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Ye Zhao, M.S.E.
The University of Texas at Austin, 2013

Supervisor: Luis Sentis

Maneuvering through 3D structures nimbly is pivotal to the advancement
of legged locomotion. However, few methods have been developed that can
generate 3D gaits in those terrains and fewer if none can be generalized to con-
trol dynamic maneuvers. In this thesis, foot placement planning for dynamic
locomotion traversing irregular terrains is explored in three dimensional space.
Given boundary values of the center of mass’ apexes during the gait, sagittal
and lateral Phase Plane trajectories are predicted based on multi-contact and
inverted pendulum dynamics. To deal with the nonlinear dynamics of the con-
tact motions and their dimensionality, we plan a geometric surface of motion
beforehand and rely on numerical integration to solve the models. In partic-
ular, we combine multi-contact and prismatic inverted pendulum models to
resolve feet transitions between steps, allowing to produce trajectory patterns
similar to those observed in human locomotion. Our contributions lay in the

following points: (1) the introduction of non planar surfaces to characterize
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the center of mass’ geometric behavior; (2) an automatic gait planner that si-
multaneously resolves sagittal and lateral feet placements; (3) the introduction
of multi-contact dynamics to smoothly transition between steps in the rough

terrains.

Data driven methods are powerful approaches for modeling in absence
of physical models. These methods rely on experimental data for trajectory
regression and prediction. Here, we use regression tools to plan dynamic lo-
comotion in the Phase Space of the robot’s center of mass and we develop
nonlinear controllers to accomplish the desired plans with accuracy and ro-
bustness. In real robotic systems, sensor noise, simplified models and external
disturbances contribute to dramatic deviations of the actual closed loop dy-
namics with respect to the desired ones. Moreover, coming up with dynamic
locomotion plans for bipedal robots and in all terrains is an unsolved problem.
To tackle these challenges we propose here two robust mechanisms: support
vector regression for data driven model fitting and contact planning, and tra-
jectory based sliding mode control for accuracy and robustness. First, support
vector regression is utilized to learn the data set obtained through numerical
simulations, providing an analytical solution to the nonlinear locomotion dy-
namics. To approximate typical Phase Plane behaviors that contain infinite
slopes and loops, we propose to use implicit fitting functions for the regression.
Compared to mainstream explicit fitting methods, our regression method has
several key advantages: 1) it models high dimensional Phase Space states by a

single unified implicit function; 2) it avoids trajectory over-fitting; 3) it guar-
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antees robustness to noisy data. Finally, based on our regression models, we
develop contact switching plans and robust controllers that guarantee conver-
gence to the desired trajectories. Overall, our methods are more robust and
capable of learning complex trajectories than traditional regression methods
and can be easily utilized to develop trajectory based robust controllers for lo-
comotion. Various case studies are analyzed to validate the effectiveness of our
methods including single and multi step planning in a numerical simulation

and swing foot trajectory control on our Hume bipedal robot.
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Chapter 1

Introduction

How is it that many legged animals are capable to nimbly maneuver on 3D
surfaces but humanoid robots can only slowly walk on them? To tackle this
deficiency, we aim at developing new models characterizing 3D legged dynam-
ics and designing methods to find 3D feet placements that achieve the desired
gait regimes. To do so, this thesis presents a new 3D agile motion planner ca-
pable to maneuver in irregular terrains and in a natural manner. Additionally,
a data driven method is utilized to derive Phase Space implicit regression tra-
jectories of motion planning. Based on this implicit trajectory, sliding mode
controller is developed to gain Phase Space robustness when external distur-
bance appears. As such, this planning and control strategy is aimed to control

semi-autonomous legged robots in realistic outdoor environments.

1.1 The State of The Art: Locomotion Planning

Motion planning in robotics has been a focus of attention since obstacle-
free mobility became a research topic. We will not attempt here to cover the
full scope of motion planning, but a good reference can be found at [34]. Early

works on motion planning focused on graph based search, but didn’t scale well



Figure 1.1: A conceptual biped robot with solar panel in grand canyon

to highly articulated robotic systems. To solve this issue, randomized search
methods were proposed, such as rapidly-exploring randomized trees [36], or
probabilistic roadmaps [4], among others. However, these methods only con-
sider the robot’s configuration space, but not its dynamic behavior. As a result,
extensions to kinodynamic planning where later proposed, e.g. [37,69]. One
problem on the early methods is that motor control policies were separated
from the motion plans preventing robustness and realtime responsiveness. To
address this issue, motion planners were proposed in [71] that incorporate

the feedback controller into the trajectory design. Disturbances and uncer-



tainty of the motion plans have been recently studied for realtime control in
[40]. Synthesis of complex contact behaviors has been thoroughly studied by
[46], thought not focusing in dynamic bipedal locomotion. Learning switching
policies has been addressed in [53] in the context of planar locomotion and
using model reduction, and more recently in [74] using full joint dynamics but

limited to planar gaits.

Legged robot locomotion has attracted extensive attention in recent years
and many humanoids have been developed to achieve agile and efficient loco-
motion behaviors [9, 15, 76]. Here we propose a new generation of conceptual
solar bipedal robot in Fig. 1.1. This sort of robot aims at the capabilities of
traversing rugged mountains and grand canyons for long durations. In liter-
ature, many studies attempt to advance the state-of-the-art in rough terrain
locomotion [5,31,49,51,52] and many works focus on analyzing dynamic sta-
bility [14,15,20,24,26,41]. In particular, current bipedal methods using lin-
earized assumptions cannot achieve human like speeds in rough terrains due to
the simplicity of the models, and methods relying on stability analysis require
the analysis of periodic trajectories which do not apply to rough terrains. The
Capture Point method described in [51] represents a powerful framework to
plan feet placements. However, compared to our methods described here it
relies on linearized model. In contrast, our methods are competitive to non-
flat 3D rough terrains because we do not utilize linearized models. Grizzle
et al., [76] uses competitive to design the walking gait. By selecting Bezier

polynomials, they obtain an exponentially stable orbit for the closed-loop sys-



tem instead of the traditional optimal or approximately optimal open-loop

trajectory.

1.2 3D Foot Placement Planning on Rough Terrain

We accomplish the 3D rough terrain capabilities by doing the following:
(1) we develop prismatic inverted pendulum dynamics to describe the sagit-
tal and lateral single contact behaviors, (2) we develop multi-contact models
to describe the dynamics and internal forces of dual contact phases, (3) we
introduce non-planar center of mass surfaces of motion to reduce the dimen-
sionality of the model dynamics, (4) given desired feet step locations in the
sagittal plane and desired apex sagittal velocities of the steps, we use numer-
ical integration to solve sagittal feet phase placements, (5) to smoother peak
velocities, we incorporate multi-contact phases and solve for the corresponding
dynamics given surface friction constraints, (6) we then extract time profiles
of the generated steps and use them to search lateral feet placements that keep
the gait within velocity bounds, (7) we extract time profiles of the center of
mass and feet trajectories for verification and control, (8) we apply our algo-
rithm to the terrains with irregular profiles to demonstrate the validity of our

work.

One of the main characteristics of the proposed study is its generalizing
principles, such as combining various contact models, relying on numerical
methods, solving for feet placements in the phase plane, and maintaining cen-

ter of mass movement within velocity bounds. We show the potential of our



techniques in the generation of gait by maneuvering nimbly in a terrain with
strong height variations using a biped visualization environment and compar-
ing it to the performance of a human walking. To validate the applicability of
our algorithm, our planner is simulated on three different challenging terrain
sets. Also, we have recently shown extensions of some of our methods to other
gaits such as walking on vertical surfaces [61] or producing brachiation gaits
[63]. Similar ideas could be used for generating gaits on quadruped robots.
For instance in [25] it is shown that controlling internal tensions during rough
terrain walking allows a quadruped to prevent slippage over an inclined sur-

face.

