• About INIA-Neuroimmune
  • Resources
  • Publications
  • Meetings
  • News
  • Contact Us
  • Skip to primary navigation
  • Skip to main content
UT Shield
Integrative Neuroscience Initiative on Alcoholism
  • About INIA-Neuroimmune
    • INIA-N Research Projects
    • INIA-N Organizational Structure
  • Resources
    • Mutant animals in alcohol research
    • Knock-in mice and alcohol publications
  • Publications
  • Meetings
    • Past Meetings
  • News
  • Contact Us
The University of Texas at Austin

2005

William J. McBride, Robnet T. Kerns, Zachary A. Rodd, Wendy N. Strother, Howard J. Edenberg, Joel G. Hashimoto, Kristine M. Wiren, and Michael F. Miles. “Alcohol effects on central nervous system gene expression in genetic animal models.” Alcoholism, Clinical and Experimental Research, 29, 2, Pp. 167–175. 

Abstract

This article summarizes the proceedings of a symposium presented at the 2004 annual meeting of the Research Society on Alcoholism in Vancouver, British Columbia, Canada. The organizers and chairs were William J. McBride and Michael F. Miles. The presentations were (1) Molecular Triangulation on Gene Expression Patterns in Behavioral Responses to Acute Ethanol, by Robnet T. Kerns; (2) Gene Expression in Limbic Regions After Ethanol Self-Infusion Into the Posterior Ventral Tegmental Area, by Zachary A. Rodd; (3) Microarray Analysis of CNS Limbic Regions of Inbred Alcohol-Preferring and -Nonpreferring rats and Effects of Alcohol Drinking, by Wendy N. Strother and Howard J. Edenberg; and (4) Microarray Analysis of Mouse Lines Selected for Chronic Ethanol Withdrawal Severity: The Convergence of Basal, Ethanol Regulated, and Proximity to Ethanol Quantitative Trait Loci to Identify Candidate Genes, by Joel G. Hashimoto and Kristine M. Wiren.

Hilary J. Little, David N. Stephens, Tamzon L. Ripley, Gilyana Borlikova, Theodora Duka, Manja Schubert, Doris Albrecht, Howard C. Becker, Marcello F. Lopez, Friedbert Weiss, Colin Drummond, Michelle Peoples, and Christopher Cunningham. “Alcohol withdrawal and conditioning.” Alcoholism, Clinical and Experimental Research, 29, 3, Pp. 453–464. 

Abstract

This review contains the proceedings from a symposium held at the RSA conference in 2003 on “Alcohol Withdrawal and Conditioning.” The presentations covered a range of interactions between conditioning and alcohol withdrawal, in both animal behavior and the clinic. Dr. D.N. Stephens first described his studies exploring the consequences of alcohol dependence and repeated experience of withdrawal on the conditioning process. His data suggested that repeated withdrawal from moderate alcohol intake impairs amygdala-dependent mechanisms for learning about aversive events. Dr. H. Becker then detailed studies examining the consequences of repeated ethanol withdrawal experience on subsequent ethanol drinking behavior in mice, and conditions in which motivational properties of odor cues that are associated with different phases of ethanol withdrawal influence such relapse behavior. The data suggested that cues associated with acute withdrawal or “recovery” from withdrawal may serve as modulating factors in influencing subsequent ethanol drinking behavior, and that the timing of the cues determines their consequences. Dr. F. Weiss described recent findings from animal models of relapse that suggested the efficacy of alcohol-associated contextual stimuli in eliciting alcohol-seeking behavior resembles the endurance of conditioned cue reactivity and cue-induced cocaine craving in humans. The interactive effects of stress and ethanol-related environmental stimuli were found to be dependent on concurrent activation of endogenous opioid and corticotropin-releasing factor systems. Conditioning factors (i.e., exposure to drug-associated stimuli) and stress could therefore interact to augment vulnerability to relapse. Dr. C. Drummond then addressed the clinical aspects of conditioning during alcohol withdrawal and described studies showing exposure of alcoholics to alcohol-related cues elicited greater subjective and physiological responses than exposure to neutral cues. The former responsivity showed a relationship with a measure of motivation to drink alcohol. Finally, Dr. C. Cunningham provided a summary of the concepts involved in the presentations and discussed the conditioning processes that affect behavior during and after alcohol withdrawal.

Pamela Metten and John C. Crabbe. “Alcohol withdrawal severity in inbred mouse (Mus musculus) strains.” Behavioral Neuroscience, 119, 4, Pp. 911–925. 

Abstract

Male mice (Mus musculus) from 15 standard inbred strains were exposed to a nearly constant concentration of ethanol (EtOH) vapor for 72 hr, averaging 1.59 +/- 0.03 mg EtOH/mL blood at withdrawal. EtOH- and air-exposed groups were tested hourly for handling-induced convulsions for 10 hr and at Hours 24 and 25. Strains differed markedly in the severity of withdrawal (after subtraction of control values), and by design these differences were independent of strain differences in EtOH metabolism. Correlation of strain mean withdrawal severity with other responses to EtOH supported previously reported genetic relationships of high EtOH withdrawal with low drinking, high conditioned taste aversion, low tolerance to EtOH-induced hypothermia, and high stimulated activity after low-dose EtOH. Also supported were the positive genetic correlations among EtOH, barbiturate, and benzodiazepine withdrawal. Sensitivity of naive mice to several chemical convulsant-induced seizures was also correlated with EtOH withdrawal.

Fulton T. Crews, Tracey Buckley, Peter R. Dodd, Gabriele Ende, Nina Foley, Clive Harper, Jun He, David Innes, El-Wui Loh, Adolph Pfefferbaum, Jian Zou, and Edith V. Sullivan. “Alcoholic neurobiology: changes in dependence and recovery.” Alcoholism, Clinical and Experimental Research, 29, 8, Pp. 1504–1513. 

Abstract

This article presents the proceedings of a symposium held at the meeting of the International Society for Biomedical Research on Alcoholism (ISBRA) in Mannheim, Germany, in October, 2004. Chronic alcoholism follows a fluctuating course, which provides a naturalistic experiment in vulnerability, resilience, and recovery of human neural systems in response to presence, absence, and history of the neurotoxic effects of alcoholism. Alcohol dependence is a progressive chronic disease that is associated with changes in neuroanatomy, neurophysiology, neural gene expression, psychology, and behavior. Specifically, alcohol dependence is characterized by a neuropsychological profile of mild to moderate impairment in executive functions, visuospatial abilities, and postural stability, together with relative sparing of declarative memory, language skills, and primary motor and perceptual abilities. Recovery from alcoholism is associated with a partial reversal of CNS deficits that occur in alcoholism. The reversal of deficits during recovery from alcoholism indicates that brain structure is capable of repair and restructuring in response to insult in adulthood. Indirect support of this repair model derives from studies of selective neuropsychological processes, structural and functional neuroimaging studies, and preclinical studies on degeneration and regeneration during the development of alcohol dependence and recovery form dependence. Genetics and brain regional specificity contribute to unique changes in neuropsychology and neuroanatomy in alcoholism and recovery. This symposium includes state-of-the-art presentations on changes that occur during active alcoholism as well as those that may occur during recovery-abstinence from alcohol dependence. Included are human neuroimaging and neuropsychological assessments, changes in human brain gene expression, allelic combinations of genes associated with alcohol dependence and preclinical studies investigating mechanisms of alcohol induced neurotoxicity, and neuroprogenetor cell expansion during recovery from alcohol dependence.

Amanda L. Sharpe, Natalia O. Tsivkovskaia, and Andrey E. Ryabinin. “Ataxia and c-Fos expression in mice drinking ethanol in a limited access session.” Alcoholism, Clinical and Experimental Research, 29, 8, Pp. 1419–1426. 

