PSERC Summer Tutorial July 13, 2021

Physics- and Risk-aware Machine Learning for Power System Operations

Hao Zhu

Assistant Professor
Department of ECE
The University of Texas at Austin

Acknowledgements: Shanny Lin, Kyung-bin Kwon, Shaohui Liu, NSF Grants 1802319, 1807097, 1952193, and DOE-EPRI GREAT-Data

Power of AI

- Unprecedented opportunities offered by diverse sources of data
 - Synchrophasor and IED data
 - Smart meter data
 - Weather data
 - GIS data,

How to harness the power of ML to tackle problem-specific challenges in real-time power system operations?

Forbes

Mar 15, 2019, 07:37am EDT | 21,849 views

How AI Can And Will Predict Disasters

Naveen Joshi Former Contributor **COGNITIVE WORLD** Contributor Group ①

Al could put a stop to electricity theft and meter misreadings

TECHNOLOGY 23 September 2017

Combining A.I. and human knowledge could transform how power grids work

A primer on supervised learning

- *Unknown* joint distribution for (x,y) ∈ $\mathbb{R}^d \times Y$
 - Classification: $Y = \{\pm 1\}$ or $Y = \{1, ..., C\}$
 - Regression: $Y = R^b$
- \triangleright Given examples, aka, *data samples* $\{(x_k, y_k)\}$
 - x_k : input **feature**
 - y_k : output **target/label**
- \triangleright Without $y_k => unsupervised$ or semi-supervised learning
- Samples from dynamical systems => reinforcement learning

Learning objective

- ightharpoonup Goal: construct a function $f: \mathbb{R}^d \to Y$ to map $x \to y$
 - *Predicted* value $\hat{y} = f(x) \in Y$ to be close to y
 - Loss function: $l(\hat{y}, y) = l(f(x), y) \ge 0$

- For regression, use L_p norms $l(\hat{y}, y) = ||\hat{y} y||_p$
- For classification, cross-entropy loss, hinge loss, ect.

$$f^{\star} = \underset{f \in F}{\operatorname{arg\,min}} \quad \mathbb{E}_{(x,y)} \ l(f(x),y) \quad \stackrel{\mathsf{Sample\,Mean}}{\longleftarrow} \quad \hat{f} = \underset{f \in F}{\operatorname{arg\,min}} \quad (\frac{1}{K}) \sum_{k=1}^{K} l(f(x_k),y_k)$$

 \triangleright Excellent generalization (error bounds on $f^* - \hat{f}$) performance?

Vidal, Rene, et al. "Mathematics of deep learning." arXiv preprint arXiv:1712.04741 (2017).

Bartlett, Peter L., Andrea Montanari, and Alexander Rakhlin. "Deep learning: a statistical viewpoint." arXiv preprint arXiv:2103.09177 (2021).

Parameterized models for f

- \triangleright Impossible to search over any function f => parameterization
- ightharpoonup Linear $f(x) = w^{\top}x + w_0$ parameterized by $w \in \mathbb{R}^d$ and $w_0 \in \mathbb{R}$
 - Probably the simplest model to learn
 - Linear regression (LS, LAV)
 - Linear classification (logistic regression or SVM)
- ➤ **Nonlinear** *f* for better prediction
 - Polynomials, Gaussian Processes (GPs), ect.
 - Kernel learning: $f \in \mathcal{H}$ (Hilbert space for some kernel)
 - Neural networks (NN): layers of nonlinear functions.

Nonlinear

Regularization

- \triangleright Data overfitting (losses \rightarrow 0)
 - Features correlated: both x_i and $-x_i$

Under-fitting

Appropriate-fitting

(too simple to explain the (forcefitting – too good to be true)

variance)

Models too complex: high-order polynomials, deep neural networks

We can fit any K data samples perfectly using a (K-1)-th order polynomials

$$\hat{f} = \operatorname*{arg\,min}_{f \in F} \sum_{k=1}^{K} l(f(x_k), y_k) + \lambda \cdot \operatorname{Reg}(f)$$
 norm of parameter w

- Hyperparameter $\lambda > 0$ balances between data fitting and model complexity
- L_2 norm/Ridge: small values, or smooth using $\sum_i (w_i w_{i-1})^2$
- L_1 norm/Lasso: sparse w (much more zero entries)

