
Copyright

by

Joshua Alexander James

2016



The thesis committee for Joshua Alexander James

certifies that this is the approved version of the following thesis:

Additive Robot Systems

APPROVED BY

SUPERVISING COMMITTEE:

Luis Sentis, Supervisor

Chien-Liang Fok



Additive Robot Systems

by

Joshua Alexander James, B.S.E.E.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2016



Additive Robot Systems

Joshua Alexander James, M.S.E.

The University of Texas at Austin, 2016

Supervisor: Luis Sentis

Additive robot systems are created by “adding” together heterogeneous

robot modules at clearly defined interfaces. Each robot module is aware of

its geometry, dynamics, primary function, and capabilities. Communication

between modules allows the system as a whole to perform complex human-

centric tasks, even when the system is assembled with arbitrary structure.

Additive robot systems have the potential to revolutionize the robotics industry.

Reusable mass-produced modules and automated system integration allow

complex robots to be created at a fraction of the cost and effort of existing

solutions. The ability to quickly optimize additive robot system hardware

for a specific task is particularly well suited to real-world scenarios in which

the tasks to be performed are not known beforehand, including disaster relief,

space exploration, and flexible manufacturing scenarios. This work presents

a framework for module interfacing, modeling, and control in additive robot

systems.

iv



Table of Contents

Abstract iv

List of Tables vii

List of Figures viii

Chapter 1. Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Scalable Dock Design . . . . . . . . . . . . . . . . . . . 3

1.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Distributed Module Dynamics Decoupling . . . . . . . . 5

1.2.4 Whole-body Controller for Modular Robots . . . . . . . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2. Architecture 8

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Physical Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Self-Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Functionality Primitives . . . . . . . . . . . . . . . . . . 18

2.3.2 Physical Model . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Relationships and Status . . . . . . . . . . . . . . . . . . 27

2.3.4 Static Self-Identity Specification . . . . . . . . . . . . . 28

2.4 Architectural Algorithms . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Module Connection . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Module Failure Detection . . . . . . . . . . . . . . . . . 32

2.4.3 System Self-Identity Generation . . . . . . . . . . . . . 32

2.4.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



Chapter 3. Module Decoupling 36

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Model Compression . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Centralized Module Decoupling . . . . . . . . . . . . . . . . . . 41

3.4 Distributed Module Decoupling . . . . . . . . . . . . . . . . . 42

Chapter 4. Whole-Body Control 51

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Task Prioritization . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Joint-space Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Goal-space Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 CoM Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Centralized Optimization . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 5. Future Work 63

Bibliography 66

vi



List of Tables

2.1 Docking Logic Table . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Functionality Primitives . . . . . . . . . . . . . . . . . . . . . 22

vii



List of Figures

1.1 Atlas and Valkyrie . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Example additive robot system . . . . . . . . . . . . . . . . . 2

2.1 Mobile Manipulator Assembly . . . . . . . . . . . . . . . . . . 9

2.2 Modular Hierarchy for Mobile Manipulator . . . . . . . . . . . 9

2.3 Radially-symmetric interlocks . . . . . . . . . . . . . . . . . . . 11

2.4 Possible dock design . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Docking procedure . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Four components of self-identity . . . . . . . . . . . . . . . . . . 17

2.7 Functionality primitives . . . . . . . . . . . . . . . . . . . . . 18

2.8 Industrial Robot Functionality Tree . . . . . . . . . . . . . . . 22

2.9 Cleaning Robot Functionality Tree . . . . . . . . . . . . . . . 23

2.10 Mobile Manipulator Functionality Tree . . . . . . . . . . . . . 23

2.11 Quadcopter Functionality Tree . . . . . . . . . . . . . . . . . . 24

2.12 Humanoid Robot Functionality Tree . . . . . . . . . . . . . . 24

2.13 Physical models . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.14 Relationships and status . . . . . . . . . . . . . . . . . . . . . . 27

2.15 Example module . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.16 Module Connection MSC Diagram . . . . . . . . . . . . . . . . 31

2.17 Module Removal MSC Diagram . . . . . . . . . . . . . . . . . 33

2.18 Flipping Due To Dock Change . . . . . . . . . . . . . . . . . . 35

3.1 Module decoupling layer . . . . . . . . . . . . . . . . . . . . . 36

3.2 Centralized Module Decoupling MSC Diagram . . . . . . . . . . 41

3.3 Synchronous Module Decoupling MSC Diagram . . . . . . . . 45

3.4 Asynchronous Module Decoupling MSC Diagram . . . . . . . 45

4.1 Whole-body Control . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



4.2 Single (a) vs. alternatively valid (b) targets and (c) a 2D visual-
ization of a goal region (green). . . . . . . . . . . . . . . . . . 54

4.3 Illustration of one-dimensional goal error . . . . . . . . . . . . 56

ix



Chapter 1

Introduction

1.1 Problem Statement

Figure 1.1: Atlas and Valkyrie

Robot systems today are created by

teams of skilled engineers over the course of

many years, with the development of complex,

monolithic robots like Atlas (Boston Dynam-

ics) or Valkyrie (NASA-JSC) costing millions.

The integration of different robot components

(actuators, sensors, hardware, etc.) represents

a large amount of the time and cost of such

robots. Furthermore, the effort spent develop-

ing and integrating these systems is difficult

to directly transfer to new robots; The developed subsystems are often interde-

pendent and cannot be easily separated.

Additive robot systems are created by “adding” together robot modules

at clearly defined interfaces (Figure 1.2). A diversity of robot systems can be

created from a small set of hardware modules. Thus, development efforts can

be trivially transferred to new robots by simply reusing modules. Each module
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is less complex than a full robot as well, and can be tested more thoroughly,

resulting in robots that exhibit more reliable and predictable behavior than

the current state of the art.

Figure 1.2: Example additive robot system

Each module in an additive robot system has a self-identity (SI)—an

innate understanding of its physical form, purpose, health, and relationship

with other modules. Combining these module SIs allows the full system

to autonomously construct its own SI at runtime. This system SI provides

information about the capabilities, form, and status of the entire robot. Inherent

knowledge of module status allows the system to detect overtaxed or broken

modules and specify exactly what needs to be replaced. Inherent knowledge

of the form of the system ensures that whole-body planners and controllers

always match the physical construction of the robot. Inherent knowledge of

the system’s capabilities significantly increases autonomy: An additive robot

system does not need to be told what parts of its body should be used for a
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given task—it already understands which modules are useful for locomotion,

manipulation, and perception.

Additive robot systems have the potential to revolutionize the robotics

industry. Reusable mass-produced modules and automated system integration

allow complex robots to be created at a fraction of the cost and effort of existing

solutions. The ability to quickly optimize additive robot system hardware

for a specific task is particularly well suited to real-world scenarios in which

the tasks to be performed are not known beforehand, including disaster relief,

space exploration, and flexible manufacturing scenarios.

Since most of the integration is automated, it also lowers the level

of expertise needed to construct complex robots. If mass production of the

modules brings them into the average consumers price range, research-grade

robotics projects become available to hobbyists. Giving the general public

the ability to easily create state-of-the-art robots has the potential to be as

revolutionary as the PC, 3D printing, and autonomous quadcopters have been

for computing, consumer manufacturing, and aerial robotics.

1.2 Contributions

1.2.1 Scalable Dock Design

The first contribution is a scalable, hermaphroditic docking interface

design. The size and strength of the parameterized design can be easily

scaled to support robots of all sizes. The radial symmetry of the design

allows docking between docks of different sizes. The docking interface provides
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actuated connection and disconnection of modules. This allows for toolless

robot construction and automated module replacement.

A myriad of docking methods have been proposed over the years, in-

cluding connectors that physically latch on to one another actively [19, 20,22]

or passively [10,11,33,35,36,42], use magnets to stay connected [4, 6, 9, 18,23,

24,41,45,47,49,53], and even solder themselves together [30].

One thing all these docks have in common is that they are designed as

a one-size-fits-all solution; They assume that a single dock design can be used

for all applications. This assumption is valid for the systems they are designed

for, since the systems often only have one type of module. However, a more

broadly applicable system will need modules of a variety of sizes and strengths.

Such a system thus needs docks that can be scaled while still remaining able

to connect to one another.

1.2.2 Architecture

The second contribution is an architecture based on modular self-identity,

as well as the recursive construction of system SI. The module functionality

primitive system supports the modularization of existing designs in a variety of

application domains. The presented SI definitions and algorithms are believed

to be sufficiently flexible to allow for the inclusion of novel designs in the future,

while not being so convoluted as to make them unusable.