Abstract

BACKGROUND: Although previous murine studies have demonstrated ethanol self-administration resulting in blood ethanol concentrations (BECs) believed to be pharmacologically relevant, to our knowledge, no study reported to date has demonstrated intoxication via ataxia after self-administration. Thus, the goal of this study was to demonstrate ataxia and to examine changes in c-Fos expression in mice after self-administration of intoxicating doses of ethanol. METHODS: Male C57BL/6J mice were trained to drink a 10% ethanol solution during daily 30-min limited access sessions. Mice were exposed to increasing concentrations of ethanol until a 10% ethanol solution was reached. BEC and ataxia, measured as foot slips off of a balance beam, were examined after the limited access self-administration session. In a separate experiment, various brain structures from mice drinking water or ethanol were examined for changes in c-Fos expression two hr after the limited access session. RESULTS: Mice drank between 1.5 and 2 g/kg of 10% ethanol during the daily 30-min session. BECs for these mice 15 min after the limited access session ranged between 0.52 and 2.13 mg/ml. A significant increase in foot slips off a balance beam was seen immediately after ethanol consumption during the limited access session. Among mice drinking ethanol, an increase in c-Fos expression was seen in the Edinger-Westphal nucleus, and a decrease in c-Fos expression was seen in the cingulate cortex, ventral tegmental area, lateral and medial septum, CA1 region of the hippocampus, and basolateral amygdala. CONCLUSIONS: After this procedure in mice, BECs are achieved that are in a range considered pharmacologically relevant and intoxicating. Significant ataxia was observed after ethanol self-administration. Brain regions showing changes in c-Fos expression after voluntary intoxication were similar to those previously reported, suggesting that these brain regions are involved in regulating behavioral effects of alcohol intoxication.

Adam Z. Weitemier and Andrey E. Ryabinin. “Brain Region–Specific Regulation of Urocortin 1 Innervation and Corticotropin-Releasing Factor Receptor Type 2 Binding by Ethanol Exposure.” Alcoholism: Clinical and Experimental Research, 29, 9, Pp. 1610–1620. Publisher’s Version 

Abstract

Background: Ethanol administration and consumption selectively activates the urocortin 1 (Ucn1)-expressing neurons of the Edinger-Westphal nucleus. We investigated whether repeated ethanol exposure affects Ucn1 and Ucn1-responsive corticotropin-releasing factor type-2 receptors (CRF2). Methods: Male C57BL/6J and DBA/2J mice were exposed to 2 g/kg ethanol via intraperitoneal injection once per day for 14, seven, or zero days. Ucn1 immunoreactivity was measured in the lateral septum, dorsal raphe, and Edinger-Westphal nucleus. In a separate experiment, C57BL/6J mice were exposed to ethanol for seven, one, or zero days, and CRF2 receptor binding was measured in the lateral septum and dorsal raphe by receptor autoradiography. Results: Ethanol exposure induced parallel changes in Ucn1 immunoreactive terminal fibers in the lateral septum and dorsal raphe of both strains. Seven ethanol exposures but not one ethanol exposure significantly increased CRF2 receptor binding in the dorsal raphe and slightly increased CRF2 receptor binding in the lateral septum. Conclusions: These results provide evidence that the Ucn1/CRF2 receptor system can be modified by ethanol exposure. They additionally suggest that this system may be involved in behavioral changes during alcoholism.

Zachary A. Rodd, Richard L. Bell, Victoria K. McQueen, Michelle R. Davids, Cathleen C. Hsu, James M. Murphy, Ting-Kai Li, Lawrence Lumeng, and William J. McBride. “Chronic ethanol drinking by alcohol-preferring rats increases the sensitivity of the posterior ventral tegmental area to the reinforcing effects of ethanol.” Alcoholism, Clinical and Experimental Research, 29, 3, Pp. 358–366. 

Abstract

BACKGROUND: The ventral tegmental area (VTA) is involved in regulating ethanol drinking, and the posterior VTA seems to be a neuroanatomical substrate that mediates the reinforcing effects of ethanol in ethanol-naive Wistar and ethanol-naive alcohol-preferring (P) rats. The objective of this study was to test the hypothesis that chronic ethanol drinking increases the sensitivity of the posterior VTA to the reinforcing effects of ethanol. METHODS: Two groups of female P rats (one given water as its sole source of fluid and the other given 24-hr free-choice access to 15% ethanol and water for at least 8 weeks) were stereotaxically implanted with guide cannulae aimed at the posterior VTA. One week after surgery, rats were placed in standard two-lever (active and inactive) operant chambers and connected to the microinfusion system. Depression of the active lever produced the infusion of 100 nl of artificial cerebrospinal fluid (CSF) or ethanol. The ethanol-naive and chronic ethanol-drinking groups were assigned to subgroups to receive artificial CSF or 25, 50, 75, or 125 mg/dl of ethanol (n = 6-9/dose/group) to self-infuse (FR1 schedule) during the 4-hr sessions given every other day. RESULTS: Compared with the infusions of artificial CSF, the control group reliably (p \textless 0.05) self-infused 75 and 125 mg/dl of ethanol but not the lower concentrations. The ethanol-drinking group had significantly (p \textless 0.05) higher self-infusions of 50, 75, and 125 mg/dl of ethanol than artificial CSF during the four acquisition sessions; the number of infusions of all three doses was higher in the ethanol-drinking group than in the ethanol-naive group. Both groups decreased responding on the active lever when artificial CSF was substituted for ethanol, and both groups demonstrated robust reinstatement of responding on the active lever when ethanol was restored. CONCLUSIONS: Chronic ethanol drinking by P rats increased the sensitivity of the posterior VTA to the reinforcing effects of ethanol.

Marisa Roberto, Michal Bajo, Elena Crawford, Samuel G. Madamba, and George R. Siggins. “Chronic Ethanol Exposure and Protracted Abstinence Alter NMDA Receptors in Central Amygdala.” Neuropsychopharmacology, 31, 5, Pp. 988–996. Publisher’s Version 

Abstract

We recently reported that chronic ethanol treatment (CET) and early withdrawal (2–8 h) altered glutamatergic transmission at both pre- and postsynaptic sites in central nucleus of the amygdala (CeA). Acute ethanol (44 mM) inhibited the NMDA receptor (NMDAR)-mediated EPSCs (NMDA-EPSCs) more in CeA neurons from CET rats than from naïve rats and also decreased paired-pulse facilitation (PPF) of NMDA-EPSCs only in CET rats. To determine whether these CET effects persisted after prolonged withdrawal, we recorded intracellularly in rat CeA slices and measured mRNA and protein expression of CeA NMDAR subunits from CET rats and those withdrawn from ethanol for 1 or 2 weeks. At 1 week withdrawal, acute ethanol decreased evoked NMDA-EPSC amplitudes and NMDA currents induced by exogenous NMDA (20%) equally to that in naïve rats, indicating that CET effects on postsynaptic mechanisms reversed 1 week after CET cessation. However, acute ethanol still decreased PPF of NMDA-EPSCs, indicating that the acute ethanol-induced increase in glutamate release in CeA seen in CET rats was still present at this time. CET also significantly increased mRNA levels of NR1 and NR2B NMDAR subunits compared to control rats. At 1 week withdrawal, mRNA levels for NR1 and NR2B subunits were significantly decreased. These changes reversed at 2 weeks withdrawal. In Western blots, a significant increase in protein for all three subunits occurred in CeA from CET rats, but not after 1 and 2 weeks of withdrawal. These data indicate that CET induces reversible neuroadaptations in synaptic function, gene expression, and protein composition of NMDAR at CeA synapses.

