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ü Unprecedented opportunities offered 

by diverse sources of data

Á Synchrophasor and IED data

Á Smart meter data

ÁWeather data

ÁGIS data, .....
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Power of AI

How to harness the power of ML to tackle 

problem-specific challenges in real-time 

power system operations?



A primer on supervised learning

ü Unknown joint distribution for

Á Classification: ὣ ρ or ὣ ρȟȣȟὅ

Á Regression: ὣ Ὑ

ü Given examples, aka, data samplesὼȟώ

Áὼ: input feature 

Áώ: output target/label

ü Without ώ => unsupervised or semi-supervisedlearning

ü Samples from dynamical systems => reinforcement learning
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Learning objective

ü Goal: construct a function                        to map ὼO ώ

Á Predictedvalue ώ Ὢὼᶰὣto be close to ώ

Á Loss function : ὰώȟώ ὰὪὼȟώ π

Á For regression, use ὒ norms ὰώȟώ ώ ώ

Á For classification, cross-entropy loss, hinge loss, ect.
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Sample Mean

ü Excellent generalization (error bounds on               ) performance?

Vidal, Rene, et al. "Mathematics of deep learning." arXiv preprint arXiv:1712.04741 (2017).

Bartlett, Peter L., Andrea Montanari, and Alexander Rakhlin. "Deep learning: a statistical viewpoint." arXiv preprint arXiv:2103.09177 (2021).

Ὢ
ὼ ώ



Parameterized models for f 

ü Impossible to search over any function f => parameterization

ü Linear parameterized by               and 

Á Probably the simplest model to learn

Á Linear regression (LS, LAV) 

Á Linear classification (logistic regression or SVM)

ü Nonlinear Ὢfor better prediction

Á Polynomials, Gaussian Processes (GPs), ect.

Á Kernel learning:               (Hilbert space for some kernel)

Á Neural networks (NN): layers of nonlinear functions.
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Regularization 

ü Data overfitting (losses ᴼπ)

Á Features correlated: both ὼand ὼ

ÁModels too complex: high -order polynomials, deep neural networks

We can fit any K data samples perfectly using a (K-1)-th order polynomials 
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Á Hyperparameter ‗ πbalances between data fitting and model complexity

Áὒ norm/Ridge: small values, or smooth using В ύ ύ

Áὒ norm/Lasso: sparse ύ(much more zero entries) 

norm of 
parameter ύ



Deep (D)NN architecture 

ü Perceptron (single-layer NN): convert                         

to nonlinear one by 

Á nonlinear activation „ẗ: sigmoid, Tanh, ReLU
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ü NNs: basically multi -layer perceptron (MLP)

Á Layered, feed-forward networks (input x, output y)

Á Hidden layers also called neutrons or units

Á 2-layer NNs can express all continuous functions, 

while for nonlinear ones 3 layers are sufficient

Ὢ
ὼ ώ

Deep Learning book https://www.deeplearningbook.org/

https://www.deeplearningbook.org/


Gradient descent (GD) via backpropagation

ü Nonlinear f => nonconvex opt. problem

ü GD-based learning 

ύᴺύ ‌​Ὁύ

ü In practice, local minima may not be a 

concern [LeCun, 2014]

ü Efficient computation of gradient in a 

backward way using the òchain ruleó
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Variations of DNN

ü Fully -connected NN (FCNN): weight parameters grow with data size

ü Idea: reuse the weight parameters, aka, filters! 
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Recurrent NN (RNN): 
Temporal filters for texts, speech

Convolutional NN (CNN): 
Spatial filters for images/video

Graph NN (GNNs): 
Graph filters for networked systems



Overview

ü We visit three problems that use domain knowledge to better design NN 

models that are physics-informed and risk -aware
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Risk -aware learning for 
DER coordination: 
Limiting violations of voltage risks

Topology -aware learning 
for real -time market:
Simpler model for efficient training

Efficient representation for 
dynamical resources: 
Time-varying problem dimension

Communication link

Fast meter



Part I: Topology-aware Learning for 

Real-time Market



ML for optimal power flow (OPF)

Real-time computation of the OPF solutions by learning the I/O mapping

Input

Powerful 

OPF 

Solvers

Output

é é

Neural 

Network

Model

Input Output
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Existing work and our focus

ü Integration of renewable, flexible resources increases the variability of power 

systems and motivates real-time, adaptive, fast OPF

Á Identifying the active constraints (for dc -OPF) [Misra et alõ19][Deka et alõ19]

Á Directly mapping the ac -OPF solutions [Guhaet alõ19]

ÁWarm start the search for ac feasible solution [Baker õ19] [Zamzam et alõ20]

ü Address the uncertainty in stochastic OPF [Mezghani et alõ20]

ü Connect to the duality analysis of convex OPF [Chen et alõ20] [Singh et alõ20]

Focus: Exploit the grid topology to reduce the NN model complexity



OPF for real-time market 

ü Power network modeled as a graph                      with N nodes

ü ac-OPF for all nodal injections, without loss of generality ( wlog )
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Á Nodal input:

power limits + costs

Á Nodal output: optimal p/q ? 

FCNN layer has               parameters!



Topology dependence 

ü Earlier work [ Owerko et alõ20] using GNN to predict p/q

ü Locational marginal price (LMP) from the dual problem

Á Typically, very few congested lines 
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shares the same eigen-space 
as the graph Laplacian 



Graph NN (GNN)

ü Input formed by nodal features as rows
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ü GNN layer ὰwith learnable parameters

Topology -based graph filter 

Feature filters             explore higher-dim. mapping

If lines are sparse                           

and let                            , then 

the number of parameters for 

each GNN layer is

Compared to FCNNHamilton, William L. "Graph representation learning." 2020.

https://www.cs.mcgill.ca/~wlh/grl_book/

https://www.cs.mcgill.ca/~wlh/grl_book/


GNN for learning prices & congestion

ü LMP/congestion prediction work [Ji et alõ16, Geng et alõ16]

ü GNN -based LMP can predict the optimal p/f
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ü Feasibility -regularization (FR) to reduce line flow violations

ü GNN can also directly classify the status for each line

Á Cross-entropy loss, using a final fully -connected layer

Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Graph Neural Networks for Learning Real-Time Prices in Electricity Market." ICML Workshop on Tackling Climate 

Change with Machine Learning, 2021. https://arxiv.org/abs/2106.10529

https://arxiv.org/abs/2106.10529


LMP prediction results

ü 118-bus + ac-opf and 2382-bus + dc-opf

ü Metrics: LMP prediction error; 

line flow limit violation rate

ü GNN, FCNN, Graph -informed ( Gi)DNN, 
all + feasibility regularization (FR)
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Congestion classification results

ü Predicting the top 10 congested lines

ü Metrics: recall (true positive rate), F1 score

ü GNN maintains performance for large 
systems, thanks to the reduced complexity
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118ac Recall F1 score 2383dc Recall F1 score

GNN 98.40% 96.10% GNN 90.00% 81.40%

GiDNN 98.38% 96.09% GiDNN 77.40% 56.50%

FCNN 97.70% 94.60% FCNN 87.30% 78.30%