Many frameworks for automatically modeling and controlling the kine-

matics and dynamics of a modular robot system have been proposed in the last
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decade [3,12,13,15,16,27,51]. However, these frameworks are relatively inflexi-

ble, typically restricted to simple module models (e.g., a single joint described

with D-H parameters) and / or a small set of predefined modules (particularly

in lattice-type robot frameworks). The existing modeling systems are also

often tailored to articulated industrial robots (e.g., serial chain manipulator

arms) and do not capture many aspects of contemporary robot systems. The

proposed self-identity-based architecture provides the following improvements

over existing frameworks:

First, there are no restrictions on each module’s model; Each module

can contain any number of links / joints / actuators / sensors arranged in

any structure. The module’s model is stored inside the module itself, so

the assembly process is also significantly more flexible than those that use a

predefined module set.

Second, the functionality primitive system allows the robot to flexibly

understand how to use each module. This is an improvement over current

systems in which functionality is simply hardcoded in the predefined module

list (i.e., this module is the designated tool module, and thus should be used

for gripping).

1.2.3 Distributed Module Dynamics Decoupling

The third contribution is a distributed dynamics decoupling scheme for

additive robot systems. This makes the construction of large-scale additive

robot systems possible, where a centralized control scheme would be limited
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by computation power.

Most existing modular robot architectures either use a model-based

centralized controller, or no model-based controller at all (e.g., just using pure

position control for each joint). To the best of the author’s knowledge, the only

other distributed model-based control architecture is Virtual Decomposition

Control [44]. The proposed distributed decoupling scheme differs from VDC in

that it only attempts to passively decouple the dynamics of the module and

provides an acceleration-based interface, while VDC provides feedback control

with a trajectory-based interface. The use of accelerations allows for a wider

range of high-level controllers. Notably it make possible the use of whole-body

controllers, which typically do not perform well without a torque / acceleration

interface to the hardware.

1.2.4 Whole-body Controller for Modular Robots

The fourth contribution is an automatically-synthesized whole-body

controller. The controller supports joint-space, and goal-space tasks for SI-

defined frames of interest. To the best of the author’s knowledge, this is the

first whole-body controller that supports modular robots, and one of the few

that extends to actuation methods beyond articulated joints.

1.3 Outline

Chapter 2 presents the additive robot system architecture and intro-

duces module / system SI. Chapter 3 describes distributed and centralized
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techniques for decoupling the modules’ dynamics. Chapter 4 provides methods

for coordinating the movements of all the modules in the system to complete

tasks. Chapter 5 illustrates avenues for the future improvement of additive

robot systems.
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Chapter 2

Architecture

2.1 Overview

Additive robot systems are composed of modules arranged in a branching

structure. There are two structural requirements. First, there must be one

coordinator module, the “master” module, designated by the user to serve as

the user interfacing point and the coordinator of high-level behaviors. This

module can be located anywhere in the structure. However, since the master

module also defines the primary frame of the robot, it is recommended that

it be placed somewhere conducive to human control. For example, using a

quadcopter’s center point or a humanoid robot’s head would permit more

intuitive teleoperation than, say, the tip of the robot’s finger.

The second requirement is that there must not be any explicit loops

in the structure; the modules must always form a tree structure. Implicit

kinematic loops, like those created by firmly grasping two rungs of a ladder,

are handled by constraints.

Beyond these two requirements, an additive robot system can be arbi-

trarily structured. A simple example is a mobile manipulation robot (Figure 2.1)

assembled from a master coordinator module, four wheel modules, six joint
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modules, a gripper, and a LIDAR module. Figure 2.2 shows the module tree

for such a robot. More complex examples can be seen in Section 2.3.1.

Figure 2.1: Mobile Manipulator Assembly

Figure 2.2: Modular Hierarchy for Mobile Manipulator
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2.2 Physical Interfaces

Modules physically attach to one another at “docks”. Docks are hard-

ware features that rigidly connect one module to another and provide the

ability to transfer power and communication signals. Ideally, all modules

would use the a single standardized hermaphroditic dock, so that a dock on

any module can be connected to any other. However, different robots have

different connection needs. For example, connectors for an autonomous car

need to be significantly different in size, strength, and power from those used

in a quadcopter. This motivates a dock design that can be scaled while still

maintaining interoperability.

One way to accomplish this is to use an outer ring of radially symmetric

mechanical interlocks in conjunction with bilaterally mirrored mechanical

and electrical connections. The strength of such a dock can be increased by

enlarging the outer ring without changing the center. If the power connections

are placed in the outer ring, the power transfer capacity naturally scales with

the size of the dock as well. Increasing the strength and power in this way thus

allows docks of any scale to mate (Figure 2.3). Furthermore, using bilateral

mirroring for the mechanical and electrical connections ensures that the docking

mechanism is hermaphroditic. This is important because a gendered docking

system by definition restricts the ways in which modules can connect; The

use of genderless connectors increases the flexibility of additive robot system

design.

A dock design that uses this scaling method is shown in Figure 2.4.
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(a) Top view (b) Corner View

(c) Larger Interlocks (d) Mated

Figure 2.3: Radially-symmetric interlocks
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(a) Top view (b) Corner View

Figure 2.4: Possible dock design

The body of the dock, containing three radially symmetric raised interlocks, is

shown in blue. The central communication connections are green, while the

power connections in the outer ring are red and black. The yellow blocks are

spring-loaded and magnetically actuated to provide a latching mechanism. The

gray rod extending from the back of the dock represents the place where the

dock is mounted to the module. The yellow latching blocks and red / black

power connections scale with the size of the outer dock, but always lie on the

same radial slices. This ensures that the connectors still line up when the docks

are scaled.

The docking procedure for this design is as follows. First the two docks

are brought close to one another (Figures 2.5(a) and 2.5(b)) with the power

pads properly aligned. The docks are then pushed together, compressing the

spring-loaded yellow latches (Figure 2.5(c)). Finally, the docks are twisted

relative to one another until the blue interlocks are fully engaged (Figure 2.5(d)).
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At this point the latches spring into place, preventing the docks from twisting

back and releasing. Since the yellow latches passively remain in place, it

takes no energy for the docks to remain connected. Because the latches move

orthogonally to the rotation that would disengage the interlocks, the docking

connection is also much stronger than many other dock designs; to force the

docks apart you would need to apply enough force to cause all three latches to

mechanically fail.

To release the dock, the yellow latches first be disengaged. This is

nominally accomplished via magnetic actuation. Three electromagnets in each

dock pull the latches into the dock, allowing the docks to rotate relative to one

another again. Note that the power connections don’t disengage until the docks

are starting to pull apart, at which point the latches must already be fully

disengaged. If a module’s electromagnets are malfunctioning, the docks can

still be disengaged by simply depressing the latches manually. Once the latches

are disengaged, the docks can be twisted apart with the reverse of the docking

procedure. Due to the spiraling on the interlocks, this final step can also be

accomplished by gravity; If the dock to be released is pointed down, gravity

will cause the dock to rotate and disengage without any further intervention.

Automated docking requires the consent of the both modules, while

undocking requires only one module. This asymmetry provides resilience

against module failure; It ensures that docks can be released even if one of

the modules dies and prevents docking if one of the modules is non-functional.

This docking scheme can be accomplished with circuitry attached to GPIO pins

13



(a) Two docks (b) Aligned

(c) Compressing springs (d) Mated

Figure 2.5: Docking procedure
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on each module’s microcontroller. The circuitry should implement the logic in

Table 2.1, in which H (high, indicating the desire to dock), L (low, indicating

the desire to undock), and Z (high-z, indicating a powered-off / non-functional

microcontroller) represent the GPIO pin states on each module. If either

module drives the pin low, the latches are drawn into the docks to undock (U)

the modules. In all other cases, the latches are allowed to spring up, allowing

the modules to dock (D). This prevents the docking state from changing while

the system is powering up; Due to timing differences, one module might be

powered on and sending dock signals, while another might still be turning on,

and hence still exhibits high-z.

The docking signal should be high by default to make it easy to add

new modules. The signal should be driven low only when a disconnection

is necessary, indicated either by a user, or through the automatic module

disconnection procedure in Section 2.4.2.

H L Z

H D U D
L U U U
Z D U D

Table 2.1: Docking Logic Table

Modules communicate via two physical interfaces: A global network

common to all modules in the system, and local point-to-point connecting

neighboring modules.

The global network is primarily used for data that needs to be transferred
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between the master and individual modules. This includes streaming data, such

as commands and sensor readings, as well as module configuration / connection

events. The network mirrors the physical architecture by using a tree topology,

so the maximum topological depth is important; Limits on topology depth

limit the number of modules that can be connected in series. Ethernet-based

communication is thus a good choice for the global network, since Ethernet

supports virtually unlimited depth and number of nodes (neglecting congestion

considerations that would affect any tree network). Other protocols like USB

are limited to topology depth of five, while CAN and RS485 support at most

30 and 32 nodes respectively.

The local point-to-point (PtP) connections are used for module local-

ization (i.e., determining where in the structure a module has been attached),

heartbeat signals, and recursive distributed computations. UART/USART are

well suited to the local connections, since they provide fast, hermaphroditic,

low-latency communication for the local links. Ethernet is another good choice,

but is probably overkill since the connections are only PtP. I2C and SPI are

also potential choices, but are non-hermaphroditic, which removes the benefits

of using hermaphroditic docking mechanisms.