Douglas B. Matthews, Sanjiv V. Bhave, John K. Belknap, Cynthia Brittingham, Elissa J. Chesler, Robert J. Hitzemann, Paula L. Hoffmann, Lu Lu, Shannon McWeeney, Michael F. Miles, Boris Tabakoff, and Robert W. Williams. “Complex genetics of interactions of alcohol and CNS function and behavior.” Alcoholism, Clinical and Experimental Research, 29, 9, Pp. 1706–1719. 

Abstract

This work summarizes the proceedings of a symposium at the 2004 RSA Meeting in Vancouver, Canada. The organizers were R. W. Williams and D. B. Matthews; the Chair was M. F. Miles. The presentations were (1) WebQTL: A resource for analysis of gene expression variation and the genetic dissection of alcohol related phenotypes, by E. J. Chesler, (2) The marriage of microarray and qtl analyses: what’s to gain, by J. K. Belknap, (3) Use of WebQTL to identify QTLs associated with footshock stress and ethanol related behaviors, by D. B. Matthews, (4) A high throughput strategy for the detection of quantitative trait genes, by R. J. Hitzemann, and (5) The use of gene arrays in conjunction with transgenic and selected animals to understand anxiety in alcoholism, by. B. Tabakoff.

Monica Lisa Berlanga, Taylor Kathryn Simpson, and Adriana Angelica Alcantara. “Dopamine D5 receptor localization on cholinergic neurons of the rat forebrain and diencephalon: a potential neuroanatomical substrate involved in mediating dopaminergic influences on acetylcholine release.” The Journal of Comparative Neurology, 492, 1, Pp. 34–49. 

Abstract

The study of dopaminergic influences on acetylcholine release is especially useful for the understanding of a wide range of brain functions and neurological disorders, including schizophrenia, Parkinson’s disease, Alzheimer’s disease, and drug addiction. These disorders are characterized by a neurochemical imbalance of a variety of neurotransmitter systems, including the dopamine and acetylcholine systems. Dopamine modulates acetylcholine levels in the brain by binding to dopamine receptors located directly on cholinergic cells. The dopamine D5 receptor, a D1-class receptor subtype, potentiates acetylcholine release and has been investigated as a possible substrate underlying a variety of brain functions and clinical disorders. This receptor subtype, therefore, may prove to be a putative target for pharmacotherapeutic strategies and cognitive-behavioral treatments aimed at treating a variety of neurological disorders. The present study investigated whether cholinergic cells in the dopamine targeted areas of the cerebral cortex, striatum, basal forebrain, and diencephalon express the dopamine D5 receptor. These receptors were localized on cholinergic neurons with dual labeling immunoperoxidase or immunofluorescence procedures using antibodies directed against choline acetyltransferase (ChAT) and the dopamine D5 receptor. Results from this study support previous findings indicating that striatal cholinergic interneurons express the dopamine D5 receptor. In addition, cholinergic neurons in other critical brain areas also show dopamine D5 receptor expression. Dopamine D5 receptors were localized on the somata, dendrites, and axons of cholinergic cells in each of the brain areas examined. These findings support the functional importance of the dopamine D5 receptor in the modulation of acetylcholine release throughout the brain.

Timothy Donohue, Paula L. Hoffman, and Boris Tabakoff. “Effect of ethanol on DARPP-32 phosphorylation in transgenic mice that express human type VII adenylyl cyclase in brain.” Alcoholism, Clinical and Experimental Research, 29, 3, Pp. 310–316. 

Abstract

BACKGROUND: Dopamine and cyclic adenosine monophosphate-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32) is a bidirectional signaling protein found in dopaminergically innervated brain areas. The characteristics and direction of DARPP-32 effects are regulated by phosphorylation of this protein. Phosphorylation of DARPP-32 on threonine-34 (T34) is regulated through the activation of dopamine (D1) receptors and stimulation of adenylyl cyclase (AC) and protein kinase A activity and by calcineurin. Phosphorylation of DARPP-32 on threonine-75 (T75) is regulated by cyclin-dependent kinase 5 and protein phosphatase 2A. DARPP-32 has been implicated in the motivational effects of ethanol. METHODS: The authors characterized transgenic mice that overexpress an ethanol-sensitive isoform of AC (AC7) in brain by measuring basal and ethanol-modulated DARPP-32 phosphorylation. Phosphorylated and total DARPP-32 were measured by immunoblotting in brain areas associated with the motivational and anxiolytic effects of ethanol (nucleus accumbens, striatum, and amygdala). RESULTS: AC7 transgenic mice had higher basal levels of T34 DARPP-32 than wild-type mice in striatum and amygdala, whereas basal levels of T75 DARPP-32 did not differ between wild-type and transgenic mice. Ethanol administration increased T34 DARPP-32 in nucleus accumbens and amygdala (but not in the striatum) of wild-type and transgenic mice (with a greater effect in amygdala of transgenic mice than wild-type mice). Ethanol administration increased T75 DARPP-32 in amygdala of only the wild-type mice and in nucleus accumbens and striatum of both the transgenic and wild-type mice. CONCLUSIONS: The effect of ethanol on the balance of DARPP-32 phosphorylation, especially in amygdala of wild-type versus transgenic mice, may contribute to differential motivational effects of ethanol in these animals.

Helen J. K. Sable, Zachary A. Rodd, Richard L. Bell, Jonathan A. Schultz, Larry Lumeng, and William J. McBride. “Effects of ethanol drinking on central nervous system functional activity of alcohol-preferring rats.” Alcohol, 35, 2, Pp. 129–135. Publisher’s Version 

Abstract

The [14C]-2-deoxyglucose (2-DG) technique was used to assess the rates of local cerebral glucose utilization (LCGU) in key limbic, cerebral cortical, hippocampal, basal ganglionic, and subcortical regions of alcohol-preferring (P) rats following chronic 24-h free-choice ethanol drinking. Adult male P rats were submitted to (1) 8 continuous weeks of two-bottle access to 15% ethanol and water (E-C group); (2) 8 weeks of identical two-bottle access followed by 2 weeks of ethanol deprivation (E-D group); (3) cycles of 2 weeks of two-bottle ethanol access and 2 weeks of deprivation, repeated for four cycles (E-RD group); or (4) water only treatment [ethanol-naive group (E-N group)]. A single pulse of [14C]-2-DG (125 μCi/kg) was administered via a venous catheter, and timed arterial blood samples were collected over 45 min and later assayed for plasma glucose and [14C]-2-DG concentrations. Quantitative autoradiography was used to determine [14C] densities, and LCGU values were calculated. With the exception of a few small differences in the hippocampus, no significant differences were found in any of the central nervous system (CNS) regions examined among the four experimental groups of P rats. Animals in the E-D group had lower LCGU rates in the anterior hippocampal CA1 subregion than animals in the E-N, E-C, and E-RD groups. In the anterior hippocampal CA3 subregion and the anterior hippocampal dentate gyrus, the E-D group had significantly lower LCGU rates than the E-RD group. Overall, the results of this study indicate that 24-h ethanol-drinking experience has little effect on CNS functional neuronal activity in P rats.

Vladimir I. Chefer, Traci Czyzyk, Elizabeth A. Bolan, Jose Moron, John E. Pintar, and Toni S. Shippenberg. “Endogenous kappa-opioid receptor systems regulate mesoaccumbal dopamine dynamics and vulnerability to cocaine.” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25, 20, Pp. 5029–5037. 