1.3 Phase Space Implicit Regression

A major goal in locomotion is to develop models and control policies that
can simplify the maneuvering of robots in all terrains and provide robustness
to disturbances. Data driven models [75] are an attractive approach since they
can capture the robot’s behavior in the complex terrains [16], robustness to
the uncertainty [19] and the freedom from sophisticated modeling [53]. Simple
regression models such as polynomial fitting are often used to learn the robot
models [76], but suffer from conditioning problems, trajectory over-fitting and
cannot capture the full complexity of the dynamic behaviors. Among various
data driven fitting methods, support vector regression (SVR) is one of the
most robust approaches and will be leveraged here for locomotion planning

and control. SVR is derived from support vector machines, which was first



developed to solve classification problems [73], and then extended to regression

problems [66].

The basic idea of SVRs is to map data sets onto a higher dimensional
space via nonlinear mapping. The SVRs recently gains increasing attentions
in the context of motion planning and control. For instance, it is utilized to
classify the obstacles and then generate a collision-free path in 2D and 3D
case [44]. However, this planning is only carried out in configuration space
while the dynamics [68] is ignored. In our study, the SVRs is implemented
in Phase Space to consider the system dynamics as well. We employ SVRs
to robustly plan biped locomotion behaviors given simulation based data sets
in Phase Space. The output of our training model is defined as an implicit
surface function that allows to represent complex trajectories that we derive via
the numerical simulations. Compared to purely kinematic planning, dynamic
locomotion calls for more sophisticated plans such as our trajectory generation
approach in the Phase Space of the robot’s center of mass. The Phase Space is
an ideal coordinate system to study stability and robustness of control systems.
As we will show, it allows us to derive contact transition policies for switching

locomotion dynamics of the hybrid system.

1.4 Robust Control

For biped locomotion, there often exists external force and disturbance
[17,19]. Sliding mode control [72] is a robust control strategy which benefits

disturbance rejection. The robot dynamics can be represented by a sliding



manifold [77] in Phase Space. Then original system states can be reduced to
one parameter describing the motion along the manifold and the other one
describing the motion orthogonal to the manifold. Our study employs robust
control to reject disturbance. In experimental part, we implement robust

control to make robot feet take a step.

In this thesis, we develop feedforward controllers based on the planned
trajectories, and robust feedback controllers to tolerate uncertainties. In par-
ticular, sliding mode control will be used to guarantee convergence when con-
trolling the feet trajectories. Given our long term focus on acceleration based
controllers (see Whole-Body Compliant Control [59]), the State Space motion
plans derived here can be easily leveraged to produce robust feedforward and
feedback control laws that can be directly sent to the motor control layer. The
validity of our results is demonstrated in various simulations and in an ex-
perimental setup involving swing foot trajectory control of our bipedal robot

Hume.

1.5 Contribution of This Thesis

Our contributions originate from the 3D gait planner and the data driven

modeling and control.

First, the contributions of the planner lay in the following points: (1)
the introduction of non planar surfaces to characterize the center of mass’
geometric behavior; (2) an automatic gait planner that simultaneously resolves

sagittal and lateral feet placements; (3) the introduction of multi-contact phase



to smoothly transition between steps in the rough terrains. Overall, the main
contributions is to propose a framework to find 3D feet placement transitions

at variable speeds in arbitrary rough terrains.

For the data driven modeling and control, the contributions come from: 1)
Developing robust controllers that leverage the hybrid trajectory plans learnt
from the regression process. 2) Validating the planners and robust controls in

simulations and in an experimental setup involving our Hume bipedal robot.



Chapter 2

Inverted Pendulum Dynamics

In this chapter, we introduce the 3D inverted pendulum dynamics. Sagit-
tal and lateral single contact dynamics are formulated respectively. In our

study, numerical integration is proposed to deal with dynamics nonlinearities.

2.1 Prismatic Inverted Pendulum Dynamics

When considering 3D locomotion, sagittal and lateral single contact be-
haviors are coupled together making the foot placement generation a difficult
task. However, with the assumption that the center of mass moves on a piece-
wise linear 3D surface, the sagittal and lateral dynamics become decoupled

and therefore can be independently solved.

Using dynamic balance of moments, the difference between the moments
acting on the contact foot and the net inertial and gravitational moments, is
zero. Therefore, for the single contact scenario moment balance can be written

as
Peopy, X fT’k = Pcom X <fcom + Mg) + Meom- (21)

where, £ is the limb in contact with the ground, peop, is the limb’s center of

pressure (CoP) point, f,, is the three dimensional vector of reaction forces,



CoM Surface

Figure 2.1: 3D schematic diagram of walking profile. The center of mass
geometric surface and the feet locations on the sagittal plane are provided by
the gait designer and can take arbitrary forms as long as they are kinematically
feasible. The center of mass position is pe,m, the center of pressure (CoP)
positions of the right and left feet are peops(zr) and peops(rry, CoM accelerations
are Geom, and reaction forces are f.pry and fr(rr).

feom and me,,, are the three dimensional vectors of center of mass inertial
forces and moments respectively, and g corresponds to the gravity field. The
above equation is vectorial and determines three orthogonal moments. Force
equilibrium can be formulated as f,, = feom + M g, which allows to rewrite
Equation (2.1) as

<pcom - pcopk> X frk = —Mcom- (22)

For our prismatic inverted pendulum model we assume single point mass [29],
[28] and therefore inertial moments about the center of mass can be ignored,

i.e. Meom = 0. As such, the above equation can be rewritten in vectorial form

10



as

0 _fT[kz] fr[ky] Peomy, — Peops
fT[kz] 0 _fT[lw] Pcom, — Pcop, = 0. (23)
_fr[k:y] f"‘[kac] 0 pcomz - pcopz

Using the equalities fr[;m] = Macom, fT[ky] = Macom, and fr[kz] = M (acom.+

g), we can decompose the above equation into the following three ones

<pcomz - pcopz> <acomz + g)
Aeom, = , (2.4)

pcomz - pcopz

<pcom - pcop ) : a'comg;
Ueom, = ’ ’ , (2.5)

pcomz - pcopz

<pcomz - pcopz) * Qecom,
Aeom, = - g. (2.6)

pcomy - pcopy

where acon (] represents the center of mass acceleration. We will use these three

equations to formulate sagittal and lateral dynamic behavior.

2.2 Center of Mass Geometric Surface

Equations (2.4) to (2.6) are not only nonlinear but also multivariate and
therefore they pose a problem to solve them. To deal with this difficulty we
first reduce the dimensionality of the equations by planning a geometric surface
of center of mass behavior beforehand. In Figure 2.1 we depict an example
of a handmade surface. In this chapter we don’t explore the making of the
surfaces and assume they are giving to us. In this case, the surface is piecewise

linear and it approximately follows the contour of the terrain. Our surface can

11



be expressed as

4

a1 Peomy + bl; Pecom S ]Pl

as pcomm + b27 Pecom € ]P>2 (2 7)

DPcom, =

L AN Pcomy + bN7 Peom € IP)N

where, P; represents the path of the CoM over surface segment 7. Moreover,
the acceleration profile can be extracted by differentiating twice the above

piecewise equation, i.e.

ifpcomz = Q5 Pcomy + bi> then Qcom, = Q5 Acomy, - (28)

Let us first solve the sagittal inverted pendulum dynamics. Plugging the
position and acceleration dependencies described in (2.8) into Equation (2.4)

we get

(pcomz - pcopz> <ai acomz + g) (2 9)
Qecom, = : :
a; pcomz + bz - pcopz

and since a..m,, appears both on the left and right hand sides, we can rewrite

the equation as

(pcomz - pcopz> g
Qeom, = . (210)

<ai Peops + bz - pcopz>

The above equation represents an inverted pendulum of variable height that

tracks the desired surface. Therefore we call it the prismatic inverted pen-
dulum model and we use it to describe single contact behaviors. Notice that

by defining the center of mass surface in Figure 2.1, our sagittal model has

12



now become an ordinary differential equation that can be easily solved via

numerical integration.