Deep (D)NN architecture

- Perceptron (single-layer NN): convert $f(x) = w^{\top}x$ to nonlinear one by $f(x) = \sigma(w^{\top}x)$
 - nonlinear activation $\sigma(\cdot)$: sigmoid, Tanh, ReLU
- ➤ NNs: basically multi-layer perceptron (MLP)
 - Layered, feed-forward networks (input *x*, output *y*)
 - Hidden layers also called neutrons or units
 - 2-layer NNs can express all continuous functions, while for nonlinear ones 3 layers are sufficient

Deep Learning book https://www.deeplearningbook.org/

Gradient descent (GD) via backpropagation

$$\hat{w} = \underset{w}{\operatorname{arg\,min}} \quad E(w) := Loss(w) + \lambda Reg(w)$$

- \triangleright Nonlinear f => nonconvex opt. problem
- GD-based learning

$$w \leftarrow w - \alpha \nabla E(w)$$

- ➤ In practice, local minima may not be a concern [LeCun, 2014]
- ➤ Efficient computation of gradient in a backward way using the "chain rule"

Variations of DNN

- Fully-connected NN (FCNN): weight parameters grow with data size
- Idea: reuse the weight parameters, aka, filters!

Convolutional NN (CNN):

Spatial filters for images/video

Recurrent NN (RNN):

Temporal filters for texts, speech

Graph NN (GNNs):

Graph filters for networked systems

Overview

➤ We visit three problems that use domain knowledge to better design NN models that are physics-informed and risk-aware

Topology-aware learning for real-time market:

Simpler model for efficient training

Risk-aware learning for DER coordination:

Limiting violations of voltage risks

Efficient representation for dynamical resources:

Time-varying problem dimension

Part I: Topology-aware Learning for Real-time Market

ML for optimal power flow (OPF)

> Real-time computation of the OPF solutions by learning the I/O mapping

Existing work and our focus

- ➤ Integration of renewable, flexible resources increases the variability of power systems and motivates real-time, adaptive, fast OPF
 - Identifying the active constraints (for dc-OPF) [Misra et al'19][Deka et al'19]
 - Directly mapping the ac-OPF solutions [Guha et al'19]
 - Warm start the search for ac feasible solution [Baker '19] [Zamzam et al'20]
- Address the uncertainty in stochastic OPF [Mezghani et al'20]
- ➤ Connect to the duality analysis of convex OPF [Chen et al'20] [Singh et al'20]

Focus: Exploit the grid topology to *reduce the NN model complexity*

OPF for real-time market

- Power network modeled as a graph $G = (\mathcal{V}, \mathcal{E})$ with N nodes
- > ac-OPF for all nodal injections, without loss of generality (wlog)

$$\min_{\mathbf{p}, \mathbf{q}, \mathbf{v}} \quad \sum_{i=1}^{N} c_i(p_i)$$
s.t.
$$\mathbf{p} + j\mathbf{q} = \operatorname{diag}(\mathbf{v})(\mathbf{Y}\mathbf{v})^*$$

$$\underline{\mathbf{V}} \leq |\mathbf{v}| \leq \overline{\mathbf{V}}$$

$$\underline{\mathbf{p}} \leq \mathbf{p} \leq \overline{\mathbf{p}}$$

$$\underline{\mathbf{q}} \leq \mathbf{q} \leq \overline{\mathbf{q}}$$

$$\underline{f}_{ij} \leq f_{ij}(\mathbf{v}) \leq \overline{f}_{ij}, \quad \forall (i, j) \in \mathcal{E}$$

Nodal input:

$$\mathbf{x}_i \triangleq [\bar{p}_i, \underline{p}_i, \bar{q}_i, \underline{q}_i, \mathbf{c}_i] \in \mathbb{R}^d$$

power limits + costs

Nodal output: optimal p/q?

FCNN layer has $\mathcal{O}(N^2)$ parameters!

Topology dependence

- Earlier work [Owerko et al'20] using GNN to predict p/q
- Locational marginal price (LMP) from the dual problem
 - Typically, very few congested lines

$$\min_{\mathbf{p}} \quad \sum_{i=1}^{N} c_i(p_i)$$
s.t.
$$\mathbf{1}^{\top} \mathbf{p} = 0 \qquad : \lambda$$

$$\underline{\mathbf{p}} \leq \mathbf{p} \leq \bar{\mathbf{p}}$$

$$\underline{\mathbf{f}} \leq \mathbf{S} \mathbf{p} \leq \bar{\mathbf{f}} : [\underline{\boldsymbol{\mu}}; \bar{\boldsymbol{\mu}}]$$

$$egin{aligned} oldsymbol{\pi} &:= \lambda^* \cdot \mathbf{1} - \mathbf{S}^ op (ar{oldsymbol{\mu}}^* - oldsymbol{\mu}^*) \ \mathbf{S}^ op &= \mathbf{B}_r^{-1} \mathbf{A}_r^ op \mathbf{X}^{-1} \end{aligned}$$

$$\mathbf{S}^{ op} = \mathbf{B}_r^{-1} \mathbf{A}_r^{ op} \mathbf{X}^{-1}$$

shares the same eigen-space as the graph Laplacian \mathbf{B}_r

Graph NN (GNN)