Abstract

Genetic and pharmacological approaches were used to examine kappa-opioid receptor (KOR-1) regulation of dopamine (DA) dynamics in the nucleus accumbens and vulnerability to cocaine. Microdialysis revealed that basal DA release and DA extraction fraction (Ed), an indirect measure of DA uptake, are enhanced in KOR-1 knock-out mice. Analysis of DA uptake revealed a decreased Km but unchanged Vmax in knock-outs. Knock-out mice exhibited an augmented locomotor response to cocaine, which did not differ from that of wild-types administered a behavioral sensitizing cocaine treatment. The ability of cocaine to increase DA was enhanced in knock-outs, whereas c-fos induction was decreased. Although repeated cocaine administration to wild types produced behavioral sensitization, knock-outs exhibited no additional enhancement of behavior. Administration of the long-acting KOR antagonist nor-binaltorphimine to wild-type mice increased DA dynamics. However, the effects varied with the duration of KOR-1 blockade. Basal DA release was increased whereas Ed was unaltered after 1 h blockade. After 24 h, release and Ed were increased. The behavioral and neurochemical effects of cocaine were enhanced at both time points. These data demonstrate the existence of an endogenous KOR-1 system that tonically inhibits mesoaccumbal DA neurotransmission. Its loss induces neuroadaptations characteristic of “cocaine-sensitized” animals, indicating a critical role of KOR-1 in attenuating responsiveness to cocaine. The increased DA uptake after pharmacological inactivation or gene deletion highlights the plasticity of mesoaccumbal DA neurons and suggests that loss of KOR-1 and the resultant disinhibition of DA neurons trigger short- and long-term DA transporter adaptations that maintain normal DA levels, despite enhanced release.

V. F. Turek and A. E. Ryabinin. “Ethanol versus lipopolysaccharide-induced hypothermia: involvement of urocortin.” Neuroscience, 133, 4, Pp. 1021–1028. 

Abstract

The urocortin1 (Ucn1) neurons of the mid-brain-localized Edinger-Westphal nucleus (EW) are robustly responsive to ethanol (EtOH) administration, and send projections to the dorsal raphe nucleus (DRN), which contains corticotropin-releasing factor type 2 receptors (CRF2) that are responsive to Ucn1. In addition, the DRN has been shown to be involved in regulation of body temperature, a function greatly affected by EtOH administration. The goal of the present study was to identify the role that the urocortinergic projections from the EW to the DRN have in mediating EtOH-induced and lipopolysaccharide (LPS)-induced hypothermia. Male C57BL6/J mice were used. Groups of mice underwent cannulation of the DRN, and then received i.p. injections of EtOH (2g/kg) or LPS (600 microg/kg or 400 microg/kg), followed by intra-DRN injections of artificial cerebrospinal fluid (aCSF) or anti-sauvagine (aSVG) (55 pmol), a CRF2 antagonist. Separate groups of mice received single intra-DRN injections of Ucn1 (20 pmol), CRF (20 pmol) or aCSF. For all experiments, core temperatures were monitored rectally every 30 min for several hours post-injection. Both EtOH and LPS induced hypothermia, and aSVG significantly attenuated this effect after EtOH; however, there was no significant attenuation of hypothermia after either dose of LPS. Ucn1 injection also caused hypothermia, while CRF injection did not. These data demonstrate that EtOH-induced hypothermia, but not LPS-induced hypothermia, may involve Ucn1 from EW acting at CRF2 receptors in the DRN.

Justin S. Rhodes, Karyn Best, John K. Belknap, Deborah A. Finn, and John C. Crabbe. “Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice.” Physiology & Behavior, 84, 1, Pp. 53–63. 

Abstract

Because of intrinsic differences between humans and mice, no single mouse model can represent all features of a complex human trait such as alcoholism. It is therefore necessary to develop partial models. One important feature is drinking to the point where blood ethanol concentration (BEC) reaches levels that have measurable affects on physiology and/or behavior (\textgreater1.0 mg ethanol/ml blood). Most models currently in use examine relative oral self-administration from a bottle containing alcohol versus one containing water (two-bottle preference drinking), or oral operant self-administration. In these procedures, it is not clear when or if the animals drink to pharmacologically significant levels because the drinking is episodic and often occurs over a 24-h period. The aim of this study was to identify the optimal parameters and evaluate the reliability of a very simple procedure, taking advantage of a mouse genotype (C57BL/6J) that is known to drink large quantities of ethanol. We exchanged for the water bottle a solution containing ethanol in tap water for a limited period, early in the dark cycle, in the home cage. Mice regularly drank sufficient ethanol to achieve BEC\textgreater1.0 mg ethanol/ml blood. The concentration of ethanol offered (10%, 20% or 30%) did not affect consumption in g ethanol/kg body weight. The highest average BEC ( approximately 1.6 mg/ml) occurred when the water-to-ethanol switch occurred 3 h into the dark cycle, and when the ethanol was offered for 4 rather than 2 h. Ethanol consumption was consistent within individual mice, and reliably predicted BEC after the period of ethanol access. C57BL/6J mice from three sources provided equivalent data, while DBA/2J mice drank much less than C57BL/6J in this test. We discuss advantages of the model for high-throughput screening assays where the goal is to find other genotypes of mice that drink excessively, or to screen drugs for their efficacy in blocking excessive drinking.

Victoria F. Turek and Andrey E. Ryabinin. “Expression of c-Fos in the mouse Edinger–Westphal nucleus following ethanol administration is not secondary to hypothermia or stress.” Brain Research, 1063, 2, Pp. 132–139. Publisher’s Version 

Abstract

Restraint stress, lipopolysaccharide (LPS), and ethanol (EtOH) administration have all been found to induce c-Fos in the brain, and to cause hypothermia. The present study was designed to assess whether the c-Fos expression that occurs in the Edinger–Westphal nucleus (EW) after EtOH administration is independent of the hypothermia or any stress effects that occur. To test this, we used restraint stress and LPS in addition to EtOH, and also examined two control areas, the dorsal raphe nucleus (DRN) and the periaqueductal gray (PAG), in addition to EW. Male C57BL6/J mice were used. Groups of mice received intraperitoneal (IP) injections of EtOH (2 g/kg), LPS (600 μg/kg or 50 μg/kg), or saline. A separate group of mice received no injection, but were placed in plastic restrainers for the entirety of the experiment. For all groups, core temperatures were monitored rectally every 30 min for 3 h postinjection, after which, the animals were sacrificed. Then, the number of Fos-positive cells in the brain regions of the EW, DRN, and PAG was quantified. Both EtOH and restraint stress induced a transient hypothermia, where core temperature (Tc) declined immediately and then rose again. Both doses of LPS induced a slower developing, longer lasting hypothermia, while saline had no effect on Tc. Only EtOH induced a significant amount of c-Fos in EW, while both doses of LPS and restraint stress induced c-Fos in DRN, and only restraint stress caused induction in PAG. These data demonstrate that activation of EW after EtOH is unrelated to hypothermia or stress.

Susan E. Bergeson, Ari E. Berman, Peter R. Dodd, Howard J. Edenberg, Robert J. Hitzemann, Joanne M. Lewohl, Kerrie H. Lodowski, and Wolfgang H. Sommer. “Expression Profiling in Alcoholism Research.” Alcoholism, clinical and experimental research, 29, 6, Pp. 1066–1073. Publisher’s Version 

Abstract

This article represents the proceedings of a symposium at the 2004 International Society for Biomedical Research on Alcoholism in Mannheim, Germany, organized and co-chaired by Susan E. Bergeson and Wolfgang Sommer. The presentations and presenter were (1) Gene Expression in Brains of Alcohol-Preferring and Non-Preferring Rats, by Howard J. Edenberg (2) Candidate Treatment Targets for Alcoholism: Leads from Functional Genomics Approaches, by Wolfgang Sommer (3) Microarray Analysis of Acute and Chronic Alcohol Response in Brain, by Susan E. Bergeson (4) On the Integration of QTL and Gene Expression Analysis, by Robert J. Hitzemann (5) Microarray and Proteomic Analysis of the Human Alcoholic Brain, by Peter R. Dodd.