Module connectivity detection is performed via the local links. A newly

connected module communicates with the module to which it’s docked in order

to determine where in the existing structure it has been attached. The module’s

model is then transmitted to the master coordinator via the global network.

The master integrates the new module’s model with the rest to produce the
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full robot module. Commands and sensor data can then be sent over the global

network, with recursive algorithms using the local link. A heartbeat sent on

the local link allows for the detection of disconnected and malfunctioning robot

modules, allowing robot health monitoring.

2.3 Self-Identity

Figure 2.6: Four components of
self-identity

Each module in an additive robot sys-

tem has a self-identity (SI), an innate under-

standing of itself, its purpose, its relationship

with other modules, and its health. There are

four components of self-identity: functionality

primitive, physical models, relationships, and

status. A module’s functionality primitive

indicates the basic functionality it provides to

the full system. Physical models describe the

module’s appearance, limits, and dynamics.

Relationships describe how the module interacts with other modules. Status

details the internal state of the module, including joint positions, tempera-

tures, and other sensor readings. The following sections detail each of these

components.

Using each module’s SI, the master module can automatically construct

the full system’s SI. The components of the system self-identity are the same,

but the scope is expanded to include the whole robot. Functionality primitives
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list everything the robot can do. The physical model describes the entire robot.

Relationships indicate how more modules can be added to expand the robot’s

functionality. Status describes the health of the robot as a whole, as well as

progress towards the high-level tasks the robot is pursuing.

The system SI is used by the master module to present the robot’s

available functionality to the user, and to tailor whole-body planners and

controllers to match the physical construction of the robot (see Chapter 4).

Constructing the system SI in this manner ensures that the high-level software

is always aligned with the physical reality, even when the structure of the robot

is altered at run-time by damage or intentional rearrangement.

An additive robot system thus inherently understands what it can do,

what to do when something breaks, and how it can be modified to do more.

2.3.1 Functionality Primitives

Figure 2.7: Functionality primi-
tives

The modules comprising an additive

robot system can be classified by their Func-

tionality Primitive (FP), a key component

of module SI. Each FP represents a general

class of functionality that a module provides

to the system. For example, the revolute FP

provides the ability to rotate two docks rel-

ative to one another, while the thruster FP

provides the ability to apply a force to the
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robot in the module’s frame. A full list of

FPs can be found in Table 2.2.

A symbolic representation of a robot’s structure and functionality can

be constructed by drawing each module’s FP symbol and connecting docked

modules with lines. These compact functionality primitive representations

allow for most of the robot’s SI to be communicated in a single image. Figures

2.3.1, 2.3.1, 2.3.1, 2.3.1, and 2.3.1 provide examples of existing robots broken

down into their FP representations.

FPs are critical for synthesizing motions in additive robot systems. They

allow the master coordinator and other coordinator modules to understand

how to use each part of the robot’s body. For example, a FP-aware mobile

manipulator robot can determine that it should coordinate the motion of its

wheel-FP modules to move towards an object to be manipulated, and then

use its revolute-FP modules to move a gripper-FP module to a place where it

can grasp the object. The whole-body control synthesis process is described in

depth in Chapter 4.
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Symbol Primitive Description

Interlink

An infrastructure module used to provide structure
and connect modules together. Especially useful
for adapters and branch points.

Coordinator

An infrastructure module that coordinates other
sensor and actuator modules. Typically contains a
computer, microcontroller, or FPGA. One coordi-
nator module should be designated as the master.

Energy Source

An infrastructure module that either stores or
generates the energy used by the robot. This
includes batteries, fuel tanks, electrical generators,
and pressure generators.

Communication
An infrastructure module used to communiate
with the outside world. May use wifi, sound, or
any other method of communication.

Storage

An infrastructure module with empty space that
can be used for storage while the robot is in the
field. This includes modules that are used to
change the robot’s density, like ballast tanks and
hot air balloons.

Revolute Joint
An actuator module with one or more rotational
degrees of freedom. May be passive, rigid, or series
elastic.

Prismatic Joint
An actuator module with one or more translational
degrees of freedom. May be passive, rigid, or series
elastic.

Linkage Joint
An actuator module defined by a linkage. May be
passive, rigid, or series elastic.

(Table 2.2 continued on next page)

20



Thruster

An actuator module that provides body-frame
force along one or more axes. This includes pro-
pellers, jets, and rockets.

Flywheel
An actuator module that provides body-frame
torque along one or more axes. Includes reaction
wheels and eccentric vibration modules.

Wheel

An actuator module providing an exposed wheel
intended for locomotion. This includes tires, omni
wheels, and mechanum wheels.

Contact Surface

A surface module providing a sturdy, sensorized
contact surface intended for locomotion. The con-
tact surface may or may not be flat.

Fluid Surface

A surface module providing a surface designed to
interact with fluids. This includes wings, fins, sails,
parachutes, and helicopter blades.

Gripper

A end effector module providing the ability to
grasp objects. This includes pinching grippers,
multi-fingered hands, and jamming grippers, as
well as grippers that use chemical, pressure, and
electrostatic-based adhesion.

Tool

An end effector module providing a specialized tool.
Includes drills, shovels, grappling hooks, sensors,
and other specialized equipment.

Social
A module primarily used for interfacing to humans.
Includes faces, speakers, and screens.

(Table 2.2 continued on next page)
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Directed sensor

A sensor module that must be carefully positioned
w.r.t. the object being measured. This includes
line-of-sight and contact-based sensors like LI-
DARs, Velodynes, RGBD, IR, ultrasonic, cameras
in various spectra, pH, and touch sensors.

Ambient sensor

A sensor module that measures ambient conditions.
This includes vibration, light, gas / air quality,
pressure, temperature, and sound sensors.

Local. sensor

A sensor module that provides localization data.
This includes imus, compasses, beacon detectors,
and gps.

Table 2.2: Functionality Primitives

Figure 2.8: Industrial Robot Functionality Tree
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Figure 2.9: Cleaning Robot Functionality Tree

Figure 2.10: Mobile Manipulator Functionality Tree
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Figure 2.11: Quadcopter Functionality Tree

Figure 2.12: Humanoid Robot Functionality Tree

2.3.2 Physical Model
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Figure 2.13: Physical models

A module can be modeled as a tree in

which each node is a “frame.” Each frame

node represents a frame of reference relevant

to the robot’s operation. Every frame, other

than the root, has exactly one parent frame,

denoted pj. A frame is related to its parent

via an affine transform jTpj ∈ SE(3). For

most frames, this transform is always equal

to its static component, jinT
s
pj. Joint frames

also have a dynamic component jT djin derived from the joint axis and states,

with jTpj = jT djin
j
inT

s
pj. The dynamic component is a constant identity matrix

for non-joint frames. Frames can have any number of children, c ∈ C. In

addition to defining a virtual frame of reference, a frame can also contain a

physical entity, such as a link, actuator, closure, sensor, dock, or interaction

point.

Link frames (frame nodes that contain a link entity) describe the rigid

bodies making up the module. Links have mass m ∈ R, a center of mass

c ∈ R3, inertia at the center of mass Icom ∈ R3×3. Detailed link geometry

is expressed as one or more triangle meshes G ∈ Gs, with bounding boxes

B ∈ Bs represented by geometric primitives. This geometry is related to the

frame origin by a set of transforms GT sj and BT sj . Links associated with fluid

surfaces also have an fluid dynamic force function fj(v̄, ρ, x) that describes the

lift and drag on the link due to movement in a fluid.
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Actuator frames exert wrenches (forces and torques) on their parent

frame. If an actuator has a child frame, it is considered a joint actuator frame.

Joint actuators exert an equal and opposite wrench on the child frame and

constrain the motion of the two frames. Actuators have an unit-length axis

(S̄ ∈ R6, parent frame) about which they apply wrenches and / or constrain

motion, and an actuator model, a(x, u). The actuator model may be linear

or nonlinear and maps the control input u and the actuator state x to the

magnitude of the wrench applied to the parent frame w = S̄a(x, u). The model

itself varies widely based on the type of actuator and application. The naive

torque-source model would simply be a(x, u) = u. An electric motor model

might be a nonlinear function of the motor’s rotor inertia, torque constant,

max temp, heat dissipation, winding resistance, friction, and position / velocity

/ acceleration / control input limits. The only restriction on a is that it must

be invertible. That is, there must exist an actuator command that will produce

any wrench within a valid range of wrenches.

Sensor frames describe the sensors attached to the module. This frame

defines the pose of the sensor in the module, and is used as a control point for

directed sensors. The sensor frame definition also includes the type of sensor

as well as any model parameters.

