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ABSTRACT 
 

Machine learning models used in structural health monitoring often act as "black 
boxes," offering predictions without justifying their logic. This lack of transparency 
undermines trust in safety-critical infrastructure assessments. To solve this, we propose 
the Explainable Boosting Machine, an interpretable method that explicitly links input 
variables (e.g., sensor data, and structural parameters) to predictions, enabling engineers 
to validate results against engineering principles. Real-world structural health 
monitoring and assessment struggles with sparse data, structural complexity, and hidden 
biases. Explainable Boosting Machine addresses these challenges by prioritizing 
transparency and physically meaningful insights. We apply it to predict the shear load- 
carrying capacity as a percentage of the ultimate load, based on the maximum diagonal 
crack widths observed on the surface of reinforced concrete beams—a critical metric 
for shear failure risk. Our results show that the model achieves an RMSE of 10.40% on 
the test dataset while identifying the influence of key predictors (e.g., beam depth, shear 
and skin reinforcement ratios). For instance, the model reveals that, for the same 
maximum diagonal crack width observed in two beams, a structure with a larger depth 
is farther from failure compared to the one with a smaller depth, enabling engineers to 
audit model logic and enhance structural assessment. This work advances trustworthy 
AI in structural health monitoring by bridging data-driven innovation and engineering 
accountability. Interpretability of explainable boosting machine ensures models remain 
consistent with physical laws, actionable for decision-making, and adaptable to real- 
world constraints. We advocate for machine learning frameworks that prioritize 
transparency as rigorously as predictive performance. 

 

Mir Mohammad Shamszadeh1, Krishna Kumar1, Anca-Cristina Ferche1, Oguzhan Bayrak1, 
Salvatore Salamone1 
1Department of Civil, Architectural, and Environmental Engineering, University of Texas at 
Austin, Austin, Texas, U.S.A. 



 

INTRODUCTION 

 

Despite the growing use of machine learning (ML) models for structural health 

monitoring (SHM) and damage assessment, their predictions do not always reflect the 

underlying physical behavior of the monitored systems. Such a disconnect reduces their 

practical applicability and raises concerns about their credibility in real-world SHM 

applications. In high-stakes engineering problems, where data is typically limited, 

understanding a model's reasoning is essential to trust its generalizability. Furthermore, 

when models fail, it is crucial to identify the cause and contributing factors, a task 

hindered by black-box models. This makes it difficult to assess their reliability, 

especially beyond the training domain. The issue of model transparency and 

accountability is crucial because not all model-generated approximations are physically 

meaningful. In engineering applications, many models may fit the data, but only those 

consistent with physical laws and principles are meaningful. Scientific knowledge plays 

a key role in model selection by helping to identify and eliminate physically inconsistent 

solutions, thereby minimizing model variance [1].  

The trade-off between model complexity and interpretability often dictates the 

choice of algorithm for a given application. On one end of the spectrum, complex 

models such as deep neural networks offer high accuracy but suffer from being black 

boxes, with their decisions often not easily decipherable. On the other extreme, simpler 

models like linear regression and decision trees provide high interpretability through 

their easily traceable decision-making processes. However, they may lack the necessary 

accuracy for complex datasets and fail to capture intricate patterns.  

To address the trade-off between model complexity and interpretability in predictive 

modeling and to ensure the consistency of the learned model with the physics of the 

problem, this study proposes the use of Explainable Boosting Machine (EBM) [2,3] as 

a modeling approach tailored for tabular datasets commonly encountered across many 

SHM applications. EBM provides a transparent modeling framework that not only 

offers interpretable predictions but also maintains high accuracy. This dual capability is 

crucial for determining when the model aligns well with the underlying physics of the 

problem and when it requires cautious interpretations. This approach tackles key 

predictive modeling challenges, improving reliability and interpretability. 

To the best of the authors' knowledge, this research introduces the pioneering use of 

EBM in SHM and damage assessment. While prior applications of EBM in structural 

engineering have focused on predicting outcomes like strength directly from input 

features that are inherently related to those outcomes, this work addresses a setting 

where health index or damage index is predicted and some features act as moderator 

variables. This necessitates careful construction of model terms and thoughtful 

interpretation. It also presents practical ideas for interpreting results and new insights 

that could be obtained from the data regarding the damage behavior.  