Paula Hoffman and Boris Tabakoff. “Gene expression in animals with different acute responses to ethanol.” Addiction Biology, 10, 1, Pp. 63–69. 

Abstract

The genetic and environmental contributions to differences in response to ethanol have been examined widely using inbred strains, selected lines and genetically engineered (transgenic and ‘knock-out’) animals. In addition, recombinant inbred strains have been used to identify QTLs (chromosomal regions) associated with particular responses to ethanol. If the polymorphism that underlies such a QTL is localized within the regulatory region of a gene, it could alter the level or stability of the gene product (transcript). This possibility can be addressed by measuring mRNA levels in brains (or other tissue) of inbred or selected lines of animals using DNA microarray technology. In this paper, we review microarray studies conducted in animals that differ in their responses to ethanol. The results of these studies point out the critical nature of the experimental design, statistical analyses and ‘filtering’ procedures for producing interpretable data and identifying candidate genes. In particular, the determination of differentially expressed genes between selected lines of animals, and the localization of the differentially expressed genes within QTLs for the selected phenotype, dramatically increases the probability of identifying genes that contribute to that phenotype through differential expression. Microarray analysis can also be used to assess changes in gene expression that accompany transgene introduction and/or gene ‘knock-out’, which may modulate the influence of the targeted gene on behaviour.

H. J. Edenberg, W. N. Strother, J. N. McClintick, H. Tian, M. Stephens, R. E. Jerome, L. Lumeng, T.-K. Li, and W. J. McBride. “Gene expression in the hippocampus of inbred alcohol-preferring and -nonpreferring rats.” Genes, Brain, and Behavior, 4, 1, Pp. 20–30. 

Abstract

The hippocampus is sensitive to the effects of ethanol and appears to have a role in the development of alcohol tolerance. The objective of this study was to test the hypothesis that there are innate differences in gene expression in the hippocampus of inbred alcohol-preferring (iP) and -nonpreferring (iNP) rats that may contribute to differences in sensitivity to ethanol and/or in the development of tolerance. Affymetrix microarrays were used to measure gene expression in the hippocampus of alcohol-naive male iP and iNP rats in two experiments (n=4 and 6 per strain in the two experiments). Combining data from the two experiments, there were 137 probesets representing 129 genes that significantly differed (P \textless or = 0.01); 62 probesets differed at P \textless or = 0.001. Among the 36% of the genes that were expressed more in the iP than iNP rat at this level of significance, many were involved in cell growth and adhesion, cellular stress reduction and anti-oxidation, protein trafficking, regulation of gene expression, synaptic function and metabolism. Among the 64% of the genes that had lower expression in the hippocampus of iP than iNP rats were genes involved in metabolic pathways, cellular signaling systems, protein trafficking, cell death and neurotransmission. Overall, the data indicate that there are significant innate differences in gene expression in the hippocampus between iP and iNP rats, some of which might contribute to the differences observed in the development of alcohol tolerance between the selectively bred P and NP lines.

Justin S. Rhodes and John C. Crabbe. “Gene expression induced by drugs of abuse.” Current Opinion in Pharmacology, 5, 1, Pp. 26–33. 

Abstract

The transition from infrequent drug use to addiction (i.e. the loss of control over consumption of a drug) probably involves changes in gene expression that restructure neural circuits in the brain. The number of genes that have been demonstrated to change expression in response to drugs has increased rapidly in recent years owing to microarray technology, which allows measurement of thousands of genes at one time. It is now important to identify which of these changes are causally related to the compulsive behavior associated with drug addiction, and which are non-specific changes related to general features of arousal or other physiological responses (e.g. stress, altered body temperature or energy metabolism).

Karen K. Szumlinski, Kevin D. Lominac, Erik B. Oleson, Jennifer K. Walker, Ashley Mason, Marlin H. Dehoff, Matthias Klugmann, Matthias Klugman, Stephanie Cagle, Kristine Welt, Matthew During, Paul F. Worley, Lawrence D. Middaugh, and Peter W. Kalivas. “Homer2 is necessary for EtOH-induced neuroplasticity.” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25, 30, Pp. 7054–7061. 

Abstract

Homer proteins are integral to the assembly of proteins regulating glutamate signaling and synaptic plasticity. Constitutive Homer2 gene deletion [knock-out (KO)] and rescue with adeno-associated viral (AAV) transfection of Homer2b was used to demonstrate the importance of Homer proteins in neuroplasticity produced by repeated ethanol (EtOH) administration. Homer2 KO mice avoided drinking high concentrations of EtOH and did not develop place preference or locomotor sensitization after repeated EtOH administration. The deficient behavioral plasticity to EtOH after Homer2 deletion was paralleled by a lack of augmentation in the rise in extracellular dopamine and glutamate elicited by repeated EtOH injections. The genotypic differences in EtOH-induced change in behavior and neurochemistry were essentially reversed by AAV-mediated transfection of Homer2b into accumbens cells including, differences in EtOH preference, locomotor sensitization, and EtOH-induced elevations in extracellular glutamate and dopamine. These data demonstrate a necessary and active role for accumbens Homer2 expression in regulating EtOH-induced behavioral and cellular neuroplasticity.

Yuri A. Blednov, Pamela Metten, Deborah A. Finn, Justin S. Rhodes, Susan E. Bergeson, R. Adron Harris, and John C. Crabbe. “Hybrid C57BL/6J x FVB/NJ mice drink more alcohol than do C57BL/6J mice.” Alcoholism, Clinical and Experimental Research, 29, 11, Pp. 1949–1958. 

Abstract

BACKGROUND: From several recent strain surveys (28 strains: Bachmanov et al., personal communication; 22 strains: Finn et al., unpublished), and from data in \textgreater100 other published studies of 24-hr two-bottle ethanol preference, it is known that male C57BL/6 (B6) mice self-administer about 10-14 g/kg/day and that female B6 mice self-administer about 12-18 g/kg/day. No strain has been found to consume more ethanol than B6. In one of our laboratories (Texas), we noted a markedly greater intake of ethanol in an F1 hybrid of B6 and FVB/NJ (FVB) mice. METHODS: To confirm and extend this finding, we repeated the study at another site (Portland) using concentrations up to 30% ethanol and also tested B6xFVB F1 mice in restricted access drinking procedures that produce high levels of alcohol intake. RESULTS: At both sites, we found that B6xFVB F1 mice self-administered high levels of ethanol during two-bottle preference tests (females averaging from 20 to 35 g/kg/day, males 7-25 g/kg/day, depending on concentration). F1 hybrids of both sexes drank significantly more 20% ethanol than both the B6 and FVB strains. Female F1 hybrids also drank more 30% ethanol. In the restricted access tests, ethanol consumption in the F1 hybrids was equivalent to that in B6 mice. CONCLUSIONS: These data show that this new genetic model has some significant advantages when compared to existing inbred strains, and could be used to explore the genetic basis of high ethanol drinking in mice.

Zhiyong Yang, Howard J. Edenberg, and Ronald L. Davis. “Isolation of mRNA from specific tissues of Drosophila by mRNA tagging.” Nucleic Acids Research, 33, 17, Pp. e148. Publisher’s Version 

Abstract

To study the function of specific cells or tissues using genomic tools like microarray analyses, it is highly desirable to obtain mRNA from a homogeneous source. However, this is particularly challenging for small organisms, like Caenorhabditis elegans and Drosophila melanogaster. We have optimized and applied a new technique, mRNA tagging, to isolate mRNA from specific tissues of D.melanogaster. A FLAG-tagged poly(A)-binding protein (PABP) is expressed in a specific tissue and mRNA from that tissue is thus tagged by the recombinant PABP and separated from mRNA in other tissues by co-immunoprecipitation with a FLAG-tag specific antibody. The fractionated mRNA is then amplified and used as probe in microarray experiments. As a test system, we employed the procedures to identify genes expressed in Drosophila photoreceptor cells. We found that most known photoreceptor cell-specific mRNAs were identified by mRNA tagging. Furthermore, at least 11 novel genes have been identified as enriched in photoreceptor cells. mRNA tagging is a powerful general method for profiling gene expression in specific tissues and for identifying tissue-specific genes.