Let us now focus on the lateral single contact dynamics. Plugging the

position and acceleration dependencies of Equation (2.8) into (2.5), we get

(pcom - pcop ) : acomz
= - ’ . (2.11)

<pcomz — Q3 Peop, — bz)

a
comy

Equation (2.6) can be rewritten by reorganizing terms as

(pcomy - pcopy>

> (am + g). (2.12)

Qcom, =

(pcomz - pcopz

Expressing acom, from (2.11) in terms of acom, and plugging it above we get

<pcomz — Qi Peopy — bz) acomy (pcomy - pcopy>

Qcom, = + g.
<pcomz - pcopz> (pcomz - pcopz>

Isolating dcom, from above, the term dcoy,, disappears and the above equation

(2.13)

can be written as

(pcomy - pcopy) g
Ueom, = . (2.14)

<ai pcopac + bz - pCOpz>

This result is important as it represents lateral single contact dynamics as an

ordinary differential equation too, and therefore independent of the dynamics

of the sagittal dynamics.

2.3 Numerical Integration

Although we have found ordinary differential expressions that are decou-

pled for the sagittal and lateral planes, Equations (2.10) and (2.14) are usually

13
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Figure 2.2: Prediction of 3D single contact behaviors. A prismatic
inverted pendulum (i.e. one in which the height can change) is utilized to
study the sagittal (a) and lateral (¢) motion. In (a), the center of mass traverses
the apex point while the center of mass in (c¢) bounces back before reaching
the lateral foot position. The phase diagrams (b) and (d) correspond to the
sagittal and lateral center of mass phase behaviors given desired feet contact
locations (red boxes), a desired center of mass surface of motion, and initial
position and velocity conditions. The combined 3D motion is integrated in
(e). If we consider timing issues on the lateral plane as discussed in Chapter
4, we can derive two different trajectories shown in (f) and (h). (f) shows
lateral CoM behaviors given a fixed lateral foot placement and varying starting
conditions. (h) corresponds to CoM trajectories derived given varying lateral
foot placements and a fixed starting conditions. In (g), we analyze lateral
CoM trajectories with one varying step transition.
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nonlinear in their most general case [58]. In the special case shown in this pa-
per it turns out that the dynamics become linear. However, considering the
nonlinear case, a closed form solution of the dynamic behavior cannot be ob-
tained. To address this limitation, we develop numerical integration techniques

to solve the model dynamics.

Suppose that we have a nonlinear differential equation for the scalar vari-
able x, and with form

i = f(x,d). (2.15)

We assume that Z is approximately constant for small increments of time. We

discretize the trajectory, (41, Tx41), and derive Taylor expansions for a small

disturbance, €, and for initial conditions (xy, Ty, 1) to get

jk—&-l ~ ZL’k + Zi’ké, (216)

Tpy1 A T + Tpe + 0.5 7. (2.17)

From Eq. (2.16) we find the expression of the perturbation, € ~ (&)1 —

ty) /%, and substituting in Eq. (2.17), with &, = f(xk, 4%), we get

(%41 — 77)

2 f(x, i)

which is the state-space approximate solution that we are looking for. The

~

Lp4+1 ~ +$[€ (218)

pipeline for finding state-space trajectories goes as follows: (1) choose a very
small time perturbations €, (2) given known velocities 5 and accelerations &y,
and using Eq. (2.16), we get the next velocity @x41, (3) using Eq. (2.18) we

get the next position xy 1, (4) plot the points (zj41, ©x+1) in the Phase Plane.

15



We also notice, that we can iterate this recursion both forward and backward.

If we iterate backward we then need to choose a negative perturbation e.

In Figure 2.2, we depict various single contact scenarios of sagittal and
lateral trajectories, their combined solution and the effect of changing lateral

feet locations.
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Chapter 3

Data Driven Modeling

In this chapter, implicit regression is proposed for our data driven mod-
eling in Phase Space. First, basic theories and formulations about support
vector regression (SVR) are introduced. Then explicit and implicit regression
are compared with each other to leverage advantages of the latter one: infinity
slope and loop behaviors. Finally, trajectory training is generated based on
the inverted pendulum model and at last contact switching is solved in the

Phase Space.

3.1 Background on Support Vector Regression

We introduce here the basic concepts and formulations involved in our
implementation of support vector regression. One of the main advantages of
SVR is that it can discriminate a model or trajectory without knowing its
information a priori. Additionally, SVR can approximate high dimensional

nonlinear systems and provide a robust fitting solution.

Given a training data set {(X1,y1), (X2, y2), .., (X7, 1)} C RY xR, a func-
tion ®(X) can be obtained, with a predefined deviation for all training data.

A mnon-zero e deviation is required to avoid over-fitting. The hyperplane in

17



+* Noise Data
1 |- Regression Model
----- e-Boundary Line

Figure 3.1: Explicit support vector regression of inverted pendulum
dynamics in phase space. This figure shows SVR based on a Gaussian
kernel (implemented using the software LibSVM [7]). Random noise is further
added to the data (red star dots). The blue line is the nominal model trajectory
after the training. The red dashed line is the e-insensitive tube. Note that some
data still exists outside the insensitive tube, which will cost some positive &
errors. The SVR parameters used here are C' = 2,9 = 10,e = 0.1,b = 0.2937.
The number of support vectors is 11 while the total number of data points
is 88. The main defficiency of this explicit method is that the blue nominal
trajectory does not reflect true pendulum dynamics, where the slope around
x = 0.3m has infinity slope. Infinity slope cannot be captured with explicit
functions.

high dimensional feature space can be expressed as
O(X) = (w, X) +b (3.1)

where X is the state, (-,-) represents the dot product in RY. b € R is the
intercept and w € RY denotes the normal vector to the hyperplane. As long
as the errors are within an e-insensitive tube, the fitting will not add a cost to

the objective function. However, to deal with “bad” data appearing far away
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from the insensitive region, slack variables & and &, are introduced to provide
“Soft Margins”. Based on the support vector machine tutorial describe in [66],

we define the optimization problem

l
1 _
min offwl[* +C Y (& +6&)
’ i=1

0<&5,& .

where € is the model tolerance. The first inequality constraint guarantees that
the function ®(z) approximates the data pairs (X;,y;) with € + £ accuracy.