- $m{\lambda}$ Input formed by nodal features as rows $m{X}^0 = \{m{x}_i\} \in \mathbb{R}^{N imes d}$
- \triangleright GNN layer l with learnable parameters

$$\mathbf{X}^{\ell+1} = \sigma \left(\mathbf{W} \mathbf{X}^{\ell} \mathbf{H}^{\ell} + \mathbf{b}^{\ell} \right)$$

- Topology-based graph filter $\mathbf{W} \in \mathbb{R}^{N imes N}$

$$[\mathbf{W}]_{ij} = 0 \text{ if } (i,j) \notin \mathcal{E}$$

• Feature filters $\{\mathbf{H}^{\ell}\}$ explore higher-dim. mapping

Hamilton, William L. "Graph representation learning." 2020. https://www.cs.mcgill.ca/~wlh/grl_book/

If lines are sparse $|\mathcal{E}| \sim \mathcal{O}(|\mathcal{V}|)$ and let $D = \max_t \{d_t\}$, then the number of parameters for each GNN layer is

$$\mathcal{O}(N+D^2)$$

Compared to FCNN $O(N^2)$

GNN for learning prices & congestion

- LMP/congestion prediction work [Ji et al'16, Geng et al'16]
- ➤ GNN-based LMP can predict the optimal p/f

$$\mathbf{X} \xrightarrow{f(\mathbf{X}; \boldsymbol{\theta})} \hat{\boldsymbol{\pi}} \xrightarrow{\text{dispatch}} \hat{\mathbf{p}}^*(\hat{\boldsymbol{\pi}}) \xrightarrow{\mathbf{S}} \hat{\mathbf{f}}^*(\hat{\boldsymbol{\pi}})$$

> Feasibility-regularization (FR) to reduce line flow violations

$$\mathcal{L}\left(oldsymbol{ heta}
ight) := \|oldsymbol{\pi} - \hat{oldsymbol{\pi}}\|_2^2 + \lambda \left\|\sigma(|\hat{f f}^*(\hat{oldsymbol{\pi}})| - ar{f f})
ight\|_1$$

- > GNN can also directly classify the status for each line
 - Cross-entropy loss, using a final fully-connected layer

Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Graph Neural Networks for Learning Real-Time Prices in Electricity Market." *ICML Workshop on Tackling Climate Change with Machine Learning*, 2021. https://arxiv.org/abs/2106.10529

LMP prediction results

- > 118-bus + ac-opf and 2382-bus + dc-opf
- Metrics: LMP prediction error; line flow limit violation rate
- ➤ GNN, FCNN, Graph-informed (Gi)DNN, all + feasibility regularization (FR)

Congestion classification results

- Predicting the top 10 congested lines
- Metrics: recall (true positive rate), F1 score
- ➤ GNN maintains performance for large systems, thanks to the reduced complexity

118ac	Recall	F1 score	2383dc	Recall	F1 score
GNN	98.40%	96.10%	GNN	90.00%	81.40%
GiDNN	98.38%	96.09%	GiDNN	77.40%	56.50%
FCNN	97.70%	94.60%	FCNN	87.30%	78.30%

Topology adaptivity

➤ In addition to reduced complexity, GNN-based prediction can easily adapt to varying grid topology

- Re-trained process takes only 3-5 epochs to converge to good prediction
- Currently pursuing to formally analyze this feature

Part II: Risk-aware Learning for Voltage Safety in Distribution Grids

ML for distributed energy resources (DERs)

- ➤ Rising DERs at grid edge motivate scalable and efficient coordination to support the operations of connected distribution grids
 - Lack of frequent, real-time communications
 - Distribution control center or DMS may broadcast messages to the full system

Existing work and our focus

- Scalable DER operations as a special instance of OPF
 - Kernel SVM learning [Karagiannopoulos et al'19],[Jalali et al'20]
 - DNNs for ac-/dc-OPF [see Part I]
 - Reinforcement learning (RL) [Yang et al'20, Wang et al'19]
- Enforcing network constraints is challenging
 - Heuristic projection or penalizing the violations