 

 

EXPLAINABLE BOOSTING MACHINE  

 

Explainable Boosting Machine (EBM) is a glass-box model that is built on the 

Generalized Additive Model (GAM) framework [4]. GAM predicts the response 

variable as the additive combination of nonlinear functions, one for each feature, which 

reflects the relationship between the feature and the response variable. While GAM 



 

effectively captures the influence of individual features, it does not account for 

interactions between them. To address this, Generalized Additive Models plus 

Interaction (GA2M) was developed [2], which adds a small number of pairwise 

interaction terms to the univariate terms. This enables GA2M models to achieve higher 

accuracy, often outperforming more complex models. EBM is a fast and parallelizable 

implementation of GA2M, developed in C++ and Python [3].  

Let 𝒟 = {(𝒙(𝑖), 𝑦(𝑖))}𝑖=1
𝑁  denote a dataset of size N. Each record includes a feature 

vector 𝒙(𝑖) = (𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥𝑑
(𝑖)

)
𝑇

∈ ℝ𝑑 and a corresponding response variable 𝑦(𝑖) ∈

ℝ for a regression problem. Here, 𝒙(𝑖) represents the feature vector of the i-th record, 

and 𝑥𝑗 specifically refers to the j-th feature in the feature space. EBM models the 

predicted response, 𝑦̂, in an additive form as: 

 

𝑦̂ = 𝑔(𝔼[𝑦|𝒙]) = 𝑓0 + ∑ 𝑓𝑗(𝑥𝑗)

𝑑

𝑗=1

+ ∑ 𝑓𝑗𝑘(𝑥𝑗 , 𝑥𝑘)
1≤𝑗<𝑘≤𝑑
(𝑗,𝑘)∈𝔗

(1)
 

 

where 𝑓0 is the intercept term, 𝑓𝑗(𝑥𝑗) is a univariate shape function which represents the 

main effect of the feature 𝑥𝑗 on the response variable, 𝔗 represents the set of feature 

pairs, 𝑓𝑗𝑘(𝑥𝑗 , 𝑥𝑘) is a bivariate shape function which represents the pairwise interaction 

between features 𝑥𝑗 and 𝑥𝑘 on the response variable, and 𝑔(. ) is the link function.  

In the EBM training process (see Figure 1), the model incrementally learns and 

refines its predictions through an iterative boosting framework. In each boosting round, 

the model is constructed by sequentially training an ensemble of bagged shallow 

decision trees (DTs) for each univariate shape function, 𝑓𝑗(𝑥𝑗), focusing on minimizing 

the residuals left by the previous trees. The model iteratively refines these individual 

terms using a low learning rate.  Once the main effects are established, the model shifts 

focus to capturing interactions between pairs of features, 𝑓𝑗𝑘(𝑥𝑗 , 𝑥𝑘), using a similar 

boosting procedure. Once the training is completed, each feature (either univariate or 

bivariate) has its own set of DTs from all boosting iterations, which are then used to 

construct the corresponding function that models the feature’s effect on the response 

variable. All the DTs could then be discarded. These functions are then summed in an 

additive manner to form the final EBM model, leaving behind an interpretable model. 

 

 

 
 

Figure 1. Explainable Boosting Machine’s algorithm. 

                    

         

   

                         

            

           

        

       

        

         

            
          

            
          

            
          

             
             

                
              

             
             

                
              

             
             

                
             

                

          
                

          
                

          

             
            

               
              

             
             

                
              

             
             

                
              



 

EBM is interpretable because each univariate shape function’s relationship with the 

response variable can be visualized through a plot of 𝑓𝑗(𝑥𝑗) versus 𝑥𝑗. Moreover, 

pairwise interactions can be rendered as a heatmap of 𝑓𝑗𝑘(𝑥𝑗 , 𝑥𝑘) on the 𝑥𝑗-𝑥𝑘 plane.  