The e-insensitive loss function can be described by

_Jo €] <€
|£|e—{‘§|_€ i (3.3)

Note that, the coefficient C' weights out the model complexity (||w]||) versus
the regression error (Y (& +&;7)). The structural risk minimization technique
balances the model’s complexity against its success in fitting the training data.
By constructing Lagrange functions, the previous optimization problem can

be expressed in the following manner (details are omitted)

subject to Z(ai —of) =0,0,a; €[0,C].

i=1
where X; is the i support vector and [ is the total number of support vec-

tors. « and o are Lagrange multipliers of the first inequality constraint in
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Equation (3.2) and the normal vector w = 3°¢_, (o — af)x;. Then solving for

Equation (3.1), the output response becomes

l

®(z) = Z(ai — k(X X) 4+ b (3.5)
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Figure 3.2: 2D implicit regression with gaussian kernel. The SVR pa-
rameters are selected as C' = 2,9 = 1,¢ = 0.02,b = 0.0073. The number of
support vectors is 87. Subfigures (a) - (c) show the fitting surface from dif-
ferent viewpoints. Green is the data points obtained through simulation of a
nonlinear prismatic pendulum while red is the surface fitting. Notice that in
(c) we demonstrate that the fitting is accurate even when the slope is infinity

on the (z, &) plane. Subfigures (d) - (f) show the same surface with a longer
range of values.

There are several choices for the kernel function. For our study, we choose

a Gaussian kernel
k(z,2") = exp(—||X — X'[|) (3.6)

where v defines the Gaussian kernel width. Notice that sigmoid and polyno-

mial kernels are also popular for curve fitting.
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3.2 SVR-Based Motion Planning

We approximate single contact dynamics using a nonlinear prismatic pen-
dulum and then use numerical simulation to obtain the training data. We will
show the main advantage of using implicit versus explicit functions for regres-
sion. First, let us consider an explicit regression case with two dimensional

states.

3.2.1 Explicit Regression

The trained model has the following expression

#=®(r) =Y (a;—af)k(x;,z) +b, (3.7)

i=1
where x and & are the position and velocity states respectively. In particular,
since we are dealing with Phase Space trajectories, the velocity is chosen as

the function output of the regression process.

In Fig. 3.1, we show an example of fitting data points from the pendulum
simulation using the above explicit function. Because the number of support
vectors is monotonically decreasing with €, the larger it is, the smaller the
number of support vectors are needed, thus reducing the computational effort.
On the other hand, too large ¢ will lead to under-fitting. So choosing the
right € value is key to the solution. However, there exists major drawbacks
to using explicit functions. First, they cannot represent loop dependencies,
such as a circular motion. Loop behaviors in Phase Space are characteristics

of locomotion patterns. Second, the general explicit solution given below (for
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a Gaussian kernel)

Z—i =2 Z(O‘i — o) (z — z)exp(—y(z — ;)?) (3.8)

shows that the slope can never be infinity since it is the sum of finite positive
numbers. However, one of the properties of pendulum dynamics is having infin-
ity slope when changing the velocity sign. Moreover, explicitly functions can-
not represent cyclic loops that are typical of Phase Space trajectories. Given

those limitations, we propose to use implicit regression instead.

3.2.2 Implicit Regression

The trained model has the following expression

l
O(X) = (o — af)k(2;, X) + b (3.9)

i=1
where the implicit state is X = (x, 4) and ®(X) is a continuous differentiable
function defined as the surface s. Here, it can be seen that compared with
explicit regression, the velocity is included into the state variables and coupled

with the position state z. The partial derivatives are now

aqg(xX) - _Q’YZ(OQ - a;k)(x - xi)Aexp (310)
aq;;x) = Z(ai — 0]) (& — &) Acap (3.11)

where Ao,y = exp(—y((z —2;)? + (¢ — #;)?)). The output response can now be

considered a trajectory surface and therefore displayed as a third dimension
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besides the position and velocity states. In Fig. 3.2 we use once more prismatic
pendulum dynamics to generate data points and use Equation (3.9) to fit the
surface. We then display the three dimensions from various perspectives. As
we can see, we are now able to fit the data even if the slope is infinity at
some point. Moreover, the same implicit method could be used to fit loop

trajectories typical of locomotion in the Phase Plane.

3.2.3 Data Generation

The data points shown in Figs. 3.1 and 3.2 can be obtained in several
ways. In an ideal scenario, the real robot could be prompted to move along
predefined geometric paths and data points of the center of mass position and
velocity could be recorded for every path. However, for this case, we will
use a simplified model of the dynamics and training data is generated from a
simulation. In Chapter 2, we have approximated the single contact dynamics
using a prismatic inverted pendulum with variable height [78] to yield center

of mass dynamics of form

s @—p)(z+9) (3.12)

Z =Pz

where x and z are the sagittal and vertical coordinates of the center of mass
and p, and p, are the sagittal and vertical coordinates of the support leg. For
geometric primitives that are linear, e.g. z = ax + b, the above equation can

be further evolved into
~ (z—po)g

= 3.13
apz+b_pz ( )
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g
apz+b—p:

which defining the constant o = can be written as a linear dynam-

ical system of form

i =a*(z — p.) (3.14)

This model is convenient because it can be solved analytically. However, in
the past we have tackled this problem via solving the dynamics via numerical
simulation [62]. For this study, we use the above linear form to obtain data
points. If one was to solve the above equation through some standard linear

method, e.g. Laplace, we would get the close-form solution

x(t) = (xg — p,)cosh(at) + éi:osinh(at) + Pa (3.15)

t(t) = a(xg — py)sinh(at) + Eqcosh(at) (3.16)

Using the trigonometric equality cosh?(z) —sinh®(z) = 1, we can remove time

from the above equations and obtain the implicit surface

O(z, 1) = (z0 — po)? (205 — 2° + *(x — 20) (7 + 20 — 2ps))

2

— (2 — po)” + @5 (@

—i2)/a? (3.17)

Since this two dimensional hyper-surface is a differentiable manifold in 3D
space, the surface normal can be represented by the gradient
T

N £ [g—j g—j 1] (3.18)

Using Equations (3.10) and (3.11) and projecting the normal vector in the
horizontal plane yields

di  0%/0x Y (i — af)(x — 2:) Acap

de 00[0k YO (0 — af)(F — i) Acap

(3.19)
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Figure 3.3: Single and multi step planners. (a) Illustrates the intersec-
tion point of two adjacent regression trajectories. The green and red circles
correspond to the implicit functions that represent the black and blue data
sets, respectively. The intersection between the black and blue curves repre-
sents the contact event that will stabilize the hybrid dynamics (i.e. the step).
(b) Hlustrates multi step planning in the sagittal plane. The red data is the
contour line when the model surface ® is zero while the green data is used for

regression. More details about this planner will be studied in Chapter 4.
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Figure 3.4: Support vector regression pipeline diagram. Here, the block
“contour line extraction” is used for extracting the model dynamics which
corresponds to the surface being equal to zero. The block ”implicit trajectory
intersection” is our contact switching policy, which means extracting the inter-
section point of two adjacent implicit regression trajectories in Phase Space.

when & — 0 it becomes,

di _ Shylos (e —mherp(o(@— a4 i#) oo

dx — S (g — af)ieap(—y((x — x;)2 4 i2))

It turns out that the denominator of the above equation becomes very small

when changing velocity signs, thus illustrating that pendulum dynamics often

yields infinite slopes, as shown in Fig. 3.2 (c).

3.2.4 Contact Switching Policy

Once the implicit surfaces have been generated based on the data points,

we extract contour lines defined as

H(®) £ {(x, D) B(r,3) = 0)} (3.21)
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The solution for extracting the intersection point of two adjacent implicit
regression trajectories can be easily solved using a nonlinear equation solver
(e.g. fsolve() in Matlab). If we name the adjacent surfaces ®;(X) and ®5(X),

all we need to do is solve the nonlinear equation
FX)=0 (3.22)
with
F(X) 2 ®,() — ®(X), &1(X) = 0 (3.23)

The solution of the above differential will be the desired contact event that
will stabilize the locomotion behavior. A one step example and a multi step
example are shown in Figs. 3.3 (a) and (b). The pipeline for finding contact

points is summarized in the block diagram of Fig. 3.4.