David M. Lovinger and John C. Crabbe. “Laboratory models of alcoholism: treatment target identification and insight into mechanisms.” Nature Neuroscience, 8, 11, Pp. 1471–1480. 

Abstract

Laboratory models, including animal tissues and live animals, have proven useful for discovery of molecular targets of alcohol action as well as for characterization of genetic and environmental factors that influence alcohol’s neural actions. Here we consider strengths and weaknesses of laboratory models used in alcohol research and analyze the limitations of using animals to model a complex human disease. We describe targets for the neural actions of alcohol, and we review studies in which animal models were used to examine excessive alcohol drinking and to discover genes that may contribute to risk for alcoholism. Despite some limitations of the laboratory models used in alcohol research, these experimental approaches are likely to contribute to the development of new therapies for alcohol abuse and alcoholism.

Sandy Ghozland, Kathleen Chu, Brigitte L. Kieffer, and Amanda J. Roberts. “Lack of stimulant and anxiolytic-like effects of ethanol and accelerated development of ethanol dependence in mu-opioid receptor knockout mice.” Neuropharmacology, 49, 4, Pp. 493–501. 

Abstract

The opioid system is implicated in various aspects of alcoholism. Acute ethanol administration produces anxiolytic-like effects in rodents while alcohol withdrawal induces anxiogenic-like effects. Mice lacking the mu-opioid receptor (MOR) do not self-administer ethanol and display decreased anxiety-like behavior. We hypothesized that MOR might be involved in the development and expression of alcoholism, particularly in relation to anxiety states. In mice lacking MOR (MOR-/- mice), we examined the acute anxiolytic-like and locomotor stimulant effects of ethanol (0, 0.75, 1.25, 1.75 g/kg, i.p.). In a separate experiment, mice were submitted to chronic ethanol-containing liquid diet and we assessed somatic and affective ethanol withdrawal on three consecutive withdrawal episodes by scoring handling-induced convulsions and anxiety-like behavior. Deletion of MOR blocked the acute anxiolytic-like and stimulant effects of ethanol. Furthermore, MOR-/- mice displayed affective and physical signs of ethanol withdrawal in earlier withdrawal tests than wild-type mice. The present results implicate MOR in affective and somatic aspects of ethanol exposure and withdrawal. In addition, our findings support the hypothesis that the clinical efficacy of the opioid receptor antagonist naltrexone against relapse to alcoholism might be related to an action on the acute positive effects of alcohol rather than the negative affect of abstinence.

Adam Z. Weitemier and Andrey E. Ryabinin. “Lesions of the Edinger-Westphal nucleus alter food and water consumption.” Behavioral Neuroscience, 119, 5, Pp. 1235–1243. 

Abstract

The Edinger-Westphal nucleus (EW) produces several neuropeptides, including urocortin 1 and cocaine-amphetamine-regulated transcript, which regulate feeding, energy balance, and anxiety. Additionally, the EW projects to feeding and anxiety-regulatory brain areas. The authors tested the effect of lesions of the EW on the consumption of food, water and flavored solutions, metabolic indices, and exploratory behavior on the elevated plus maze in male C57BL/6J mice. EW lesion significantly reduced basal and deprivation-induced food and fluid consumption compared with sham and placement controls, but it did not alter behavior on the elevated plus maze. EW lesion had no effect on indices of basal metabolic activity, including plasma glucose level and body temperature. These effects suggest that the peptidergic neurons of the EW regulate food consumption.

G. S. Findlay, R. A. Harris, and Y. A. Blednov. “Male transgenic glycine receptor alpha1 (S267Q) mutant mice display a hyperekplexia-like increase in acoustic startle responses.” Pharmacology, Biochemistry, and Behavior, 82, 1, Pp. 215–222. 

Abstract

Glycine receptors (GlyR) are ligand-gated ion channels that inhibit neurotransmission in the spinal cord and brainstem, and mutations in GlyR can cause the human disease hyperekplexia, which is characterized by elevated startle responses. Recently, the GlyR alpha1S267Q mutation was shown to disrupt normal GlyR function, and knock-in mice harboring this mutation displayed profoundly increased acoustic startle responses and reduced glycine-stimulated the chloride flux [Findlay, G.S., Phelan, R., Roberts, M.T., Homanics, G.E., Bergeson, S.E., Lopreato, G.F., Mihic, S.J., Blednov, Y.A., Harris, R.A. 2003. Glycine receptor knock-in mice and hyperekplexia: comparisons with the null mutant. J Neurosci 23, 8051-8059.]. In this study, a transgenic mouse model expressing this S267Q mutation was evaluated using similar techniques to determine if these mice are similarly affected. Male transgenic mice displayed increased acoustic startle responses. However, decreases in glycine-stimulated strychnine-sensitive radioactive chloride (36Cl-) uptake were not observed in spinal cord and brainstem synaptoneurosomes from transgenic mice. No changes in habituation or prepulse inhibition of startle responses or spontaneous locomotion in response to taurine were observed as a result of presence of the transgene. Consistent with previous studies using immunoblotting and strychnine binding [Findlay, G.S., Wick, M.J., Mascia, M.P., Wallace, D., Miller, G.W., Harris, R.A., Blednov, Y.A. 2002. Transgenic expression of a mutant glycine receptor decreases alcohol sensitivity of mice. J Pharmacol Exp Ther 300, 526-534.], the glycine-stimulated strychnine-sensitive chloride flux of cortical microsacs in transgenic mice confirmed the ectopic expression of transgenic GlyR. These results support both the idea that transgenic expression of the S267Q mutation produces a less dramatic phenotype as compared to the knock-in mouse model as well as the idea that the in vivo acoustic startle test (as compared to the in vitro chloride flux assay) is particularly sensitive to disruptions in GlyR function.

Jonghwan Kim, Akshay A. Bhinge, Xochitl C. Morgan, and Vishwanath R. Iyer. “Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment.” Nature Methods, 2, 1, Pp. 47–53. 

Abstract

Identifying the chromosomal targets of transcription factors is important for reconstructing the transcriptional regulatory networks underlying global gene expression programs. We have developed an unbiased genomic method called sequence tag analysis of genomic enrichment (STAGE) to identify the direct binding targets of transcription factors in vivo. STAGE is based on high-throughput sequencing of concatemerized tags derived from target DNA enriched by chromatin immunoprecipitation. We first used STAGE in yeast to confirm that RNA polymerase III genes are the most prominent targets of the TATA-box binding protein. We optimized the STAGE protocol and developed analysis methods to allow the identification of transcription factor targets in human cells. We used STAGE to identify several previously unknown binding targets of human transcription factor E2F4 that we independently validated by promoter-specific PCR and microarray hybridization. STAGE provides a means of identifying the chromosomal targets of DNA-associated proteins in any sequenced genome.

Kim Cronise and John C. Crabbe. “Murine models of substance and alcohol dependence: Unraveling genetic complexities” Publisher’s Version

Robert H. Purdy, C. Fernando Valenzuela, Patricia H. Janak, Deborah A. Finn, Giovanni Biggio, and Torbjörn Bäckström. “Neuroactive steroids and ethanol.” Alcoholism: Clinical and Experimental Research, 29, 7, Pp. 1292–1298. Publisher’s Version

Edith V. Sullivan, Helen J. K. Sable, Wendy N. Strother, David P. Friedman, April Davenport, Heather Tillman-Smith, Robert A. Kraft, Christopher Wyatt, Kendall T. Szeliga, Nancy C. Buchheimer, James B. Daunais, Elfar Adalsteinsson, Adolf Pfefferbaum, and Kathleen A. Grant. “Neuroimaging of rodent and primate models of alcoholism: initial reports from the integrative neuroscience initiative on alcoholism.” Alcoholism, Clinical and Experimental Research, 29, 2, Pp. 287–294. 