Dock frames describe the module’s docking interfaces. The z axis of

a dock frame must always be normal to the docking plane, facing out of the

module. The dock frame also specifies the scale of the dock. Dock frames must

be either a leaf or the root of the tree.
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Interaction frames specify the control point(s) of a module that should

be used for intentional environment interaction. This includes things like

the sole of a foot, the center of a gripper module, or the tip of a drill. The

interaction frame is associated with the geometry of its parent—if an interaction

frame is defined for the sole of the foot, it should be a direct child of the foot

link. The interaction frame also defines the tool’s goal space.

2.3.3 Relationships and Status

Figure 2.14: Relationships and
status

The module’s relationships describe its

external state—the module’s interaction with

other modules. It identifies the neighboring

modules attached to each of the module’s

docks, as well as the state of each docking

interface.

The module’s status describes its inter-

nal state. This includes the current value of

all sensor readings along with estimated state

and control variables defined by the model.

Unlike the static functionality primitive and physical models, the rela-

tionship and status components of the module’s SI can change at any time.

This data must remain synchronized with the master module to ensure correct

control synthesis. Relationships change relatively infrequently, so its portion of

the SI is simply sent back to the master whenever it changes. Status changes
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constantly, so the data is continuously streamed to the master module. The

status data overhead is minimized by using the SI to establish a fixed, but

module-specific, format for the streaming data. This allows state / control

information to be generically transferred as a large data glob, without wasting

bandwidth on data that only describes its contents (e.g., protocol header, or

data that simply labels joint position data with the name of the joint).

2.3.4 Static Self-Identity Specification

The static portion of a module’s SI can be described in software using

XML. The top-level tag contains the module’s type and primary functionality

primitive as attributes. The physical model, along with additional functionality

primitives as necessary, is contained within this tag. Every model component

(links, joints, docks, etc.) has attributes specifying the component’s parent, as

well as the transform relating the component to its parent. This uniform hier-

archy specification allows for more straightforward construction than URDF, in

which only joints specify the relationship between parent and child components.

The SI specification for the example roll joint module shown in figure

2.15 follows. In this example, the module has two links (l0, l1) connected by a

revolute joint (j0) and a dock on each link (d0, d1).
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Figure 2.15: Example module

<module type=” ro l l modu l e ” p r i m a r y f u n c t i o n a l i t y=” r e v o l u t e j o i n t ”>
<l i n k name=” l0 ” parent=””>

<geometr ic>
<c y l i n d e r rad ius=” 0.025 ” length=” 0 .1 ” o r i g i n=”0 0 0 0 0 0 .05 ”/>
<c y l i n d e r rad ius=” 0.05 ” length=” 0 .1 ” o r i g i n=”0 0 0 0 0 0 .1 ”/>

</ geometr ic>
< i n e r t i a l>

< i n e r t i a mass=” 0 .5 ” ixx=”0” iyy=”0” i z z=”0” ixy=”0” ixz=”0” iyz=”0”
o r i g i n=”0 0 0 0 0 0 .05 ”/>

< i n e r t i a mass=”2” ixx=”0” iyy=”0” i z z=” 2 .5 e−3” ixy=”0” ixz=”0” iyz=”0”
o r i g i n=”0 0 0 0 0 0 .1 ”/>

</ i n e r t i a l>
</ l i n k>

< j o i n t name=” j0 ” parent=” l0 ” o r i g i n=”0 0 0 0 0 0 .1 ” f u n c t i o n a l i t y=” r e v o l u t e j o i n t ”>
<s t a t e name=”q” min=”−2.36” max=” 2.36 ”/>
<s t a t e name=” q dot ” max=”1”/>
<con t r o l name=”u” max=”100”/>
<e l e c t r i c m o t o r ax i s=”0 0 1 0 0 0” to rque cons tant=”1”

t ransmi s s i on=”1” damping=” 0 .3 ” r o t o r i n e r t i a=” 0 .01 ” input=”u”/>
</ j o i n t>

<l i n k name=” l1 ” parent=” j0 ” o r i g i n=”0 0 0 0 0 0”>
<geometr ic>

<c y l i n d e r rad ius=” 0.025 ” length=” 0 .1 ” o r i g i n=”0 0 0 0 0 0 .05 ”/>
</ geometr ic>
< i n e r t i a l>

< i n e r t i a mass=” 0 .5 ” ixx=”0” iyy=”0” i z z=”0” ixy=”0” ixz=”0” iyz=”0”
o r i g i n=”0 0 0 0 0 0 .05 ”/>

</ i n e r t i a l>
</ l i n k>

<dock name=”d0” parent=” l0 ” o r i g i n=” 3 .14 0 0 0 0 0”/>
<dock name=”d1” parent=” l1 ” o r i g i n=”0 0 0 0 0 0 .1 ”/>

</module>
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2.4 Architectural Algorithms

2.4.1 Module Connection

If a module is physically docked, it has access to the power / communi-

cation channels and is given an IP address by the master. However, it does

not become a part of the additive robot system until the master receives its SI

and validates its relationships. This means that when the robot first starts up,

and when new modules are added, inter-module communication is necessary to

complete the construction of the system.

Shortly after being assigned an IP address, each module sends its SI

to the master. The SI initially contains no relationships, so the master just

stores the SI for later use. To establish relationships, every module sends out

DockID messages at a fixed rate through all unconnected local links. A DockID

message contains the sender’s IP address and the name of the dock through

which it’s being sent.

When a module receives a DockID message, it updates its internal

relationships and sends a Relationship message to the master via the global

network if there’s been a change. A Relationship message contains the sender’s

dock, the DockID reported by the connected module, the status of the docking

request (initially “pending”) and optionally a key-based digital signature

(see Section 2.4.4 for more on security). Once the master receives authentic

Relationships from both modules, it stores them until one of the modules is

integrated into the system. This allows the master to determine which module

should be considered the parent, and ensures that the modules are added in a
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new module parent module master module

SI

DockID

DockID

Relationship(pending)

Relationship(pending)

Add New SI

Relationship(connected)

Relationship(connected)

Figure 2.16: Module Connection MSC Diagram

tree structure, with the master as the root. Since the master is initially the only

part of the system, the modules connected directly to the master are added

first, then the ones connected to those modules, and so on. When each module

is ready to be added to the system, the master adds its SI to the system SI

(see Section 2.4.3 for details). It then sends Relationship messages back to the

relevant modules, with status “connected,” to confirm the connection.

Figure 2.16 provides an example of a module being connected to an

additive robot system. In the example, the “parent module” is already part of

the system, and the “new module” has just been physically docked with the

parent module.
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2.4.2 Module Failure Detection

Each module sends its neighbors empty Heartbeat messages on local

links at a fixed rate. If a module has been unexpectedly detached or is broken

electrically, it will no longer be able to send these messages. Thus, they give

the system the ability to detect module failure. When module notices that

its neighbor’s heart has stopped beating, it sends a Relationship message to

the master identifying the offending dock, with status “lost.” The master

moves the SIs for the lost module and all its children from the system SI into

a separate tree. The SIs are separated rather than deleted to better inform

a human operator about which modules most likely failed. The master then

sends the Relationship back to the module that detected the failure, with status

“disconnected” to officially disconnect the module. At this point, the module can

optionally drive the docking signal low, releasing the dead module(s) from the

system. However, since releasing the modules may cause more problems than

keeping them (e.g., a broken leg is often better than no leg), a human operator

should make the decision to release the modules in most cases. Figure 2.17

shows this process in a scenario where parent module is no longer receiving

lost module’s Heartbeat.

2.4.3 System Self-Identity Generation

The system SI is incrementally constructed by the master module,

starting with its own module SI. Mirroring the physical structure, the system

SI is stored as two trees: one at the module level containing the FP and status
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lost module parent module master module

(no Heartbeat)

(no Heartbeat)

(no Heartbeat)

Relationship(lost)

Segregate Lost SIs

Relationship(disconnected)

Figure 2.17: Module Removal MSC Diagram

information, the other at the frame level describing the system’s physical model.

The module connection procedure in Section 2.4.1 ensures that each

module’s SI is added as a leaf, regardless of communication timing. Thus, to

construct a system SI, the master simply repeats the procedure for adding a

single leaf module until all modules in the system have been processed.

Adding a single leaf module to the FP/status tree is straightforward.

The module’s relationships specify one module already in the tree (parent) and

the new module to be added. The new module’s functionality primitive is thus

simply added to the tree as a child of the module to which it is docked. The

state variables and control inputs are similarly mapped to the new node in the

tree.

Adding to the physical model may be more complicated, depending on

which dock in the new module was connected. The dock in the existing physical

tree, as well as the dock in the new module, are specified by the module’s
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relationship information. If the new module’s dock was the root of its physical

model, the new module’s frames can be appended to the system model by

simply making the existing dock the parent of the new module dock, with a

fixed 180 degree rotation on the x axis but no translation. The z-axis of dock

frames always points out of the module, so this rotation mates the modules in

the correct orientation, with their z-axes pointing into one another.