27



Chapter 4

Phase Space Planning

In this chapter, a foot placement searching strategy is formulated in Phase
Space based on the inverted pendulum in Chapter 2. Newton-Raphson method
is used to search lateral foot placement while satisfying sagittal timing con-
straint. In addition, multi-contact transition phase are considered at the same
time. Then we show the capability of our walking planner to maneuver the
rough terrain agilely. Last but not least, a new searching strategy is presented
based on a modified 3D inverted pendulum model. In this scenario, both
sagittal and lateral foot placements are searched simultaneously in a nested
manner. More details about guaranteed walking symmetries and zero lateral

velocity at foot apex are shown in the searching algorithm.

4.1 3D Foot Placement Planner

In our previous studies [58,61], our method successfully predicted the
phase curves of center of mass sagittal behavior and was used to find the
solutions of step transitions as the intersections between adjacent phase curves.

See Figure 4.1 for a depiction of sagittal feet placements.

In this chapter, our main focus is on the extension of our solver to the
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Figure 4.1: 3D automatic motion planner. (a) corresponds to the user-
defined geometric trajectory of the center of mass on the sagittal plane and
desired sagittal feet locations, while (b) corresponds to the phase plane output
of the proposed motion planner. Given step apex conditions (i.e. positions
and velocities when crossing the apex), single contact dynamics generate the
valley profiles shown in (b). Our planning strategy is to find intersection be-
tween adjacent contact behaviors which ensure continuity on positions and
velocities. To obtain the intersections, we fit polynomials to the phase behav-
iors and find the roots of the polynomial resulting from subtracting adjacent
curves. (d) depicts a similar strategy in the lateral plane. However, since feet
transitions have already been determined in (b), what is left is to determine
feet lateral positions as shown in (c). This is done so the lateral center of
mass behavior shown in (d) follows a semi-periodic trajectory that is bounded
within reasonable values.
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lateral motion plane. As such, it will allow us to create 3D gait plans. This
problem is difficult because once we have determined feet sagittal transitions,
we are committed to a foot step timing. Therefore we develop a new search
strategy that enables to find feet placements in the lateral plane that comply

with the timing constraints.

4.1.1 Lateral Single Contact Behavior using Sagittal Timing

Similar to the sagittal case, numerical integration is used to determine
phase curves. However, in the lateral case we do not know the reset condition
at every step (i.e. lateral velocities at known points) since walking velocities
are only specified sagittally. Instead, the main objective of lateral behavior
is to produce bounded semi-periodic trajectories. Because we do not know
phase plane points in the lateral plane, we rely on forward propagation of
Equation (2.14) that complies with the timing constraints. This technique
is shown in Figure 2.2 (g), where multiple curves are shown that complete
the timing cycle of the sagittal planner but change depending on the lateral
placement locations. Implementing this idea for multiple steps leads to semi-
periodic gait sequences such as the one shown in Figure 4.1. Specifically, the
blue squares correspond to the points where two curves from neighboring steps
have the same position and velocity and therefore correspond to feet lateral
transitions. Also, on the top right plot of the same figure we illustrate the
need to search over multiple lateral locations to ensure that the trajectories

are bounded.
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The lateral phase portrait behaves like a semi-periodic cycle, but several
differences exist resulting from the sharp contact transitions in the uneven
terrain. At every step transition, a ”"sharp corner” appears due to the drastic
change of acceleration. We will show next the need to smoother these corners

by introducing multi-contact phases.

4.1.2 Searching Strategy for Lateral Foot Placement

As previously shown, the 3D dynamics are broken into sagittal and lateral
behavior, which are each separately solved for. However, to unify the 3D foot
placement planner, the time spent during each step should be the same on both
simulations. As in our previous studies [58,61], we first solve for the sagittal
feet transitions using forward and backward numerical integration and given
the apex conditions (see Figure 4.1). Next, it is straightforward to solve for
the lateral behavior using forward numerical integration and then switching
contact models at exactly the same time as the feet transitions derived from the
sagittal planner. The problem with this technique, is that lateral feet locations
will dramatically influence the phase trajectory. If lateral feet placements
are not adequately picked, the lateral behavior will not produce a bounded
trajectory cycle and therefore the steps will drift away, ultimately becoming

unstable.

In Equation (2.14) we show the direct dependencies of lateral behavior
with lateral feet placements, and the plot of Figure 2.2 (g) shows the impact

of using different placements. The question is, which foot placement is the
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Figure 4.2: Integration of multi-contact phases. The plots (a) and (b)
are similar to their counterparts of Figure 4.1 but with an addition of a multi-
contact phase. A user decides the duration of the multi-contact phase with
respect to the overall step and then chooses the velocity and acceleration
profile during multi-contact. By using 5th order polynomials and guaranteeing
continuity with the existing curves, we get the polynomial parameters and fit
the curve. To determine the feasibility of the curves we extract internal forces
using the multi-contact-grasp matrix presented in [61] and then determine if
they are feasible given surface friction constraints. Plots (c¢) through (h) depict
the time profiles for the sagittal and lateral trajectories.
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Algorithm 1 Newton-Raphson Search for Lateral Foot Placement

Assign iteration step k =1

Choose the initial value (F'P,);

while k < Iteration Numi,q, and (Veom, (end))y > VYigerance do
Implement numerical integration with (F'P,); for one step and obtain
(Veom, (end))
Derive (F'P,)g+1 by Newton-Raphson Formula in (4.1)
Implement numerical integration of (F'P,);4+1 for one step and obtain

(Ucomy (end))k—i-l
(Veom,, (end)) —(Veom, (end))
l({:an;{: (eridm“ = R PR
=k+
end while

best option? An ad-hoc choice is to choose the one that produces zero lateral
velocity when the center of mass crosses the sagittal apex of the foot. Based
on this criterion, we implement a foot placement search strategy based on the

Newton-Raphson bisection method, i.e.

(Veom, (end) )

(F'Py)i1 = (FPy) — (@com, (end))y

(4.1)

where (FP,)i41 are the candidate lateral feet placement locations for the k™
incremental search, (Veom, (end)); and (deom, (end))y, represent the final velocity
and acceleration achieved in the previous search. For simplicity, (acom,(end))y
is obtained via numerical differentiation. The objective of the algorithm is to
iterate over (FP,)g41 until (veem, (end))y is sufficiently close to zero. Overall,

the search algorithm goes as follows

The result of using the above algorithm can be seen in the lower right plot

of Figure 4.1.
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4.1.3 Multi-Contact Transitions

Without multi-contact [29,59,61], contact transitions cause discontinu-
ities in the sagittal and lateral behaviors. Moreover, such transitions are unre-
alistic as robots cannot switch feet instantaneously. It is also not desirable to
switch feet too quickly to prevent reaching high velocity peaks (see Figure 4.2
(a)). Our objective here is to incorporate multi-contact transitions into our
gait planner to make it look more natural and to reduce velocity peaks. For

this purpose, we augment our planner with a multi-contact phase.

To incorporate a multi-contact phase, we cut out a portion of the phase
curves and fit a polynomial with the desired smooth behavior. In this fitting,
desired boundary values of position, velocity and acceleration are endowed by
the gait designer. More importantly, it is needed to also take into account
time constraints in such a way that the sagittal and lateral behaviors are
exactly synchronized. Boundary and timing conditions allow us to calculate

the coefficients of the polynomials.

