 164 30 0 1.3 1 to 

2 16 0.2 0 0 0 0 0 0 0 0.2 9.3 to 
10.6

10.1 
to 12

0.2 to 
4.5

Wang 
and Guo63 9 20 0 134 30 0 0.5

1.5 
to 
2.5

13 0.2 0 0 0 0 0 0 0 0.2 7.7 to 
10.8

7.7 to 
13

0.2 
to 4

Yoo and 
Kim64 12 20 0 110 25 0 6.5 0 to 

2
0 to 
19.5

0 to 
0.2 0 0 0 0 to 2 30 0.3 0 to 

1.5 0.3 12 to 
20.3

4.76 
to 

9.98
44,671

Pyo 
et al.65 38 22 0 134 25 0 0.5 0 to 

3
0 to 
25

0 to 
0.4 0 0 0 0 to 3 25 0.3 0

66,000 
to 

146,000

19.9 to 
68.1

13.2 
to 

32.7
44,640

Le Hoang 
and 

Fehling66
36 20 0 147 21 0 3 1.5 

to 3
9 to 
20

0.15 
to 

0.25
0 0 0 0 0 0 0 0.067 7.71 to 

14.4

5.05 
to 

15.3
N/A

Wille 
and 

Naaman18
7 22 0 129 25 0 0.54 0 to 

2.5
0 to 
13

0 to 
0.2

0 to 
2 30 0.38 0 to 2 0 to 

30
0 to 
0.3 0 0.33 8 to 

15.5 N/A 1.7 to 
6.1

Kamal 
et al.67 3 20 0 12.5 25 0 2

0.5 
to 
1.5

6 0.012 0 0 0 0 0 0 0 2 3.8 to 
10 N/A 28 to 

58

Ranade 
et al.68 6 21 0 60 to 

97 39 0
0.009 

to 
0.024

0 0 0 0 to 
3.6

0 to 
30

0 to 
0.55 0 0 0 0 to 

2 0.03 10.4 to 
14.5 N/A 1.8 to 

35

Yu et al.69 14 33 0 71 21.4 107 0.005 0 0 0 0 0 0 0 0 0
1.5 
to 
3

0.2
10.29 

to 
17.89

8.15 
to 

12.09

22 to 
80

Park 
et al.70 16 20 0 110 25 0 0.067 0 to 

2
13 to 

24
0.2 to 

0.3
0 to 

1
0 to 
62

0 to 
0.775 0 to 1 0 to 

30
0 to 
0.3 0 0.04 8.08 to 

18.56

7.09 
to 

11.35

0.9 to 
6.4

Yavaş 
et al.71 16 29 0 157 20 40 0.016 0 to 

1.5
0 to 
13

0 to 
0.16

0 to 
1.5

0 to 
60

0 to 
0.9 0 0 0 0 0.07 4.2 to 

9.4 N/A N/A

Voss 
et al.72 10 21 0 97.5 9.7 19.3 0.03 0 to 

2.78
0 to 
13

0 to 
0.2 0 0 0 0 to 

2.78
0 to 
13

0 to 
0.5 0 0.3 4.9 to 

7.0 N/A N/A

Note: Abbreviations are provided in Table 1.
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