Focus: Address the statistical risks to *ensure safe operational grid limits*

Optimal DER Operations

➤ DERs for voltage regulation and power loss reduction

$$\mathbf{z} = \min_{\mathbf{q} \in \mathcal{Q}} \ Losses(\mathbf{q}) \\ \text{s. to} \ \begin{bmatrix} \mathbf{X}\mathbf{q} + \mathbf{h}(\mathbf{y}) - \overline{\mathbf{v}} \\ -\mathbf{X}\mathbf{q} - \mathbf{h}(\mathbf{y}) + \underline{\mathbf{v}} \end{bmatrix} \leq \mathbf{0} \\ \end{bmatrix} \quad \begin{array}{c} \bullet \quad \mathbf{\mathcal{Q}} \quad \text{: available reactive power} \\ \mathbf{X} \quad \text{: network matrix} \\ \bullet \quad \mathbf{y} \quad \text{: operating condition} \\ \bullet \quad \underline{\mathbf{v}}, \ \overline{\mathbf{v}} \quad \text{: voltage limits} \\ \end{array}$$

- ➤ (Multi-phase) linearized dist. flow (LDF) model leads to a convex QP
- But a centralized solution requires high communication rates

ML for DER Optimization

- \triangleright Similar to OPF, want to predict $f(\mathbf{y}) \rightarrow \mathbf{z}$
- \triangleright Learn a *scalable* MLP model, one for each node n

$$\mathbf{y}_n^{\ell+1} = \sigma(\mathbf{W}_n^{\ell} \mathbf{y}_n^{\ell} + \mathbf{b}_n^{\ell})$$

- $\mathbf{y}_n^{\ell+1} = \sigma(\mathbf{W}_n^{\ell}\mathbf{y}_n^{\ell} + \mathbf{b}_n^{\ell})$ $\boldsymbol{\varphi} = \{\mathbf{W}_n^{\ell}, \mathbf{b}_n^{\ell}\}$: nodal weights to be learned
 - Decentralized among all nodes (each node using local features only
- Similarly, we can use GNN architecture such that all nodes use the same filter
- Mean-squared error (MSE) based loss function: neglecting voltage limits!

$$\min_{\boldsymbol{\varphi}} \ \mathcal{L}(\boldsymbol{\varphi}) := \frac{1}{K} \sum_{k=1}^{K} \left\| f(\mathbf{y}_k; \boldsymbol{\varphi}) - \mathbf{z}_k \right\|_2^2$$

Risk-aware Learning

Consider the conditional value-at-risk (CVaR) for predicting z

$$\gamma_{\alpha}(\boldsymbol{\varphi}) = \mathbb{E}_{(\mathbf{y}, \mathbf{z})} \left[\|f(\mathbf{y}) - \mathbf{z}\|_{2}^{2} \middle| \|f(\mathbf{y}) - \mathbf{z}\|_{2}^{2} \ge v_{\alpha} \right]$$

for a given significance level $\alpha \in (0,1)$

$$\min_{\boldsymbol{\varphi}} \ \mathcal{L}(\boldsymbol{\varphi}) := \frac{1}{K} \sum_{k=1}^{K} \| f(\mathbf{y}_k; \boldsymbol{\varphi}) - \mathbf{z}_k \|_2^2$$

s. to $\gamma_{\alpha}(\varphi) \leq C$ (pre-determined threshold)

- Can consider it for the voltage constraints
- Approximate gradient can be computed

Shanny Lin, Shaohui Liu, and Hao Zhu. "Risk-Aware Learning for Scalable Voltage Optimization in Distribution Grids." preprint, 2021.

CVaR-constrained results

- ➤ Train NNs for 123-bus feeder using either the MSE-only loss or the risk-constrained formulation
- > CVaR risk reducing the worst-case voltage limit deviations

Part III: Efficient Representation for Electric Vehicle Charging using Reinforcement Learning

RL for dynamical grid resources

- So far, samples are individually generated
- Many DERs, like energy storage, EVs, or controllable loads, have internal dynamics; same for external inputs, including price/load demand/weather conditions)
- RL studies how to use past data to enhance the future decision making of a dynamical system

learn
$$u_t \leftarrow \pi(x_t)$$
 from $\{x_0, u_0, x_1, u_1, ..., x_t, u_t, ...\}$