For instance, if the polynomial of the multi-contact phase is defined by

the formula

x(t) = Zai t! (4.2)
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Figure 4.3: Multi-contact polynomial fitting. The propagation time re-
duces as CoM trajectories move from top to bottom. In subfigure on right, it
shows similar time properties with zero initial and final velocity.

then we can calculate its coefficients as

Ay =Tmi, A1 = Ui, Qg = a;i, (4.3)
as :% (2025 — 2020mi — (Buiny 4 1200)t; — (3ami — amys)t}), (4.4)
ay :%(30% — 30Ty + (140ng + 160mi)t s + (3mi — 2amp)t;),  (4.5)
as :%(12:@# — 122, — (6Vpf + 6V )tr — (Ami — amf)t?). (4.6)

where [.],,; and [],,; are initial and final position, velocity and acceleration

conditions, and ¢; and ¢; are initial and final times.

In our case, we design a multi-contact phase that takes place during 25%
of the time of any given step. We show the result in Figure 4.2. The dot-

ted rectangle in plot (a) of the previous Figure depicts the time window for
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multi-contact. This percentage is adjustable to other values based on the de-
sired walking profile. Not done here, the multi-contact profile entails internal
forces that can be derived using the techniques that we proposed in [61]. The
resulting internal forces would then need to be validated against the friction
characteristics of the terrain. Additionally, shapes of polynomial fitting tra-
jectories are varied when the time period is changed. We generate a family of
phase plane trajectory candidates during the multi-contact phase and analyze

its characteristics in Fig. 4.3.

4.1.4 Time Trajectory Generation

Our planner relies on input data sets that include: (1) the motion surface
of the center of mass, (2) sagittal feet placement locations, and (3) desired
sagittal velocities at the apex points. Given these data, the planner deter-
mines: (1) sagittal and lateral center of mass phase curves, (2) lateral feet
locations, and (3) transition points of the feet in the phase plane. These data
needs to be converted to time trajectories. Since the center of mass curves
are continuous, it is straightforward to convert them into a time trajectory.
On the other hand, because the feet transitions are discrete, we interpolate
smooth leg swinging trajectories to land the feet at the desired time stamps.
Finally, we use inverse kinematics to fit the robot’s multi-joint structure to
the desired trajectories. We do this process for our case study and display it

in the animation of Figure 4.4.
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3D Dynamic Walking
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Figure 4.4: 3D dynamic walking animation. (a) shows an animation of
the robot executing the planned trajectories. To display the results on a legged
model, we fit continuous feet trajectories that converge to the desired contact
conditions and we run an inverse kinematic process to obtain the resulting
joint angles. Since the feet are Cartesian points we need to plan trajectories
in the vertical (b), sagittal (c), and lateral axes (d).

4.1.5 Dynamic Maneuvering on Different Terrains

Without loss of generality, our algorithm is implemented for three more
challenging terrains shown in Figure 4.5: inclined terrain, concave terrain and
convex terrain. The walking on inclined terrain is illustrated in sequential
snapshots from three different viewpoints. In this case, the height discrepancy

of two consecutive stairs is specified to be a random value with a maximum
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(a) Snapshots of Dynamic Walking on Inclined Terrain
(a.4)

(b) CoM Lateral Phase Portrait (c) Walking on Concave Terrain (d) Walking on Convex Terrain
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Figure 4.5: Traversing of different terrain profiles. (a) shows the snap-
shots of walking on a terrain with rough inclined surfaces. The side and top
visualization illustrates the agile walking capabilities. The lateral CoM phase
portrait in (b) shows a 25 steps walking sequence. In (c¢) and (d) we test the
applicability of our gait generator to various terrains.

of 0.2 meters. A 10 degree tilt angle is assigned to the slope of the surface.
Finally, the planner generates 25 steps as shown in Figure 4.5 (b). Our algo-
rithm is also tested on two different inclined terrains shown in Figure 4.5 (c)
and (d). The average walking speed is 0.8m/s. These visualizations indicate

the applicability of dynamic maneuvering on challenging terrains.
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4.2 Modified 3D Inverted Pendulum Model

The result above assumes the CoM is constrained to a plane described
by a piece-wise linear function z = a;x + b;,7 = 1, ..., N, which is a 2D plane
in three dimensional space. As to the study in this section, this CoM plane

assumption is extended to a 3D plane in three dimensional space.

4.2.1 3D CoM Plane Tracking

First, let us describe this new 3D plane mathematically

)\11’ + )\Qy + /\3Z = )\4 (47)

where (z,y, z) is the CoM position state. Then

A - A
z:)\—;x+/\—;y+>\—§=a1x+a2y+b (4.8)

Differentiate it twice, we have

zZ= ali + ag'y' (49)

Based on the moment and force equations we have, one has

(z —pa)(Z+9)

5= EpETS) (4.10)
j— W —fy_)gj”rg)’ (4.11)
. (y—py)i

j (4.12)
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Substitute Equation (4.9) into Equations (4.10) and (4.11), then we have

ar 4+ asy +b—p,

a1r + asy +b—p,

By Equations (4.12) and (4.13), one has

.. (x_pz)g
T = = J2\Z; Pz, Py, Pz 4.15
Py + aspy + b — p. ol v P:) (4.15)

By Equations (4.12) and (4.14), it shows

.. (Y —py)g
- - y Moy s Mz 4.16

The benefit of this modified model lies in that the CoM is parameterized as a
3D plane instead of 2D plane. This provides more freedom for CoM motion

pattern.

4.2.2 Nested-loop Searching Strategy

For this modified model, our foot planner strategy is to search both sagittal
and lateral foot placement at the same time. In our algorithm, there are two
nested searching loops, where sagittal foot placement is searched in an outer
loop while lateral foot placement is searched in an inner loop. The outer loop

(sagittal foot placement) guarantees walking symmetry, (i.e., switching foot
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Figure 4.6: New phase plane trajectories for three steps walking. In
subfigure (a), dynamics in sagittal phase plane vary for different lateral foot
placements. Accordingly, a robust phase plane manifold tube appears. In sub-
figures (b) and (c), we use this new two dimensional foot placement searching
strategy in Algorithm 2.

when the CoM approximately crosses central walking line) while the inner loop
(lateral foot placement) guarantees zero-apex lateral velocity. This searching

algorithm is presented in Algorithm 2.

As shown in Equations (4.15) and (4.16), the sagittal dynamics depend
on lateral foot position p, while the lateral dynamics also depend on sagittal
foot position p,. That is, if lateral (or sagittal) foot positions are assigned

with different values, the sagittal (or lateral) phase trajectory will vary. Cor-
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Algorithm 2 Foot Placement Searching Policy
Inverted Pendulum Following 3D Surface
&= (v —p2)g)/(aps + azpy + b —p.) = fo(T, Pz, py: p2)

y - (y _py)g/(alpx + a2py + b - pZ) - fy<y7pm7py7pz)
Searching Region Initialization

Assign values of foot,, . , foot,,. .., foot, . . foot, .
Foot Placement Initialization
Assign values of p,, p,
3D Plane Parameterization and Apex CoM Assignment
a, az, (T, Y, 2)apes = b is computed from Equation (4.8)
while abs(yswitch) < Y;folerance do
(Outer loop guarantees the walking symmetry)
Update sagittal foot placement
while abs(vy,,..) < VYioerance do
(Inner loop guarantees zero lateral velocity at foot apex)
Update lateral foot placement
Sagittal phase plane: Find intersection point (z, Z)intersect
Lateral phase plane: Forward numerical integration to obtain vy, ., .
Bisection method to update the lateral foot placement
end while
Bisection method to update the sagittal foot placement
end while

respondingly, a manifold phase plane tube will show up in Fig. 4.6. In fact,
the real CoM motion is constrained by robot mechanical configuration, mo-
tor torque limitation and friction cone, etc. These factors will formulate a
bounded feasible region in the phase plane. In future work, we will study the

phase plane manifolds restricted by these physical constraints.