If the new module’s dock is not the root, the module’s physical model

must be modified before it can be added. Depending on the position of the

dock in the tree, it may require “flipping” frame connections (changing a parent

into a child and vice versa) throughout the tree. Figure 2.18 illustrates the

flipping that occurs when the example module in section 2.3.4 is connected

at each of its docks. Each link and its parent joint / dock are grouped in the

diagram for brevity. Sensor, dock, and interaction frames can be flipped by

simply inverting their parent transform. Link and actuator frames, however,

require special consideration; the center of mass, inertia matrix, and joint /

actuator axes may need to be updated to account for the change in parent

frame. The process for flipping these frames can be found in Featherstone’s

Rigid Body Dynamics book [14].

2.4.4 Security

The modules allowed to connect to an additive robot system can op-

tionally be restricted via keys. To use high-security mode, each module must

create a public/private key pair. Prior to operation, the public key for each
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Figure 2.18: Flipping Due To Dock Change

module in the system is stored by the master module. When a module sends a

Relationship message to the master in an attempt to connect to the system, it

sends an encrypted message containing the current time. If the master can’t

decrypt the message, or the time contained in the message is old / has been

received before, the connection attempt is ignored.

High-security mode thus allows a user to whitelist specific module

hardware. This ensures that un-vetted hardware is mostly ignored by the

system, limiting the data it can acquire and the damage it can do to the system.

However, it also limits the ability to quickly repair or extend the robot, since

new modules must be registered with the master. This feature is best used

when security is much more important than fast reconfiguration.
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Chapter 3

Module Decoupling

3.1 Overview

Figure 3.1: Module decoupling
layer

The module decoupling layer provides

a decoupled linear interface to the underlying

coupled non-linear dynamics of the additive

robot system. It takes as input the desired

joint accelerations q̈ and external forces to

apply to the environment fext. It uses the

system SI to produce actuator-specific com-

mands u for every actuator module in the

system. The module controllers then apply

the command to the actuator hardware in a

manner specific to each module.

The module decoupling layer is useful

because forces exerted by one actuator will affect the behavior of other actuators

in the system. For example, a rocket attached to an arm of a windmill will

cause the windmill to spin, even if the windmill joint is applying no torque

(Figure 3.2(a)). The modules are thus “coupled” to one another. The module
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(a) Windmill spinning
due to rocket

(b) Windmill stationary
despite rocket

decoupling layer decouples the modules by feedback-linearizing the system—

essentially computing the force an actuator needs to apply to perfectly balance

the dynamic effects of the other modules. This means that the windmill joint

would apply a torque exactly equal and opposite to the torque from the rocket,

keeping the windmill still if no acceleration was intended(Figure 3.2(b)). The

module decoupling layer is useful because it allows a higher-level controller to

command each module’s actuator(s) without worrying about how commands

sent to one module will affect the dynamics of other modules.

There are two types of inputs to the module decoupling layer: joint

accelerations and spatial forces.

Joint accelerations (q̈i,d ∈ R) can be used to control each joint as if

it were an isolated Newtonian system. For example, a simple joint trajec-

tory controller might use the modular decoupling layer in the following way:

xi = [qi, q̇i]
T
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ẋi = [q̇i, q̈i,d]
T

q̈i,d = KT
i (xi,d − xi), Ki ∈ R2

Spatial forces (fd ∈ R6) describe the forces and torques that each

thruster, flywheel, and contact / fluid surface should apply to the environment.

For thruster and flywheel actuators, the spatial force to be applied should be

explicitly specified. For surfaces whose force response is highly dependent on

environmental conditions, the spatial forces can either be predicted / desired

forces (e.g., apply half the robot’s weight downward through each of its two

feet), or sensed forces (balance the force the robot currently feels). If the

robot’s center of mass is stationary, these forces should add up to the total

gravitational force on the robot. When the robot’s mass is accelerating, the

difference from the stationary case should be equal to the force required to

cause the composite inertia to accelerate (f̄ = IC āC).

The algorithms presented for module dynamics decoupling are based on

recursion over the system’s physical model tree (see Section 2.3.2). A recursive

approach is well-suited to additive robot systems because it is particularly

amenable to structural modifications and modularly-distributed computation.

For systems with many actuators, the recursive formulation is also faster than

those based on full system matrix multiplication: O(N) vs O(N3).

The module decoupling scheme makes the following assumptions:

1. All links are sufficiently rigid that the robot can be modeled as an
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articulated rigid body.

2. Each joint actuator can measure its own joint states (q, q̇).

3. The gravity vector g is known or measurable.

3.2 Model Compression

Minimizing latency is critical for feedback control, and computational

power is often limited on embedded systems. The algorithms below recurse

over the physical model tree and the computation time scales with the number

of frames in the tree. It is thus advantageous to remove any extraneous frames

prior to performing the computations. For example, sensor frames and dock

frames don’t significantly affect the dynamics of the system, and links that are

connected by fixed transforms (e.g., the links on either side of a dock) can be

merged without any information loss. To that end, Algorithm 1 recursively

compresses the raw SI model into a compact joint-centric tree. Though the

algorithm reorganizes the tree and combines redundant frames’ inertial proper-

ties, all original frames remain accessible; The frames are preserved as children

of the closest parent node. Each node in the tree represents a single mass

attached to a parent joint, and contains the following information (where j

identifies the node):

1. cjs, a set of pointers to the node’s children.

2. pj, a pointer to the node’s parent.
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3. jT spj, the pre-joint static pose transform relating the node to its parent.

4. jXs
pj , the pre-joint static motion transform relating the node to its parent.

5. Īj, the spatial inertia of the node, expressed in the node’s frame.

6. S̄j, the axis of the joint connecting the node to its parent, expressed in

the parent’s frame.

Algorithm 1 System Model Compression

1: procedure Compress(j)

2: Īj =

[
Īcomj −mj(rj×)(rj×) mj(rj×)

−mj(rj×) mj(13x3)

]
3: for child cj ∈ cjs do
4: Compress(cj)
5: end for
6: if j is not a joint then
7: Īpj = Īpj + jXsT

pj Īj
jXs

pj . Merge self into parent
8: Īj = 0̄6

9: for child cj ∈ cjs do . Transfer children to parent
10: cT spc = cT spc

jT sp j
11: cXs

pc = cXs
pc
jXs

pj
12: S̄c[0 : 2] = pjT sj [0 : 2, 0 : 2]S̄c[0 : 2]
13: S̄c[3 : 5] = pjT sj [0 : 2, 0 : 2]S̄c[3 : 5]
14: Add c to parent’s child list
15: Remove c from j’s child list
16: end for
17: end if
18: end procedure
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SensorData SensorData SensorData

Decouple

Command Command Command

Figure 3.2: Centralized Module Decoupling MSC Diagram

3.3 Centralized Module Decoupling

In the centralized module decoupling scheme, each module sends its

sensor readings to the master. The master then computes decoupling commands

for the whole system and sends them back to each module (Figure 3.2). This is

the dominant approach in robotics today, with a centralized controller typically

computing inverse dynamics via the Recursive Newton Euler Algorithm (RNEA)

or similar. This algorithm is often implemented using Featherstone’s spatial

vector algebra [14].

Algorithm 2 is essentially the same as Featherstone’s floating-base inverse

dynamics algorithm, but has been reformulated to facilitate the transition to

distributed computation. It uses the full robot tree, the current joint states,

the desired joint accelerations, and the desired spatial forces to compute the

forces and torques that must be applied at each joint. These torques are then

converted into module commands via the a−1 function provided by the module
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SIs. The algorithm does this in two sequential recursions. The first recursion

starts from the root and recurses outward calculating kinematics, then inwards

computing the forces and composite inertias of each joint. The second recursion

starts from the root again and calculates the adjustment needed to account for

the acceleration of the root link, in addition to computing the final torques.

For a detailed explanation on how the algorithm works, see Featherstone’s

Rigid Body Dynamics Algorithms book [14].

The presented algorithm differs from Featherstone’s original floating-

base inverse dynamics in the following ways:

1. It uses a recursive formulation rather than looping over numbered bodies.

2. It makes the assumption that S̊j = 0 (i.e., the joint axis doesn’t vary

with time).

3. It performs gravity compensation based on external forces, rather than

uniform acceleration.

