The Legend of the Drunken Robot
First Implementation of Whole-Body Compliant Control with Internal Force Optimization on Hume
A Closed-Form Solution for Selecting Maximum Critically Damped Actuator Impedance Parameters, in press for the Journal of Dynamic Systems, Measurement and Control
Snapshots of Dreamer in the Transformers 4: Age of Extinction movie with Nicola Peltz and Mark Wahlberg
Human-Centered Robotic Technologies for Semi-Autonomous Systems and Health Applications
This video, shows snapshots from several groups at the University of Texas at Austin developing Human-Centered Robotic Technologies. Assistant Professor Luis Sentis describes his work on semi-autonomous humanoid robots for The Office of Naval Research, NASA, and DARPA. Assistant Professor Ashish Deshpande describes his research on robots that attach to the human body for rehabilitation and health assistive applications. Associate Professor Jonathan Dingwell studies physical and sensory impairment using virtual reality and robotic techniques. Finally, Assistant Professor James Sulzer develops robotic technologies for stroke rehabilitation using neuro-feedback of brain activity acquired through MRI scans.
Fully Omnidirectional Compliance in Mobile Robots
In order to make unintentional physical interaction with robots safer for humans, we develop compliant control of an omnidirectional wheeled base using Drive-Torque sensor feedback. The movie below shows a fully holonomic mobile robot system which achieves compliant motion via sensor-based force control, improving over previous pseudo-omnidirectional mobile systems by being fully omnidirectional. It shows compliance and safe interaction in both the mobile system alone and as the base of a wheeled mobile manipulator style system.
Dreamer Prepares and Delivers Science Certificates to the Austin Jewish Academy
Hume Walks in Flat Terrain and Overcomes and Obstacle Using UT’s Phase Space Planning Techniques
In this video, showing results from our research funded by the US Office of Naval Research. UT’s Hume bipedal robot executes the trajectories given by a Phase Space Planner. A video of UT’s Phase Space Planner is shown further below.Congratulations to our students Donghyun Kim, Ye Zhao, Gray Thomas and Alan Kwok for their success!
Empirical Phase Space Plan Modifications
Multiple Steps