Compared with our previous model, the model changes can be seen as fol-
lows. First, the CoM follows a 3D plane instead of a 2D plane. Second, for this

modified model, there is no master-slave relationship between sagittal-lateral
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20 times. The beginning step is quite different from the remaining ones.

dynamics, like the previous model in this Chapter. Both sagittal and lateral
foot placement are searched simultaneously. This two-dimensional search is a

more realistic scenario, because of its consistency with the fact that inverted

pendulum dynamics are identical in either sagittal and lateral direction.
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4.2.3 One Step Balancing

In this section, we implement our new algorithm to a one-step back-and-
forth balancing case. Since our bipedal robot has point feet, this one-step
balancing is more realistic than the one-step stop scenario proposed by Capture

point [33]. A simulation shows 20-steps balancing in Fig. 4.7.

Note that, our data driven modelings haven’t implemented this new search-
ing algorithm till now. In the next phase, we will transfer to this modified

model and derive the new 3D locomotion strategy.
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Chapter 5

Robust Control

This chapter is about design of a robust control approach for locomotion
based on our previous dynamic planner. In Chapter 3, we developed tools to
accurately design a contact switching policy for stable locomotion. And we
did so using sagittal pendulum dynamics because they are dominant in the
production of net movement. However, in biped locomotion, center of mass
dynamics are difficult to control due to the small size of the feet. They can be
considered as passive dynamics. The purpose of locomotion is then to control
precisely the swinging leg, so it switches dynamics when contact occurs. Those

needs where studied at the conceptual level in previous chapters.

5.1 Sliding Mode Control

Let us assume for now, that a hybrid phase plan has been designed for
desired foot positions and according to the methods described in the chapter 3.
Given the planned contact transitions, we subsequently extract contact times
from the Phase Space plan. Moreover, once the contact times are known,
time-based foot trajectories can be easily designed. An example of a time

based trajectory to swing toward a step is shown in Fig. 5.1. A valid con-
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Figure 5.1: Two dimensional SVR-based foot trajectory training. Sub-
figure (a) shows the foot’s geometric trajectory. Subfigures (b) and (c) show
the horizontal time and phase plane trajectories while subfigures (d) and (e)
show the corresponding vertical trajectories. In subfigure (f), the regression-
based hyper-surface using our methods is shown with the red line correspond-
ing to the zero contour line. Subfigure (g) and (h) illustrate the horizontal
SVR model from different viewpoints. The green data is the contour line with
zero ® value while the red data is the noisy foot trajectory data. In subfigure
(h), notice that the fitting captures well the infinity slopes around the zero
velocity axis, owed to using implicit regression.

trol approach would be to implement a linear time base controller, e.g. a
proportional-derivative-integral controller based on the trajectory error. How-
ever, we consider here the addition of a feedforward term and a robust control
term to enhance the tracking performance. The hypothesis is therefore that a
nonlinear feedforward robust controller plus a linear time-based controller will

be more effective than a linear time-based controller alone.

In particular, we consider sliding mode control (SMC) for robustness [72].
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Figure 5.2: Surface based SMC applied to a trajectory with various
initial conditions and external disturbances. Subfigure (a) and (b) show
the SMC method applied to track a nominal trajectory. Subfigures (c) and (d)
show the trajectory tracking under various starting conditions. In subfigures
(e) and (f), a velocity disturbance is exerted in both the x and z directions.
As a result of applying the SMC control law of Equation (5.5), the trajectory
converges to the nominal value. Subfigure (g) shows the surface value of the
actual trajectory under disturbances. Subfigure (h) shows the SMC control
effort, where the blue line is the vertical control input while the red line is the
horizontal control.

We implement theory here of an SMC approach for foot swinging during loco-
motion. Our SMC-based controller is based on the regression model previously

described. Consider the implicit surface s = ®(X) and its time derivative

. dd(X)  09(X).  0P(X)..
S= = s T+ 2 ° (5.1)

— 9y Z(ai —a)[(x — )3 + (# — £)3] Ay (5.2)

Notice that the state (X) above now corresponds to the foot trajectory and not
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Figure 5.3: Initial experiments on our Hume bipedal robot. In this
sequence we show the implementation of a swing leg motions described in Fig.
5.1, and based on the implicit regression process with sliding mode control
described in Equation (5.6). The experiment shows the leg swinging to a
height, as if it was stepping toward a staircase step. The controller is effective
on tracking the desired path, with an accuracy of less than 5 mm.

to the robot’s center of mass like we had considered before. We leverage sliding

mode control theory for asymptotic convergence to the desired trajectory, e.g.
§ = —n - tanh(s) (5.3)

This step is potentially a contribution on robust control on itself as sliding
mode control normally focuses on convergence to an equilibrium point but not

to a trajectory. However, more research to validate this claim will need to be
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conducted.

Let us make the following controls observation. One class of controllers
that we advocate for humanoid robots is whole-body compliant control [59].
This controllers achieve feedback linearization to render full control of task
accelerations, i.e.

T=u (5.4)

where w is the desired closed-loop control policy. Observing Equations (5.1)
and (5.3), we isolate the acceleration term and use it as a feedforward term

for the above closed loop dynamics, rendering the robust control law

S — D)l — )il Ay (5.5)
(@i = ) (d = ) Ay

This law is composed of two parts,

A 7 - tanh(s)
Us = ; :
29 300y (i — ) (& — ;) Acay
N 22:1(%‘ - af)[(x - xi)a}]Aew'

Ueq = ] - 5
Zi:1(ai - )(I - xi)Aewp

where the term w4 corresponds to the so-called reaching controller, which drives

(5.6)

(5.7)

the system dynamics to the desired surface (i.e. the feedback controller), and
the second term wu., is the equivalent control, which forces the system dynamics

to move along the surface (i.e. the feedforward term).

In Fig. 5.2 we show numerical simulations of the above robust control ap-
proach to track desired Phase Plane trajectories of the foot swing. Robustness

to initial conditions are shown in Fig. 5.2 (c)-(d) where an initial condition
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region is chosen to test the SMC law. To avoid the chattering due to nu-
merical integration, we use variable step integration. We also apply external

disturbance via velocity impulse in the Phase Space. The results are shown in

Fig. 5.2 (¢) - (f).

5.2 Experimental Implementation

Initial experiments on controlling the robot’s swinging foot are shown in
Figs. 5.3 and 5.4. A software implementation of whole-body compliant control
as described in [59] has been developed to run the experiments on the biped.
The robot is supported with a boom system that allows for vertical and pitch
motion of the torso. Multiple task frames are defined to control the height of
the torso, its orientation and the cartesian position of the swing foot. Contact
constraints on the support foot are accounted for to solve for the whole-body
torques. A geometric trajectory to swing the foot up and forward then back
to its original position is implemented and converted to the Phase Plane for
robust control. The regression process described in Equation (3.9) and the
nonlinear controller described in Equation (5.5) are implemented to track the

desired trajectories.