Recht, Benjamin. "A tour of reinforcement learning: The view from continuous control." *Annual Review of Control, Robotics, and Autonomous Systems* 2 (2019): 253-279. https://arxiv.org/abs/1806.09460

EV charging station (EVCS) problem

- Electrified transportation is a key to enable low-carbon energy future and address urban population issues
- Optimal operations of EVCS challenged by future uncertainty
 - Statistical modeling for EV arrival & parking time [Luo et al'18] [Huang et al'18]
 - Consideration of co-located storage/renewable [Yan et al'19] [Chen et al'17]
- > RL recently advocated [Wan et'19][Li et al'20] but incurs high complexity
 - Existing work includes every EV's status => time-varying problem dimension
 - [Wang et al'21] solves this issue by designing an approximate Q-function

Problem modeling

- EVs randomly arriving
 - EV i represented by remaining demand $d_{i,t}$ and parking time $p_{i,t}$, both integer # of time slots
- FVCS decides which EVs to charge $(a_{i,t} = 1)$ by purchasing electricity from grid operators
- Wlog, EV departs fully charged
 - Generalizable to a penalty on noncharged portion

Markov decision process (MDP)

State: both EV-internal status and the external price

$$s_t = \{ \rho_t, (d_{i,t}, p_{i,t}) \ \forall i \in \mathcal{I}_t \}$$

but $\mathcal{I}_{t+1} = \mathcal{I}_t \cup \mathcal{J}_{t+1} \setminus \mathcal{L}_{t+1}$ is time-varying and can grow quickly

Action: binary decision (possibly multi-level/continuous charging)

$$a_{i,t} \in \mathcal{A} = \{0,1\}$$

> Transition: EV status updates + price dynamics

$$d_{i,t+1} = d_{i,t} - a_{i,t}, \ p_{i,t+1} = p_{i,t} - 1$$

Reward: related to price $r_t(s_t, a_t) = -\rho_t(\sum_{i \in \mathcal{I}_t} a_{i,t})$ (can add other costs)

Optimal EVCS policy

- ► Goal: find the optimal policy π for mapping $a_t \sim \pi(s_t)$ [similar to $f(\cdot)$]
- \triangleright To reduce search space, consider parameterized $\pi_{\mu}(\cdot) = \pi(\cdot; \mu)$
 - Simple linear $\pi_{\mu}(s_t) = \mu^{T} s_t$, or nonlinear DNN, i.e., deep Q-network (DQN)

$$\left(\max_{\mu} J(\mu) = \mathbb{E}_{a_t \sim \pi_{\mu}(s_t), \mathcal{P}} \left[\sum_{t=0}^{T} \gamma^t r_t(s_t, a_t) \middle| s_0 \right] \right)$$

- > RL training complicated by the *time-varying dimensions* of both state/action
 - How to represent state/action to allow for efficient training?

Kyung-Bin Kwon and H. Zhu, Efficient representation for electric vehicle charging station operations using reinforcement learning, 2021 (preprint).

Action reduction

➤ As reward depends on the total charging power, how about just using it?

$$\mathcal{A}' = \{a_t := \sum_{i \in \mathcal{I}_i} a_{i,t}\}$$

- Needs to able to recover individual actions
- \triangleright Prioritize EV charging based on laxity $l_{i,t} := p_{i,t} d_{i,t}$
 - Higher laxity => more flexibility => less priority
 - Zero laxity => has to charge this EV throughout the remaining time
 - Note that laxity ≥ 0 under our fully charged EV assumption
- Least-laxity first (LLF) rule to recover individual EV actions

Feasibility of least-laxity first (LLF)

Prop 1: If the EVCS total charging schedule $\{a_t\}_{t\in T}$ is feasible (corresponds to some feasible schedule for individual EVs that ensure all fully charged before departure), then Algorithm 1 can produce such a feasible schedule for all EVs.

Basically, LLF ensures the feasibility of the recovered actions

Proof idea: Any feasible schedule equivalent to one satisfying LLF [Wang et al'21]

State aggregation

- ➤ **Idea:** group the EVs of the same laxity together
 - they are treated equally by the LLF rule
- ightharpoonup Let $n_t^{(\ell)}$ collect number of EVs with laxity ℓ

$$s'_{t} = [\rho_{t}, n_{t}^{(0)}, n_{t}^{(1)}, \cdots, n_{t}^{(L)}]$$
 with max laxity L

- Hence, the new state is of fixed dimension (L + 2)
- Reward calculation isn't affected using price
- What can we claim for this aggregated state representation?