3.4 Distributed Module Decoupling

In the distributed module decoupling scheme, each module still sends

its sensor readings to the master, but the master no longer computes / sends

the decoupling commands. Instead, the master sends only the desired joint

accelerations and spatial forces to the relevant modules.
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Algorithm 2 Centralized Module Decoupling

1: procedure FirstPass(j)
2: if j is root then . Initialize
3: ār0 = 0̄
4: end if
5: Ic ← Ij
6: S̄R = S̄j[0 : 2] . Calculate kinematics outwards
7: S̄P = S̄j[3 : 5]
8: j,inEj = cos(qj)13x3 + sin(qj)(S̄

R×) + (1− cos(qj))(S̄R ⊗ S̄R)
9: j,inrj = S̄P qj

10: jT dj,in =
[
j,inEj

j,inrj
01x3 1

]−1

11: jTpj = jT dj,in
j,inT spj

12: jEpj = jTpj[0 : 2, 0 : 2]
13: pjrj = −jE−1

pj
jTpj[0 : 2, 3]

14: jXpj =

[
jEpj 0

−jEpj(pjrj×) jEpj

]
15: v̄j = jXpj v̄pj + Sj q̇j
16: ārj = jXpj ā

r
pj + v̄j × (S̄j q̇j) + Sj q̈j

17: for child cj ∈ cjs do . Recurse
18: FirstPass(cj)
19: end for
20: Icj = Ij +

∑
cjs

cjXT
j I

c
cj
cjXj . Calculate dynamics inwards

21: p̄j = Ij ā
r
j − (v̄j×)T Ij v̄j − jf ext +

∑
cj
cjXT

j p̄cj . cjXj = child’s jXpj

22: end procedure
23: procedure SecondPass(j)
24: if j is root then
25: 0ā0 = −(Ic0)−1p̄0 . Accelerate the root node
26: end if
27: j ā0 = jXpj

pj ā0 . Reflect acceleration in other nodes
28: τj = S̄Tj (ICj

j ā0 + p̄j)
29: for child cj ∈ cjs do . Recurse
30: SecondPass(cj)
31: end for
32: end procedure
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The distributed algorithm works by replacing the inter-module recursions

in the centralized algorithm with data transfers. That is, each module computes

its own part of the dynamics using the centralized algorithm, then sends dock-

centric data to its neighbors to finish the calculation.

If the distributed computation is synchronized (i.e., the second recursion

doesn’t start until the first is complete), the net result is exactly the same

math as in the centralized algorithm (Figure 3.3). However, only one command

is produced for a full calculation. The calculation time is bounded by the time

it takes for the algorithm to make three trips (outwards, inwards, outwards)

down the longest chain in the tree. Since communication time between modules

is non-zero, this slows down the control rate and often makes the algorithm

uncompetitive with the centralized version.

The control rate can be significantly improved by not requiring synchro-

nization (Figure 3.4). In this asynchronous scheme, each module computes the

dynamics every time it receives new data from its neighbor. Since the data is

usually not from the same computation, this approach does not perfectly reflect

the centralized math. Asynchronous decoupling thus represents a “current

best guess” at the decoupling commands, and comes at the cost of decreased

decoupling accuracy. The accuracy loss may become significant if the control

rate is slower than the dynamics of the system. The asynchronous approach is

nevertheless adopted in this work.

Since the distributed computation is asynchronous, the algorithm can

be modified into a single recursion (outwards + inwards). The final recursion
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Figure 3.3: Synchronous Module Decoupling MSC Diagram
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Figure 3.4: Asynchronous Module Decoupling MSC Diagram
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in the centralized version accounts for the acceleration of the root node and

computes the command. Replacing the root acceleration ar0 in the first outward

pass of the centralized algorithm with the true root node acceleration (if you

knew it beforehand) results in the same math. The distributed version is

asynchronous, so using the “current best guess” root acceleration in the first

pass is not significantly more erroneous than performing the second outward

pass. The command calculation can then be moved to the end of the inwards

pass without loss, and the final recursion can be eliminated.

Two kinds of data packets are transferred between modules: one con-

taining data for the outward recursion, and one containing data for the inward.

The OutwardPacket is received from each module’s parent, and contains

12 floats (48 bytes):

1. v̄pjd ∈ R6: spatial velocity at the parent dock

2. ārpjd ∈ R6: spatial acceleration at the parent dock

The InwardPacket is sent to each module’s parent, and contains 16

floats (64 bytes):

1. θCpjd ∈ R10: parameterized composite inertia at the parent dock

2. pjdp̄j ∈ R6: force at the parent dock

The parameterized inertia θ = [Ixx, Iyy, Izz, Ixy, Ixz, Iyz,mcx,mcy,mcz,m]T

used in the InwardPacket saves bandwidth by sending the minimum information
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needed to reconstruct the full inertia matrix, I. The inertia can be changed

between these two forms as follows:

θ = [I(0, 0), I(1, 1), I(2, 2), I(0, 1), I(0, 2), I(1, 2), I(2, 4), I(0, 5), I(1, 3), I(5, 5)]T

I =


θ(0) θ(3) θ(4) 0 −θ(8) θ(7)
θ(3) θ(1) θ(5) θ(8) 0 −θ(6)
θ(4) θ(5) θ(2) −θ(7) θ(6) 0

0 θ(8) −θ(7) θ(9) 0 0
−θ(8) 0 θ(6) 0 θ(9) 0
θ(7) −θ(6) 0 0 0 θ(9)


Algorithm 3 presents the distributed module decoupling algorithm. The

Decouple function recursively computes the module’s dynamics starting from

the root of the module’s model, integrating cached data from other modules as

appropriate. The algorithm assumes that the root of the module model is the

dock that connects it to its parent. The function should be called at a constant

rate, ideally synchronized to local sensor data acquisition.

The worst-case command rate and latency depend on the speed of the

communication channels and the structure of the robot. Consider a humanoid

with two 7-dof arms and two 6-dof legs, with the master at the center and

local links communicating at 100Mbit/s. The maximum depth is 7 (master to

arm-tip), and the longest chain is 15 (left arm to right arm). Each outward

transaction takes around 3.84us per module, while inward transactions take

around 5.12us. Total time spent transferring data for each module hop is

8.96us, so the upper bound on command rate is 111.6kHz. The actual limit

will be lower due to computation time, parsing, thread switching, etc. The

worst-case latency occurs on the longest chain. For a dynamic event in the

humanoid’s left hand to reach its right hand, the algorithm must complete 21
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Algorithm 3 Distributed Module Decoupling

1: procedure Decouple(j)
2: if root and master module then
3: ārj = −(Icj )

−1p̄0

4: v̄j = 0̄
5: else if root and not master module then
6: ārj = jXpjd ParentOutwardPacket.ārpjd
7: v̄j = jXpjd ParentOutwardPacket.v̄pjd
8: else . has a joint
9: CalculateJointKinematics(j)

10: end if
11: for child cj ∈ cjs do . Recurse locally
12: Decouple(cj)
13: end for
14: Icj = Ij +

∑
cjs

cjXT
j I

c
cj
cjXj . Calculate dynamics inwards

15: p̄j = Ij ā
r
j − (v̄j×)T Ij v̄j − jf ext +

∑
cj
cjXT

j p̄cj
16: for children attached to this node do
17: NotifyChild(cj) . Send OP to child module cj
18: end for
19: if root node and not master module then
20: NotifyParent(pj) . Send IP to parent module pj
21: end if
22: τj = STj (ICj

j ā0 + p̄j)
23: end procedure
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Algorithm 4 Distributed Module Decoupling Part 2

1: procedure CalculateJointKinematics(j)
2: S̄R = S̄j[0 : 2] . Calculate kinematics outwards
3: S̄P = S̄j[3 : 5]
4: j,inEj = cos(qj)13x3 + sin(qj)(S̄

R×) + (1− cos(qj))(S̄R ⊗ S̄R)

5: jT dj,in =
[
j,inEj S̄P qj
01x3 1

]−1

6: jTpj = jT dj,in
j,inT spj

7: jEpj = jTpj[0 : 2, 0 : 2]
8: pjrj = −jE−1

pj
jTpj[0 : 2, 3]

9: jXpj =

[
jEpj 0

−jEpj(pjrj×) jEpj

]
10: ārj = jXpj āpj + v̄j × (S̄j q̇j) + S̄j q̈j
11: v̄j = jXpj v̄pj + S̄j q̇j
12: end procedure
13: procedure NotifyChild(cj)
14: Iccjd = Unpack(ChildInwardPacket.θCpjd)

15: Icj += cjdXT
j I

c
cjd

cjdXj

16: p̄j += cjdXT
j ChildInwardPacket.pjdp̄j

17: ChildOutwardPacket.v̄pjd = cjdXj v̄j
18: ChildOutwardPacket.ārpjd = cjdXj ā

r
j

19: SendOutwardPacket(cj, ChildOutwardPacket)
20: end procedure
21: procedure NotifyParent(pj)
22: ParentInwardPacket.θj = Pack(jXT

pjdI
c
j
jXpjd)

23: ParentInwardPacket.pjdp̄j = jXT
pjdp̄j

24: SendInwardPacket(pj, ParentInwardPacket)
25: end procedure
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(7 out + 7 in + 7 out) hops, inducing 188us of latency. The worst-case latency

will thus be roughly equivalent to a 5.3kHz feedback loop, though the effective

latency is lower for nearby modules. For example, if force is applied to the last

arm module, that module’s parent will compensate for it after only one hop

(8.96us).
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Chapter 4

Whole-Body Control

4.1 Overview

Figure 4.1: Whole-body Con-
trol

The whole-body control layer coordi-

nates the movement of the entire additive

robot system to perform a set of tasks. Each

task specifies a desired geometric relationship

between two frames and produces a set of joint

accelerations that move the system toward the

desired state. These joint accelerations are

combined into a single set of prioritized joint

accelerations using the prioritization scheme

in Section 4.2. The core set of tasks con-

sists of joint-space (Section 4.3), Cartesian

goal-space (Section 4.4), and center of mass

(Section 4.5) tasks, automatically derived from the functionality primitives of

the modules making up the system. The core is augmented by an optional

set of Cartesian goal-space tasks manually specified by the user. Section 4.6

presents the whole-body control algorithm in its entirety.
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The inputs to this control layer are the priorities for each task (α), the

goal-region setpoints for each Cartesian goal-space task (Gd), the setpoint for

each joint (Qd), and the desired spatial CoM acceleration (acom), and the CoM

actuator weight vector w. Setpoints for disabled tasks (α = 0) will not affect

the system, and do not need to be provided.

