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Power of Al How AI Can And Will Predict
Disasters
0 Unprecedented opportunities offered ™~ Naveen Joshi Former Contibuto
by dlverse Sources O.I: data Hft EOGNITIUE WORLD cContributar Group @

A Synchrophasor and IED data
Al could put a stop to electricity theft

, and meter misreadings
A Weather data O00ODOO0

L TECHNOLOGY 23 September 2017
A GIS data, .....

A Smart meter data

EEEEEEEEEEEEEEEEE

Combining A.l. and human knowledge
How to harness the power of ML to tackle  could transform how power grids work

problem-specific challenges in real-time
power system operations?
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A primer on supervised learning

0

0

0

0

Unknown joint distribution for  (z, XY

y) €
A Classification: @ { plord {phB FD}

p(Y)

A Regression:® Y

Given examples, aka,data samples o hw

A o :input feature

A ) : output target/label

Without w => unsupervised or sersiupervisedearning

Samples from dynamical systems => reinforcement learning
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Learning objective

i Goal: construct a function f: R? Y tomam® w

A Predictedvalue @ @) N ®to be close tow 0 )
A Loss function : () (AT 1T a

A For regression, used norms (ait) ||od  d|

A For classification, crossentropy loss, hinge loss, ect.

f* — argmjn E(a:,y) l(f(gj)’y) w f: argmin (%)25:1 l(f(iUk;),yk)

feF JEF

U Excellent generalization (error bounds on f* — f ) performance?

Vidal, Rene, et al. "Mathematics of deep learning." arXiv preprint arXiv:1712.04741 (2017).
Bartlett, Peter L., Andrea Montanari, and Alexander Rakhlin. "Deep learning: a statistical viewpoint." arXiv preprint arXiv:2103.09177 (2021).
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Parameterized models for f

U Impossible to search over any function f => parameterization

i Linear f(z) = w'z 4+ woparameterized by w € R* andwy € R

A Probably the simplest model to learn Linear
A Linear regression (LS, LAV ¢
g ( ) ve®

A Linear classification (logistic regression or SVM) o ®

U Nonlinear "(for better prediction

A Polynomials, Gaussian Processes (GPskgct.
A Kernel learning: / € H (Hilbert space for some kernel)

A Neural networks (NN): layers of nonlinear functions.
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Regularization

. . Under-fitting Appropriate-fitting Over-fitting
0 Data overfitting (losses © 1) . .
(too simple to (forcefitting - too
7 \ . explain the good to be true)
A Features correlated: bothw and variance)

A Models too complex: high -order polynomials, deep neural networks

We can fit any K data samples perfectly using d J¥h order polynomials

K
A , norm of
f = argmin Z [(f(zr), yk) +A - Reg(f) parameter 0
Fer o1
A Hyperparameter _  Ttbalances between data fitting and model complexity

A 0 norm/Ridge: small values, or smoothusing B(0O 0 )

A 0 norm/Lasso: sparse 0 (much more zero entries)

The University of Texas at Austin

Electrical and Computer
Engineering




Deep (D)NN architecture

0 Perceptron (single-layer NN): convert f(z) =w 'z w n ®
to nonlinear one by f(z) = o(w' z)

A nonlinear activation , (t) : sigmoid, Tanh, ReLU

hidden units

U NNs: basically multi -layer perceptron (MLP)
A Layered, feed-forward networks (input x, output y)
A Hidden layers also called neutrons or units

A 2-layer NNs can express all continuous functions,
while for nonlinear ones 3 layers are sufficient

Deep Learning book https://www.deeplearningbook.org/
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Gradient descent (GD) via backpropagation

w = argmin F(w) := Loss(w) + AReg(w)

w

U Nonlinear f=>nonconvex opt. problem

Compare outputs with correct
answer to get error derivatives

U GD-based learning

bNUO | OU
a . - . 9k _ g, 9
U In practice, local minima may not be a TP
concern [LeCun, 2014] 9 _OE 3y,
0z, dyy 9z dE

U Efficient computation of gradient in a
backward way using the ¢
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Variations of DNN

U Fully -connected NN (FCNN): weight parameters grow with data size

U ldea: reuse the weight parameters aka, filters!

: .o o] o . Y, | ..