For further validation of the robustness of our controllers, Fig. 5.4 nar-
rates three types of external disturbances applied to the swinging leg. The
regression based sliding mode control demonstrates satisfactory robust perfor-
mance. First, Hume’s leg hits a wooden board pushing it away. Second, the

leg is hit with a sharp external force. Finally, an elastic band is attached to
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the robot’s leg which tightens up as the leg moves forward.

The experiment demonstrates that implicit regression techniques are well
suited for our robust performance requirements and that the trajectory based

sliding mode control strategy indeed works on the real system.
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Figure 5.4: Three experiments under disturbances. In subfigure (a) the
leg hits a wooden board which causes sudden velocity reduction. It follows that
the leg pushes the board away to catch up with the nominal path, demonstrat-
ing its robustness. Subfigure (b) shows an external force applied to the swing
leg, which makes the sagittal velocity to momentarily reverse direction. In
subfigure (c), we demonstrate the leg movement when tied up with an elastic
band. When the band tightens up, the leg shows some oscillation.
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Chapter 6

Conclusions and Future Work

6.1 Thesis Summary

3D legged locomotion can be solved using simple prismatic pendulum
models coupled with multi-contact dynamics. According to different CoM
surface patterns, two types of inverted pendulum models are elaborated in this
thesis and each one processes its own searching algorithm for foot placement.
In first model, to reduce the dimensionality of the equations, we propose to
define beforehand a 2D non-planar, piecewise linear surface of center of mass
geometric behavior. This choice, results in decoupled dynamics of the sagittal
and lateral phase behaviors. Meanwhile, to synchronize time, we apply the
Newton-Raphson search technique to determine lateral feet locations. Finally,
to deal with the non-smooth transitions associated with single contact phases,
we introduce multi-contact phases that comply with surface characteristics.
As to second model, the CoM is assumed to follow a more general 3D plane
and a nested foot placement searching strategy is formulated in a hierarchical
way. The walking symmetry and zero CoM lateral velocities at foot apex are

guaranteed at the same time.

Data driven strategies require powerful mathematical tools that can solve
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the contact transitions of the hybrid system. In particular, regression using
implicit functions becomes a necessity to fit complex data sets in the Phase
Plane which normally contain infinity slopes and loop behaviors. After de-
signing the hybrid plans, swinging foot trajectories need to be controlled to
accurately achieve contact at the desired locations and at the desired time.
Time-based linear controllers are a starting point, but a trajectory based feed-
forward control policy and robust controller can be key to achieve the needed
fast response and final accuracy. In this thesis, we have developed a sliding
mode control strategy based on Phase Plane plans of the swinging leg and test
their effectiveness in simulation and real environment. Two main contribu-
tions of our data driven method are therefore on using regression tools to deal
with complex Phase Space locomotion plans and to design robust controllers
for precise swing foot tracking. In particular, sliding mode control applied to
Phase Plane trajectory tracking instead of conventional time-based trajectory
tracking might be our another contribution in robust control. However, this

claim will need to be further researched.

Overall, we have proposed a methodology that aims to make feasible rough
terrain locomotion at human-like speeds. The overall foot placement planner

is depicted in Figure 6.1.

6.2 Future Work

In the next phase, we will focus on design of controllers and experimental

validation of our algorithms. We will aim at deriving center of mass models
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from full joint dynamic simulations or real experimental data. We will also
test the locomotion processes in real walking behaviors. To conduct those
experiments, a new boom system allowing for sagittal locomotion is ready now.
Further along, implementation of 3D locomotion is also on its way. Also, when
the reference trajectories are applied to a real robot, modeling errors, sensor
disturbances and external perturbations will cause the robot to deviate from
planned trajectories. More details about robust controllers will be explored.
We also plan to develop whole-body compliant multi-contact controllers [59]
to render desired trajectories while adapting to the collisions endured with the
terrain. Recently, we have implemented whole-body control algorithms in a

mobile manipulator, demonstrating that it is computationally feasible[60].

Another meaningful work is to consider distributed masses and moments
of inertia across the robot’s body. Prismatic inverted pendulum is a simpli-
fied biped model and modeling errors will inevitably be induced. To remedy
this deficiency, multi-body dynamics are necessary because of its considera-
tion of distributed leg structure. We can develop a simulated controller and
run forward dynamics to estimate the moments induced by the robot. The
computed moments can then be utilized to refine the gait trajectories. Addi-
tionally, when using point contacts, the multi-contact dynamics have passive
modes that have been briefly mentioned. In the future we plan to describe

those detailed dynamics and plan the transitions accordingly.

The last but equally important issue is online re-planning strategy based

on real-time sensory feedback. When the robot is in presence of disturbance
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Figure 6.1: Overall 3D foot placement generator. This planner diagram
depicts the sagittal foot planner (i.e. the step switching policies), the lateral
foot planner (i.e. the searching strategy satisfying the timing constraint),
and the multi-contact dynamics (i.e. the smoothing of the step transitions).
The generated CoM and foot trajectory are extracted to be used as desired
trajectory for future control purposes.

or sensory noise, off-line planned trajectories can not be followed as desired.
Then, on-line planning [19, 40] is beneficial to achieve accurate yet robust per-
formance. In this case, data driven methods can give a help since it can learn
the models based on acquired experimental data and predict what future loco-
motion behaviors are (for instance, Phase Space contact switching). However,
real-time re-planning and control is still challenging due to heavy computa-
tional burden from high-dimensional biped states. We potentially resolve man-
ifold learning algorithms to implement dimensionality reduction [68]. That is,

we choose certain states (such as, CoM states) as dominant states and use
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them to represent the system dynamics [16]. Also, the learned planner should
satisfy velocity and acceleration constraints [55]: 1) the position and velocity
constraints come from the biped configuration; 2) the acceleration are indi-
rectly constrained by motor torque limitation of the biped. Thus, more results

about reachability analysis and safe region should be explored in Phase Space.
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Appendix A

Planner Validation by Human Walking

To validate our planner, we compare it with data from a motion capture
process of a human maneuvering in the rough terrain. It is important to notice
that data from the human is not needed for the planner to operate. Therefore
it is only used for validation. As shown in Figure A.1, a human subject walks
through a wooden rough terrain at speeds varying from 0.5 to 0.9 m/s. The
experimental specifications are shown in Table 1. The gait is simultaneously
captured by two cameras, one for the sagittal motion and the other one for the
lateral motion. We apply scaling algorithms to compensate from perspective
variations. We develop a calibration process based on comparing the data
from the side and front cameras. Fourteen markers are attached to the body
segments and based on the camera information, center of mass behavior is

extracted.

In Figure A.1, we compare the results between our algorithms and the
data collected from the human. They correlate well with each other except
for the first large step. One of the reasons might be that the human relies on
ankle behavior to overcome the first obstacle. On the other hand our robot

lacks an ankle and therefore needs to gain higher speed to overcome it.
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Figure A.1: Human walking motion capture. Subfigures (a) and (b)
show sagittal and frontal motion data collected using two pocket cameras.
In subfigures (c), (d) and (e), we compared vertical human data with the
resulting trajectories from the planner. We note the good correlation of the
trajectories. In subfigures (f) and (g), we superimposed the sagittal and lateral
phase behaviors of the human and the planner.

Table A.1: MoCap Experiment Specification

Parameter Value Parameter Value

Human Weight 70kg Human Height 183cm
Distance between

Wood Board 7.85m || Camera Frame Rate | 25Hz

(Right Side) and
Front Camera
Wood Board Length | 1.75m | Wood Board Width | 0.7m
Wood Board Left 0.45m Walking Steps 7
Side Height
Walking Speed 0.5m/s || Walking Distance | 3.31m
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