The prioritized joint accelerations and spatial forces produced by the

whole-body control layer are interfaced to the robot via the module decoupling

layer discussed in Chapter 3.

4.2 Task Prioritization

The joint accelerations produced by each task must be merged into a

single set of accelerations before they can be sent to the module decoupling

layer. This can be naively achieved by simply taking the average of all the

joint accelerations. However, different tasks might need to use the same joints,

and some tasks are more important than others; Falling over might result in

permanent damage, but failing to flawlessly wave hello is not the end of the

world. Thus, merging tasks based on priority is often beneficial.

Prioritized merging can be performed by weighting the average of the

joint accelerations with each task’s priority, α ∈ [0.0, 1.0]. That is, if a task i ∈ Ω

affects joint j and has priority αi, the prioritized acceleration is q̈j =
∑

i∈Ω q̈
i
jα

i∑
i∈Ω α

i .

When the tasks are weighted in this way, higher priority / weight tasks are

satisfied more quickly than low priority tasks.
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Using scalar priorities has several advantages over schemes that use

integer-based prioritization. The first advantage is that it’s easy to turn tasks

on and off: value of zero priority naturally indicates that the task is disabled

and will not affect the robot’s behavior. Second, the relative “strength” of a

task with respect to the others gradually increases with priority. This allows

for more fine-grained adjustment of priorities and allows for smooth, seamless

transitioning between active tasks by simply interpolating the priority of each

task up or down.

However, merging tasks in this way results in non-optimal control, since

high priority tasks are not executed cleanly: Active tasks with lower priority

still affect the execution of high priority tasks to some extent. On the other

hand, because this technique is computationally fast, it allows the system

to quickly correct the inaccuracies via feedback. The use of Cartesian goal

regions also makes task conflicts less likely, since many tasks will continue to

be satisfied even given small perturbations from other tasks.

4.3 Joint-space Tasks

A joint-space control task is automatically generated for each actuated

joint in the additive robot system. These tasks allow individual joints to be

controlled and are useful for manually controlling joints and executing behaviors

scripted in joint-space. Each task has a separate priority, which allows individual

joints to be turned on and off. The task controlling joint j takes as input the

desired position, velocity, and feedforward acceleration Qd
j = [qdj , q̇

d
j , q̈

d
j,ff ]. The
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task also computes a PD feedback acceleration based on the current joint states

to regulate position and velocity: q̈j,fb = Kj,p(q
d
j − qj) + Kj,d(q̇

d
j − q̇j). The

feedback acceleration is added to the user-specified feedforward to produce the

task’s joint acceleration q̈j = q̈dj,ff + q̈j,fb.

4.4 Goal-space Tasks

Cartesian goal-space tasks are generated for controlling the pose of the

master module as well as all gripper, tool, wheel, directed sensor, payload,

social, and contact surface functionality primitives.

Goal-space is a natural task representation that intuitively exploits the

under-constrained nature of many real-world task specifications. A simple way

to represent goal-space is with temporal sequences of Cartesian goal regions [1,2].

In this model, each goal region is defined as a time-varying boundary in the

6-dimensional manifold of special Euclidean group SE(3) where all solutions

are equally valid (Figure 4.2(c)). The goal region is defined with respect to a

goal frame, which can be a particular robot frame, a static inertial frame in

the world, or the coordinate frame of some object in the environment.

(a) (b) (c)

Figure 4.2: Single (a) vs. alternatively valid (b) targets and (c) a 2D visualiza-
tion of a goal region (green).
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Goal-space task control is an extension of traditional Cartesian-space

task control, in which the controller attempts to move a frame to a specific

target pose (Figure 4.2(a), green arrow). In fact, Cartesian-space setpoints are

a special case of goal-space in which the goal region is infinitesimally small.

Recognizing that there often exist multiple trajectories that achieve the same

goal (Figure 4.2(b), green arrows), a goal-space task moves the controlled frame

into the specified region (Figure 4.2(c), green region), but does not force it to be

at any particular location within the region. This means that if a disturbance

occurs that does not threaten the goal, it is simply allowed to happen.

Many high-level goals can naturally be described with temporal se-

quences of Cartesian goal regions. For example, consider the goal of picking

up a cylindrical can from a table while remaining balanced. Since the can is a

rotationally symmetric cylinder, it can be picked up from any angle around its

primary axis, and at a variety of heights. For the robot to remain statically

stable, its center of mass must be within the region defined by the convex hull

of its contacts. The goals can thus be achieved by moving the gripper to the

can at an arbitrary angle / height along its primary axis, then closing the

gripper and lifting vertically with arbitrary position w.r.t. the table’s surface,

all while keeping the robot’s center of mass at an arbitrary position within the

footprint.

Designing goal regions is also often more intuitive to an untrained

human than selecting a single Cartesian pose achievable by the robot—The

average person can tell you that a cylinder can be picked up from any angle,
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but few can intuitively select a specific pose that is within a robot’s non-linear

kinematic workspace. This is especially true for additive robot systems, since

the kinematic workspace changes every time the robot’s structure is altered.

Mathematically, a Cartesian goal region can be defined as a six-dimensional

space: a set of minimum and maximum roll, pitch, yaw, x, y, and z that

define a region of space relative to the goal frame. That is, using Ḡ∆ =

[∆R,∆P ,∆Y ,∆x,∆y,∆z]
T ∈ SE(3) as the delta between the controlled frame

and the goal frame (or equivalently, the pose of the controlled frame in the

goal frame), Ḡ∆ ∈ [Ḡmin, Ḡmax] indicates containment within the goal region.

The following piecewise-linear function thus represents the “goal error” (see

Figure 4.3 for a 1-D example): Ḡerr =


Ḡ∆ − Ḡmax Ḡ∆ ≥ Ḡmax

Ḡmin − Ḡ∆ Ḡ∆ ≤ Ḡmin

0 otherwise

Figure 4.3: Illustration of one-dimensional goal error

To perform Cartesian goal-space task control, each task computes a

Cartesian acceleration that reduces the goal error and dampens oscillations:

ā = KpGerr −Kd
˙̄G∆. Note that when a dimension of the controlled frame’s

pose is inside the goal region, the corresponding position feedback dimension is

zero and the damping term dominates. The task’s behavior is thus that the
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controlled frame accelerates toward the goal region while outside of it, then

slows to a stop after it enters.

The Cartesian acceleration is converted into joint accelerations using

resolved acceleration techniques [8, 25]. With J as a floating-base jacobian and

qs as a vector the positions of the joints that support the controlled frame,

ā = J̇ q̇s+J q̈s
d. The joint accelerations q̈s

d can then be solved using the jacobian

pseudoinverse: q̈s
d = J†(ā− J̇ q̇s). Since the pseudoinverse requires a matrix

inversion, the time complexity of this transformation is O(n3). The Jacobian

transpose method could be used instead for faster computation, at the cost of

accuracy in some configurations: q̈s
d = JT (ā− J̇ q̇s).

4.5 CoM Control

Controlling the robot’s center of mass is critical for safely moving an

additive robot system around in the world. For example, the center of mass

must be within the support polygon for a the robot to be statically stable,

and the ZMP [28] / CMP [34] must be carefully controlled during dynamic

maneuvers. For non-articulated robots like quadcopters, the CoM’s acceleration

is essentially the acceleration of the entire craft.

The robot’s CoM is accelerated by external forces exerted on the robot

by the environment. Modules providing the thruster, flywheel, wheel, grip-

per, contact surface, and fluid surface functionality primitives must thus be

coordinated to achieve the desired CoM acceleration.
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The robot’s com frame positionally lies at its current center of mass,

with orientation matching that of the inertial frame (with the z axis pointing

“up” w.r.t. gravity). With fi ∈ F as the set of controllable forces acting

on the robot, and funi ∈ F un uncontrollable, the forces needed to cause a

CoM accleration of ācom can be calculated with ICcomācom −
∑

Fun
comXT

i f̄
un
i =

f̄desiredcom =
∑

F
comXT

i f̄i. Note that most forces are not directly applied in the

frame of the center of mass (com), and must be transformed with comXT
i . For

example, if force is applied to the robot’s foot, comXT
foot is the matrix that

transforms forces from the foot frame to the com frame. Controlling the CoM

acceleration can thus be achieved by selecting the appropriate F in relation to

the current F un.