50000 N - 2l |
Convolutional NN (CNN): . Recurrent NN (RNN): . Graph NN (GNNs): :
Spatial filters for images/video . Temporal filters for texts, speech :  Graph filters for networked systems :
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Overview

U We visit three problems that use domain knowledge to better design NN
models that are physics-informed and risk -aware

o ok e

() N/ . Vi :/\ \ \ Q ~

oo~ oXe o¥o"oXe o

04O O%®@+OY%O O Y%e g

(_)%O O%O C‘%O O% Output

oo O""e OO 0""@

| + O O

[0 Fast meter

Topology -aware learning . Risk -aware learning for . Efficient representation for
for real -time market: . DER coordination: . dynamical resources:

Simpler model for efficient training :  Limiting violations of voltage risks : Timevarying problem dimension
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ML for optimal power flow (OPF)

Powerful Neural
OPF Network
Solvers Model

Reakltime computation of the OPF solutions by learning the I/0O mapping
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Existing work and our focus

U Integration of renewable, flexible resources increases the variability of power
systems and motivates reattime, adaptive, fast OPF

A Identifying the active constraints (for dc -OPF) [Misraet al 619] [ Dek a

A Directly mapping the ac -OPF solutions [Guhaet al 619 ]
AWarm start t he search for ac feasi bl e s

U Address the uncertainty in stochastic OPF [Mezghaniet al 02 0]
U Connect to the duality analysis of «cc

Focus: Exploit the grid topology to reduce the NN model complexity
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OPF for real-time market

U Power network modeled as a graph G = (V,&) withN nodes

0 ac-OPFfor all nodal injections, without loss of generality ( wlog)

_ N A Nodal input:
min Zi:l ci(pi) A [ _ d
P.q,V Xi = [p’ial_),iaqwgivc’i] €R
s.t. p+jg = diag(v)(Yv) power limits + costs
V< <V h .
V=lv B A Nodal output: optimal p/q ?
PSPSDPp
a<qg=sq
= o FCNN layer has (@(N?) parameters!
i?;jgfw(v)gfija V(’L,])Eg [ Y O( ) : }
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Topology dependence

0 Earlierwork[Owerkoet al 620] wusing GN - (

ﬂ . ®19
U Locational marginal price (LMP) from the dual problem b /.95&.
A Typically, very few congested lines 4 )
(o SV ey ) [ R
Iy Zizl C’L(p’b) mTo=)\".1— ST([L* . E*)
st. 1'p=0 DA
p<p<p =»| §' =B A X"
f<Sp<f:[u i shares the sameeigen-space
\_ ) Qs the graph Laplacian BT/
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Graph NN (GNN)

U Input formed by nodal features as rows
XV = {Xz} c RV xd

U GNN layer awith learnable parameters
X = o (WXH + b")
( /If lines are sparse €] ~ O(IVI)\
Topology -based graph filter W ¢ RYXN and let D = max;{d;} ,then
o the number of parameters for
(W] =0if (4,5) € € each GNN layer is
Feature filters {He} explore higherdim. mapping ' O(N + D) -/

Hamilton, William L. "Graph representation learning." 2020. N2
https://www.cs.mcqill.ca/~wlh/grl_book/ Compared to FCNN O( )
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GNN for learning prices & congestion

U4 LMP/ congestion prediction work [JI et

U GNN -based LMP can predict the optimal p/f

X:0 i ~
x L9, 4 dispateh o ny S, e (a)

U Feasibility-regularization (FR) to reduce line flow violations

L(0) = |7 —7|3+A Ha(‘f*(ﬁ-)‘ Bl f)H1

U GNN can also directly classify the status for each line

A Cross-entropy loss, using a final fully -connected layer

Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Graph Neural Networks for Learning Real-Time Prices in Electricity Market.”" ICML Workshop on Tackling Climate
Change with Machine Learning, 2021. https://arxiv.org/abs/2106.10529
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LMP prediction results

s 0.3 - FCNN+FR “ FCNN
m * GIDNN+FR 4 GIiDNN
0 118bus + acopf and 2382bus + dc-opf 3 0
U Metrics: LMP prediction error; g o + + | +
line flow limit violation rate = % ! + + 1

118ac 2383dc

U GNN, FCNN, Graph -informed ( GI)DNN,
all + feasibility regularization (FR)

B 107 -
210M L1070 e 0T 6
2363 0S4\ g
10 ¢
5 7.38M w10 50 oo
7 S 10t
s EEGNN 5
118ac BEFCNN - g 10 , 0 GNNR o GAN
. } & FCNN+FR O FCNN
| I:lGIDNN ‘ 106 ; ¢ GIDNN+FR O GiDNN

5 6 7 8 9 ‘ ‘
10 10 10 10 10 118ac " 2383dc
Number of Parameters
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Congestion classification results

0 Predicting the top 10 congested lines
U Metrics: recall (true positive rate), F1 score

U GNN maintains performance for large
systems, thanks to the reduced complexity

118ac Recall F1 score 2383dc Recall F1 score
GNN 98.40% 96.10% GNN 90.00% 81.40%
GIDNN 98.38% 96.09% GIDNN 77.40% 56.50%
FCNN 97.70% 94.60% FCNN 87.30% 78.30%
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