Abstract

Neuroimaging of animal models of alcoholism offers a unique path for translational research to the human condition. Animal models permit manipulation of variables that are uncontrollable in clinical, human investigation. This symposium, which took place at the annual meeting of the Research Society on Alcoholism in Vancouver, British Columbia, Canada, on June 29th, 2004, presented initial findings based on neuroimaging studies from the two centers of the Integrative Neuroscience Initiative on Alcoholism funded by the National Institute on Alcohol Abuse and Alcoholism. Effects of alcohol exposure were assessed with in vitro glucose metabolic imaging of rat brain, in vitro receptor imaging of monkey brain, in vivo magnetic resonance imaging of monkey brain, and in vivo magnetic resonance spectroscopic quantification of alcohol metabolism kinetics in rat brain.

Matthew M. Ford, Jeffrey D. Nickel, Tamara J. Phillips, and Deborah A. Finn. “Neurosteroid Modulators of GABAA Receptors Differentially Modulate Ethanol Intake Patterns in Male C57BL/6J Mice.” Alcoholism, clinical and experimental research, 29, 9, Pp. 1630–1640. Publisher’s Version 

Abstract

Background Allopregnanolone (ALLO) and structurally related endogenous neurosteroids are potent modulators of GABAA receptor function at physiologically relevant concentrations. Accumulating evidence implicates a modulatory role for ALLO in behavioral processes underlying ethanol self-administration, discrimination and reinstatement. The purpose of this study was to evaluate the impact of exogenous neurosteroid challenges with the agonist ALLO and the partial agonist/antagonist epipregnanolone (EPI) on the microarchitecture of ethanol drinking patterns. Methods Male C57BL/6J mice were initiated to consume an unsweetened 10% v/v ethanol solution (10E) by a saccharin fading procedure during daily 2-hour limited access sessions beginning 1 hour after dark phase onset. Cumulative lick responses were recorded for 10E and water using lickometer circuits. After establishing 10E intake baselines, mice were habituated to vehicle injection (VEH; 20% w/v β-cyclodextrin; i.p.), and then were treated with either VEH or neurosteroid immediately prior to the drinking session. Each mouse received a series of ALLO doses (3.2, 10, 17 and 24 mg/kg) alone and EPI doses (0.15, 1, 3 and 10 mg/kg) alone in a counterbalanced within-group design. Results The GABAA receptor positive modulator, ALLO, dose-dependently modulated overall ethanol intake throughout the 2-hr session with the 3.2 mg/kg dose eliciting a significant increase whereas the 24 mg/kg dose produced a significant suppression of ethanol intake versus vehicle pretreatment. ALLO-evoked alterations in intake corresponded with a significant, dose-dependent alterations in bout frequency and inter-bout interval. ALLO also elicited robust, dose-dependent elevations in 10E licks during the initial 5-minutes of access, but subsequently resulted in a dose-dependent suppression of 10E licks during session minutes 20–80. In contrast, the partial agonist/antagonist neurosteroid, EPI, exhibited no influence on any consumption parameter evaluated. Conclusions The present findings suggest that GABAA receptor-active neurosteroids may modulate the regulatory processes that govern the onset, maintenance, and termination of drinking episodes. The differential influence of ALLO and EPI on ethanol intake patterns may reflect an alteration in GABAergic inhibitory tone that is likely due to each neurosteroid’s pharmacological profile at GABAA receptors. Manipulation of endogenous ALLO may prove a useful strategy for diminishing excessive intake and protecting against the loss of regulatory control over drinking.

John A. Dani and R. Adron Harris. “Nicotine addiction and comorbidity with alcohol abuse and mental illness.” Nature Neuroscience, 8, 11, Pp. 1465–1470. 

Abstract

The World Health Organization estimates that one-third of the global adult population smokes. Because tobacco use is on the rise in developing countries, death resulting from tobacco use continues to rise. Nicotine, the main addictive component of tobacco, initiates synaptic and cellular changes that underlie the motivational and behavioral alterations that culminate in addiction. Nicotine addiction progresses rapidly in adolescents and is most highly expressed in vulnerable people who have psychiatric illness or other substance abuse problems.

Kurt F. Hauser, Jane V. Aldrich, Kevin J. Anderson, Georgy Bakalkin, MacDonald J. Christie, Edward D. Hall, Pamela E. Knapp, Stephen W. Scheff, Indrapal N. Singh, Bryce Vissel, Amina S. Woods, Tatiana Yakovleva, and Toni S. Shippenberg. “Pathobiology of dynorphins in trauma and disease.” Frontiers in Bioscience: A Journal and Virtual Library, 10, Pp. 216–235. 

Abstract

Dynorphins, endogenous opioid neuropeptides derived from the prodynorphin gene, are involved in a variety of normative physiologic functions including antinociception and neuroendocrine signaling, and may be protective to neurons and oligodendroglia via their opioid receptor-mediated effects. However, under experimental or pathophysiological conditions in which dynorphin levels are substantially elevated, these peptides are excitotoxic largely through actions at glutamate receptors. Because the excitotoxic actions of dynorphins require supraphysiological concentrations or prolonged tissue exposure, there has likely been little evolutionary pressure to ameliorate the maladaptive, non-opioid receptor mediated consequences of dynorphins. Thus, dynorphins can have protective and/or proapoptotic actions in neurons and glia, and the net effect may depend upon the distribution of receptors in a particular region and the amount of dynorphin released. Increased prodynorphin gene expression is observed in several disease states and disruptions in dynorphin processing can accompany pathophysiological situations. Aberrant processing may contribute to the net negative effects of dysregulated dynorphin production by tilting the balance towards dynorphin derivatives that are toxic to neurons and/or oligodendroglia. Evidence outlined in this review suggests that a variety of CNS pathologies alter dynorphin biogenesis. Such alterations are likely maladaptive and contribute to secondary injury and the pathogenesis of disease.

Justin S. Rhodes, Andrey E. Ryabinin, and John C. Crabbe. “Patterns of brain activation associated with contextual conditioning to methamphetamine in mice.” Behavioral Neuroscience, 119, 3, Pp. 759–771. 

Abstract

Classical conditioning is thought to play a key role in addiction. The authors used c-Fos immunohistochemistry to demonstrate a conditioned physiological response to methamphetamine (meth) in mice. Male outbred mice were placed into an environment where they had previously experienced 2 mg/kg meth or saline. The meth-paired mice displayed increased c-Fos in several brain regions, including the nucleus accumbens, prefrontal cortex, orbitofrontal cortex, basolateral amygdala, and bed nucleus of the stria terminalis. No conditioned locomotor activity was observed, but individual activity levels strongly correlated with c-Fos in many regions. A batch effect among immunohistochemical assays was demonstrated. Results implicate specific brain regions in classical conditioning to meth and demonstrate the importance of considering locomotor activity and batch in a c-Fos study.