Instead of allowing EBM to learn all possible main effects and interactions in a 

purely data-driven manner, in many SHM applications, we should impose domain-

informed constraints, selecting only the terms where engineering knowledge suggests 

physically meaningful main effects or interactions. When the objective is to predict 

structural health metrics, such as a health index or damage index, the primary predictors 

are observed system response features, often obtained from sensors—such as 

deformation, crack width, or acoustic emission characteristics—which are directly 

related to the target variable (health metric). Accordingly, univariate shape functions 

𝑓𝑗(𝑥𝑗) are associated with the observed system response features. System parameters, 

which are defined broadly as inherent properties or contextual conditions of the system, 

such as material properties, geometry, or environmental and biological factors, 

moderate how the observed response relates to the health metric and are incorporated 

through interaction terms, i.e., 𝑓𝑗𝑘(𝑥𝑗 , 𝑥𝑘).  

 

 

CASE STUDY: EBM FOR CRACK WIDTH ASSESSMENT IN RC BEAMS 

 

Current methods in the SHM of reinforced concrete (RC) structures primarily rely 

on visual inspections and surface crack width measurements. As a use case of EBM for 

an SHM task, we focus on the prediction of the percentage of the available to ultimate 

shear load-carrying capacity, referred to here as health index, in RC beams based on the 

observed maximum diagonal crack width (MDCW). In this study, RC beams with 

stirrups that fail in shear are investigated. We focus solely on maximum diagonal crack 

width (MDCW) as the primary damage feature for assessing structural health. 

 

Dataset and Model Specification 

 

The dataset consists of laboratory-tested RC beams, subjected to monotonically 

increasing loads. The data included in the dataset are obtained from [5–11]. It consists 

of 620 records associated with 93 beam specimens. Each record captures the MDCW at 

a specific load level, allowing for multiple observations per beam. Random effects 

arising from the hierarchical structure of the data were ignored in this study. 

 

 

 
 

Figure 2. Schematic representation of an RC beam with rectangular section showing the developed crack 

pattern along with key design parameters. 



 

Input features used in the ML model consist of beam design parameters including 

effective depth (𝑑), web width to effective depth ratio (𝑏/𝑑), shear span-to-effective 

depth ratio (𝑎/𝑑), the percentages of tensile (𝜌𝑠), skin (𝜌ℎ), and shear (𝜌𝑣) 

reinforcements, shear reinforcement yield stress (𝑓𝑦𝑣), and concrete compressive 

strength (𝑓𝑐
′), along with the observed MDCW (𝑤) (see Figure 2). The response variable 

is the health index corresponding to the observed MDCW. Because the health index 

ranges from 0 to 100, a logit link function is employed to map model predictions to the 

[0, 1] interval during training. Final outputs are scaled by multiplying by 100 to express 

results as percentages. Moreover, MDCW is the only predictor directly related to the 

health index, hence, the only univariate shape function 𝑓𝑗(𝑥𝑗) is associated with 

MDCW. All beam design features only moderate how observed MDCW relates to the 

health index. Thus, they are included as pairwise interactions with MDCW, i.e., 

𝑓𝑗𝑘(𝑥𝑗 , 𝑥𝑘) terms represent the interactions between MDCW and beam design features. 

 

Model Training and Evaluation 

 

A nested 5-fold cross-validation approach is employed to evaluate the performance 

of EBM on the dataset. In the nested cross-validation, the data is split into training, 

validation, and test sets. The outer loop creates the test set, while the inner loop splits 

the remaining data into training and validation sets. Hyperparameter tuning is performed 

using Bayesian Optimization in the inner loop by training the model on the training set 

and validating it on the validation set to select the best hyperparameters. The model is 

then evaluated on the test set in the outer loop for each fold.  

 

Results 

 

After training the model, the model achieved the root mean squared error (RMSE) 

of 6.13%, 9.99%, 10.40%, the mean absolute error (MAE) of 4.74%, 7.6%, 7.85%, and 

the correlation of determination (R2) of 0.92, 0.79, 0.77 for training, validation, and test 

sets, respectively. The scatter plot of the model predictions versus observed values, for 

an example outer fold, is shown in Figure 3(a) and the distribution of residual errors for 

that fold is shown in Figure 3(b).  

 

 

  

 

Figure 3. (a) Scatter plot of the model predictions vs observed values, and (b) the distribution of residual 

errors, for an example outer fold. 



 

 
 

Figure 4. Global feature importance. 