To determine the desired F , F un must first be estimated. The com-

ponents of F un are gravity, buoyancy, lift, and drag. These forces can’t be

instantaneously changed by the robot, and are thus considered uncontrollable.

Gravitational force is the familiar combination of composite mass and gravity:

fg = mC ḡ. Buoyancy depends on the density ρ of the ambient fluid and the

volume V of the robot fB = ρV ḡ. Fluid surface lift and drag are functions

of the geometry and spatial velocity of each module, and thus must be com-

puted with the fluid force function included in modules with the fluid surface

functionality primitive.

Once fdesiredcom has been estimated, F can be found by solving a linear

program (LP): minimize wTΛ s.t. fdesiredcom = J comΛ, (Λ− Λmax) ≤ 0, (Λmin −

Λ) ≤ 0, with other constraints dependent on which actuators are available.

58



Λ ∈ RN is a vector of bounded force-scaling variables to be optimized and

J com ∈ R6×N is a Jacobian that maps these variables to spatial forces in the

CoM frame. w ∈ RN is a vector weighting each force source, which allows some

actuators to be favored over others. Each functionality primitive providing

controllable force (thrusters, flywheels, wheels, grippers, and contact surfaces)

adds to Λ, J com, and the constraints in different ways.

Thrusters and flywheels exert force along the spatial axis of the actuator,

scaled by the actuator command: fi = λiS̄. They thus increase N by one and

the Jacobian column is Ji = comXT
i S̄. The bounds on λi are determined by the

minimum and maximum command of the actuator.

Wheels also exert a force along a single axis, but the force is applied

normal to the rotational axis, tangent to the surface of the wheel. Using iw

as a frame at the wheel’s contact point with its z axis indicating the force

direction, Ji = (comXT
i
iXT

iw)[0, 0, 0, 0, 0, 1]T . The λi bounds are again based on

the actuator.

Grippers that are strong enough for locomotion provide a full 6-DoF

wrench. They thus increase N by six, with each Ji a column of comXT
i . The true

minimum and maximum λi for a given joint configuration can be derived by

mapping the minimum and maximum joint actuator forces through a Jacobian.

However, the gripper is often the weak link, so its maximum grip force is used

instead to save on computation.

Contact surfaces are significantly more complicated than the other force
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sources. The correct way to model them is to account for the geometry, friction,

and deformation of both the robot and the environment. However, to keep

things simple (and computationally tractable), the contact surface is here

assumed to be a rigid planar surface, the entirety of which is in contact with an

equally flat and rigid portion of the environment. This is blatantly inaccurate

in most cases, but is fast enough that feedback can typically compensate for

the inaccuracies.

Like a gripper, planar contact surfaces allow 6-DoF wrenches to be

exerted, and the added Jacobian entries are again the columns of comXT
i .

However, unlike a gripper, a contact surface is not fully connected to the

environment—a surface can only apply force within a friction cone without

losing contact, and must keep their CoP within the contact polygon to avoid

rolling. Additional constraints must be added to account for this. Each contact

surface defines a contact frame with the z-axis pointing into the contact surface.

λzi is the normal force, while λxi and λyi are tangential forces. λRi , λPi , and λYi

represent the moments about the x, y, and z axes respectively.

The normal force must always be positive—that is, the environment

can only push on a planar contact surface, not pull. This is reflected in the

constraint λzi ≥ 0.

The tangential forces must be kept lower than the friction coefficient

µ times the normal force. This constraint is properly modeled by a cone

constraint:
√

(λxi )
2 + (λyi )

2 ≤ µiλ
z
i . However, that constraint requires the

problem to be converted into a second order cone problem. An inscribed
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friction pyramid is used instead to retain LP compatibility. This constraint is

more conservative than the full friction cone. The friction constraints are thus

|λxi | ≤ 1√
2
µiλ

z
i , λ

y
i ≤ 1√

2
µiλ

z
i .

The center of pressure is the point on the plane at which the tangential

moments are zero. If the CoP is at the edge of the contact polygon, the

surface will begin to break contact with the ground. The CoP is located at

[−λPi /λzi , λRi /λzi , 0]. Given a dx × dy rectangular “safe” area centered inside

the contact polygon, the constraints for preventing contact loss are |λPi | ≤
1
2
dxλzi , |λRi | ≤ 1

2
dyλzi .

The result of the LP optimization is the Λ vector, which can be easily

converted into the set of actuator-frame forces F as described above. When

F is sent to the module decoupling layer, additional torque is applied to each

joint to compensate for the force. Compensating for the forces in this way

allows the robot to be treated as a rigid body rather than an articulated body,

which greatly simplifies the CoM control calculations.

4.6 Centralized Optimization

Algorithm 5 compiles the components of the whole body controller

discussed in previous sections into a single centralized algorithm. As in the

module decoupling layer, the algorithm operates on the compressed model and

Featherstonian spatial vector algebra is used recursively to efficiently compute

the robot’s kinematics and dynamics. The algorithm also assumes that the

variables calculated in the module decoupling layer are available.
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Algorithm 5 Centralized Whole-body Control

1: procedure WBC(α, Q, G, acom, w)
2: for task Qi ∈ Q, αi > 0 do
3: αtotal += Γαi . Γ maps αi to the approp. entries of αtotal
4: q̈total += ComputeJointTask(Qi)
5: end for
6: for task Gi ∈ G, αi > 0 do
7: αtotal += Γαi
8: q̈total += ComputeCGSTask(Gi)
9: end for

10: q̈total ./= αtotal
11: F = ComputeCoMTask(acom, w)
12: Decouple(q̈total, F )
13: end procedure
14: procedure ComputeJointTask(Qi)
15: return q̈j = q̈dj,ff +Kj,p(q

d
j − qj) +Kj,d(q̇

d
j − q̇j)

16: end procedure
17: procedure ComputeCGSTask(Gi)

18: Gi,err =


Gi,∆ −Gi,max Gi,∆ ≥ Gi,max

Gi,min −Gi,∆ Gi,∆ ≤ Gi,min

0 otherwise

19: ā = KpGi,err −KdĠi∆

20: q̈s
d = JT (ā− J̇ q̇s)

21: end procedure
22: procedure ComputeCoMTask(acom, w)
23: F un = mC ḡ + ρV ḡ +

∑
j∈FS−FPs fj(v̄, ρ, x)

24: for actuator A ∈ A, wA > 0 do
25: C← CA . CA, JA are A’s constraint and jacobian entries
26: J com ← JA
27: end for
28: Solve minimize wTΛ s.t. fdesiredcom = J comΛ, C
29: end procedure
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Chapter 5

Future Work

This work presented a framework for module interfacing, modeling,

and control in additive robot systems. However, there are improvements and

additional features that could be pursued in the future to improve additive

robot systems.

The proposed scalable dock was designed with electrical signals in mind,

and may not be sufficient for all types of robots. Some connectors need to

transfer more than just electricity; a hydraulic or pneumatic robot will also need

pressurized conduits in which to move fluid. Tendon-based robots need extra

holes and pulleys to route the cables that move the robot. A connector used in

an underwater robot needs to be water-tight, and may need to have particular

hydrodynamic properties. To make additive robot systems compatible with

these types of robots, the docking system will need to be improved.

While the presented dynamics calculations include everything normally

modeled in rigid body dynamics, they still ignore many aspects of physics.

Some things that could be added to improve the accuracy of the calculations

follow:

1. Additional aerodynamic effects, such as the magnus and ground effects.
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2. “Closure frames” to close kinematic loops within the robot and improve

support for linkages.

3. Detailed friction models for wheels and other contacts (slipping / skidding,

hydroplaning, etc)

4. Support for dynamical actuator models, rather than static mappings.

5. Contact constraints that work for ground and contact surface modules

that are soft and / or non-flat.

Controller gain tuning and model calibration is often tedious and time

consuming. Since the proposed control scheme still has many gains / param-

eters, automating this process would make additive robot systems easier to

use. One possible approach is to use a robust adaptive controller for both

control and model refinement. The trajectory tracking stability and model

parameter convergence of adaptive controllers can be mathematically proven,

if the mathematical structure of each modules model is assumed to be correct.

The controller can also automatically modulate its gains based on how well

its internal model fits its observations of the system. This will allow it to

reject error and retain stability when the model is not well known, while still

enabling smooth and compliant motion once the model converges to the correct

parameters.

Finally, the list of functionality primitives is necessarily incomplete.

While it covers most robots in use today, there will likely be new innovations
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in the future. The list of functionality primitives will thus need to be expanded

in the future to ensure that all possible robots can be constructed as additive

robot systems.
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