Equivalence of state aggregation

- ➤ Ideally, we want the new state represents the same MDP
- ➤ This equivalence requires two conditions:
 - (i) Reward homogeneity: same reward for any states aggregated into the same new state
 - (ii) Dynamic Homogeneity: same transition kernel for any aggregated states

Prop 2: The original MDP for s_t/a_t is equivalent to the new one for s_t'/a_t using the total charging action. Accordingly, the optimal policy (or action) obtained from the new MDP through aggregation are equivalent to that for the original one.

Intuitions for dyn. homogeneity:

Under the LLF rule, charge either one of 2 EVs at the same laxity leads to the same transition of new state or aggregated state

RL for the new MDP

- Proposed aggregation ensures equivalence
- Policy gradient (PG) to learn the optimal linear Gaussian policy π
 - Gradient (ascent) iterations
 - Sample-based gradient estimation
- > Equivalence outperforms earlier work
 - [Wang et al'21] estimates an approximate form of the Q-function (Alg. QE)

Recht, Benjamin. "A tour of reinforcement learning: The view from continuous control. 2019 https://arxiv.org/abs/1806.09460

The University of Texas at Austin Electrical and Computer Engineering

Algorithm 2: Optimal EVCS policy search

- **1 Hyperparameters:** discount factor $\gamma = 1$, step-size α , and exploration time period T.
- 2 **Inputs:** the price sequence $\{\rho_t\}_{t=0}^T$, and the EV arrivals in $\{\mathcal{J}_t\}_{t=0}^T$ along with the initial states of EVs.
- **3 Initialize:** μ^0 at iteration n=0.
- 4 while μ^n not converged do

Initialize t = 0 with the original state s_0 .

for $t = 0, \dots, T - 1$ do

Find the aggregated state s'_t using (5);

Sample $a_t \sim \pi_{\mu_n}(s_t')$ using (8);

Use the LLF rule in **Algorithm 1** to recover the individual EV charging actions $\{a_{i,t}\}_{i\in\mathcal{I}_t}$;

Compute the instantaneous reward r_t ; Update the new state s_{t+1} using (1).

end

Use the sample trajectory to estimate gradient $\hat{\nabla}_{\mu}J(\mu^n)$ and perform the update in (15);

Update iteration $n \leftarrow n + 1$.

15 end

13

10

11

12

Numerical tests

- Daily charging at 15-min intervals (T = 96)
 - Realistic EV arrival model
 - ERCOT real-time price
- 20 daily scenarios for training; 5 for testing
- Comparing proposed Alg2 with Alg. QE

Convergence => further aggregation

- Parameter μ for Alg. 2 reaches convergence
- Most parameters are very small; except for ρ_t and $n_t^{(0)}$
- Remark: we can further reduced # of states by merging high-laxity EVs!

Comparison on testing performance

	Test 1	Test 2	Test 3	Test 4	Test 5	Average
Alg. 2	-5016.2	-5022.6	-5009.5	-5012.8	-5007.8	-5013.8
Alg. QE	-5240.1	-5240.3	-5234.2	-5239.3	-5230.6	-5236.9
Increase (%)	4.27	4.15	4.29	4.32	4.26	4.26

- ➤ Alg. 2 improves the reward of Alg. QE by ~4.2%
- Example charging profile indicates Alg. 2 very sensitive to price peaks and strategically reducing a_t , while Alg. QE fails to do so

Summary

Topology-aware learning for real-time market:

Simpler model for efficient training

Risk-aware learning for **DER** coordination:

Limiting violations of voltage risks

dynamical resources:

Time-varying problem dimension

- ➤ I: Topology adaptivity and other transfer learning ideads
- ➤ II: GD algorithms and connection to safe RL
- III: relaxed conditions (fully charged EV) and network-coupled operations

Education resources

- UT grad course "Data Analytics in Power Systems"; new slides coming soon
 https://utexas.app.box.com/v/EE394VDataInPowerSys
- ➤ 2020 NSF Workshop on Forging Connections between Machine Learning, Data Science, & Power Systems Research

https://sites.google.com/umn.edu/ml-ds4pes/home

- DOE-funded EPRI GEAT with Data https://grided.epri.com/great_with_data.html
 - 2021 PES GM panel on University Gaps Assessment, Tuesday (07/27), 7-9pm EST

Learning and Optimization for Smarter Electricity Infrastructure

Hao Zhu

haozhu@utexas.edu http://sites.utexas.edu/haozhu/ @HaoZhu6

Learning for resilient operations
Learning at the interface of power electronics

• • • •

Thank you!