 

Using inherently interpretable models diminishes the reliance on purely accuracy-

based metrics when assessing the model's generalizability, as long as the model's learned 

patterns and decision-making process are thoroughly inspected. One approach to 

understanding model behavior is through feature importance, which ranks the overall 

contribution of each feature to the model’s prediction based on the mean absolute 

contribution of each term (Figure 4). Observing the feature importance plot, MDCW is 

the most important term in predictions, which is consistent with the fact that it is the 

sole univariate feature in the model directly related to the damage. Following MDCW, 

the order of importance of moderating variables is coherent with the physical behavior 

of the system. For example, the reason that the shear reinforcement ratio is not the most 

important moderating variable in predictions is that the dataset consists only of beams 

with stirrups, making the skin reinforcement ratio more important than shear 

reinforcement ratio in the model's predictive process, as the model implicitly recognizes 

the presence of stirrups based on the dataset it was trained on. One usage of feature 

importance is that terms with lower mean absolute score can be discarded from the 

model. During field inspections, the absence of data for less important features should 

not be a major concern, as their impact on the overall analysis is minimal. 

 

 

 
 

Figure 5. Univariate shape function plot for MDCW (𝑤), and the histogram of MDCW (𝑤). 

 

 



 

In addition to feature importance, the functional form of each shape function in the 

EBM model can be visualized. The top panel in Figure 5 depicts the only univariate 

shape function in the trained model, MDCW (𝑤), where the y-axis represents the log-

odds score, indicating the effect of the MDCW on the model's prediction. The bottom 

panel shows the histogram of this feature. The decreasing trend observed in the shape 

function shows larger MDCWs correspond to more damage, leading to a lower 

predicted health index. Hence, the model captures this trivial trend.  

Rendering 𝑓𝑗𝑘(𝑥𝑗 , 𝑥𝑘) versus (𝑥𝑗 , 𝑥𝑘) pairs using interaction heatmaps provides 

insights into how (𝑥𝑗 , 𝑥𝑘) pairs influence the prediction across the pairwise interaction’s 

domain. However, reading heatmaps could be particularly difficult. We propose 

visualizing the heatmap of damage-moderator variable as cross-sections at different 

fixed values of the damage feature (MDCW). Figure 6 presents three panels for an 

example pairwise interaction in the EBM model, the interaction between the effective 

depth (𝑑) and MDCW (𝑤): the top panel shows the heatmap of the health index versus 

(𝑤, 𝑑) pairs, the middle one displays the cross-sectional plots extracted from the 

corresponding heatmap at specific values of 𝑤, and the bottom one provides the 

histogram of the corresponding moderator variable (𝑑). Considering a fixed value for 

the observed MDCW (𝑤), the health index generally tends to increase with increasing 

effective depth. This indicates that, for two beams exhibiting the same MDCW, the 

beam with greater effective depth is likely subjected to a lower proportion of its ultimate 

load—hence, farther from failure. This may be because larger beam depths are typically 

associated with wider crack spacing, which could result in larger crack widths. Whether 

this observation aligns with physical principles or is simply the result of data artifacts 

or bias is something that could be explored further. Similar insights can be drawn from 

other interaction heatmaps. Each shape function offers a transparent visual 

interpretation of how feature values influence the model's predictions, enhancing the 

interpretability of the decision-making process. 

 

 

 
 

Figure 6. Bivariate shape function for pairwise interaction term between 𝑑 and 𝑤 along with the cross-

section plots and histograms of the corresponding moderator variable 𝑑. 



 

CONCLUSIONS 

 

This study demonstrated the application of an interpretable machine learning 

approach using Explainable Boosting Machine in the field of SHM. The Case study 

focused on the damage assessment of shear-reinforced RC beams to assess their 

available shear load-carrying capacity based on observed surface crack 

characteristics—specifically the maximum diagonal crack width. Using structural 

design parameters alongside MDCW as input features, the model offers transparent 

predictions and insights into how crack behavior relates to structural performance. The 

ability to assess each feature’s importance individually and visualize univariate and 

pairwise interactions between the features within the model results in its interpretability. 

This makes Explainable Boosting Machine a powerful tool for building reliable SHM 

solutions and ensures the model aligns with the underlying physics of the problem.  
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