Yuri A. Blednov, Susan E. Bergeson, Danielle Walker, Vania M. M. Ferreira, William A. Kuziel, and R. Adron Harris. “Perturbation of chemokine networks by gene deletion alters the reinforcing actions of ethanol.” Behavioural Brain Research, 165, 1, Pp. 110–125. Publisher’s Version 

Abstract

Microarray analysis of human alcoholic brain and cultured cells exposed to ethanol showed significant changes in expression of genes related to immune or inflammatory responses, including chemokines and chemokine receptors. To test the hypothesis that chemokines exhibit previously undiscovered pleiotropic effects important for the behavioral actions of ethanol, we studied mutant mice with deletion of the Ccr2, Ccr5, Ccl2 or Ccl3 genes. Deletion of Ccr2, Ccl2 (females) or Ccl3 in mice resulted in lower preference for alcohol and consumption of lower amounts of alcohol in a two-bottle choice test as compared with wild-type mice. Ethanol treatment (2.5 g/kg, i.p.) induced stronger conditioned taste aversion in Ccr2, Ccl2 or Ccl3 null mutant mice than in controls. Ccr2 and Ccr5 null mutant mice did not differ from wild-type mice in ethanol-induced loss of righting reflex (LORR), but mice lacking Ccl2 or Ccl3 showed longer LORR than wild-type mice. There were no differences between mutant strains and wild-type mice in severity of ethanol-induced withdrawal. Genetic mapping of chromosome 11 for the Ccl2 and Ccl3 genes (46.5 and 47.6 cM, respectively) revealed that an alcohol-induced LORR QTL region was contained within the introgressed region derived from 129/SvJ, which may cause some behavioral phenotypes observed in the null mice. On the contrary, known QTLs on Chr 9 are outside of 129/SvJ region in Ccr2 and Ccr5 (71.9 and 72.0 cM, respectively) null mutant mice. These data show that disruption of the chemokine network interferes with motivational effects of alcohol.

Martin A. Javors, Chamindi Seneviratne, John D. Roache, Nassima Ait-Daoud, Susan E. Bergeson, M. Consuelo Walss-Bass, Fatema Z. Akhtar, and Bankole A. Johnson. “Platelet serotonin uptake and paroxetine binding among allelic genotypes of the serotonin transporter in alcoholics.” Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29, 1, Pp. 7–13. 

Abstract

{Expression rates of long (L) and short (S) alleles of the serotonin (5-HT) transporter (5-HTT) gene have been shown to differ under various circumstances. We compared 5-HTT uptake (function) level and paroxetine binding (density) in platelets of alcoholics as indices of 5-HTT expression rate among LL, LS, and SS genotypes. Concentration curves of [3H]5-HT and [3H]paroxetine were used to quantify the equilibrium constant (Km) and maximum 5-HT uptake rate (Vmax) for 5-HTT uptake into intact platelets and the dissociation constant (Kd) and maximum specific binding density (Bmax) for paroxetine binding to platelet membranes, respectively. Genotypes were determined using electrophoresis with fluorescent markers. Vmax for 5-HTT uptake did not correlate with Bmax for paroxetine binding (r=-0.095

Deborah A. Finn, John K. Belknap, Kim Cronise, Naomi Yoneyama, Andrea Murillo, and John C. Crabbe. “A procedure to produce high alcohol intake in mice.” Psychopharmacology, 178, 4, Pp. 471–480. 

Abstract

RATIONALE: While prolonged access to ethanol (EtOH), or deprivations, or their combination have occasionally been shown to yield high levels of voluntary self-administration, in almost all cases, rodents do not self-administer alcohol to the degree that they will develop substantial, intoxicating blood alcohol levels and then continue to self-administer at these levels. OBJECTIVES: The purpose of the present series of experiments was to modify a fluid restriction procedure to demonstrate consistent, high EtOH consumption. METHODS: Male and female mice from an alcohol preferring inbred strain (C57BL/6J; B6) as well as from a genetically heterogeneous strain (WSC) were given varying periods of access to fluid, ranging from 90 min to 10 h per day, for 12-21 days. Every 3rd or 4th day, separate groups of mice were offered a 5, 7 or 10% EtOH solution for either 10 min or 30 min, followed by water for the remainder of the time. RESULTS: In all studies, stable high EtOH doses were consumed by both B6 and WSC mice across the EtOH sessions, exceeding 2 g/kg in a 30-min session. Mean blood EtOH concentration exceeded 1 mg/ml (i.e. 100 mg%), with values in individual animals ranging from 0.6 mg/ml to 3.4 mg/ml. Notably, mice receiving 10 h of fluid/day continued to consume 2 g/kg doses of EtOH. While this procedure did not produce subsequent preference for EtOH in WSC mice, consumption remained high in some animals. CONCLUSIONS: These data indicate that scheduling fluid intake produces high, stable EtOH consumption and BEC in male and female B6 and WSC mice.

Zachary A. Rodd, Richard L. Bell, Victoria K. McQueen, Michelle R. Davids, Cathleen C. Hsu, James M. Murphy, Ting-Kai Li, Lawrence Lumeng, and William J. McBride. “Prolonged Increase in the Sensitivity of the Posterior Ventral Tegmental Area to the Reinforcing Effects of Ethanol following Repeated Exposure to Cycles of Ethanol Access and Deprivation.” The Journal of pharmacology and experimental therapeutics, 315, 2, Pp. 648–657. Publisher’s Version 

Abstract

The posterior ventral tegmental area (VTA) is a neuroanatomical substrate mediating the reinforcing effects of ethanol in rats. Repeated alcohol deprivations produce robust ethanol intakes of alcohol-preferring (P) rats during relapse and increase the reinforcing effects of oral alcohol self-administration. The objective of this study was to test the hypothesis that alcohol drinking and repeated alcohol deprivations will increase the reinforcing effects of ethanol within the posterior VTA of P rats. Groups of female P rats were used (alcohol-naive, continuous access, and repeatedly deprived). Each rat was implanted with a guide cannula aimed at the posterior VTA. Depression of the active lever produced the infusion of 100 nl of artificial cerebrospinal fluid (CSF) or ethanol (25–300 mg%). Each rat was given only one ethanol concentration during the 4-h sessions conducted every other day. Compared with the infusions of artificial CSF, the alcohol-naive group reliably self-infused 75 and 150 mg% ethanol, but not the lower or higher concentrations. On the other hand, the continuous access group had significantly higher self-infusions of 50, 75, 150, and 300 mg% ethanol compared with artificial CSF infusions. The repeatedly deprived group also self-infused significantly more of 50, 75, 150, and 300 mg% ethanol than artificial CSF; moreover, the number of infusions for all four concentrations was higher in the repeatedly deprived versus the continuous access group. Chronic alcohol drinking by P rats increased the reinforcing effects of ethanol within the posterior VTA, and repeated alcohol deprivations produced a further increase in these reinforcing effects of ethanol.

Frank A. Witzmann, Randy J. Arnold, Fengju Bai, Petra Hrncirova, Mark W. Kimpel, Yehia S. Mechref, William J. McBride, Milos V. Novotny, Nathan M. Pedrick, Heather N. Ringham, and Jay R. Simon. “A proteomic survey of rat cerebral cortical synaptosomes.” Proteomics, 5, 8, Pp. 2177–2201. 

Abstract

Previous findings from our laboratory and others indicate that two-dimensional gel electrophoresis (2-DE) can be used to study protein expression in defined brain regions, but mainly the proteins which are present in high abundance in glia are readily detected. The current study was undertaken to determine the protein profile in a synaptosomal subcellular fraction isolated from the cerebral cortex of the rat. Both 2-DE and liquid chromatography – tandem mass spectrometry (LC-MS/MS) procedures were used to isolate and identify proteins in the synaptosomal fraction and accordingly \textgreater900 proteins were detected using 2-DE; the 167 most intense gel spots were isolated and identified with matrix-assisted laser desorption/ionization – time of flight peptide mass fingerprinting or LC-MS/MS. In addition, over 200 proteins were separated and identified with the LC-MS/MS “shotgun proteomics” technique, some in post-translationally modified form. The following classes of proteins associated with synaptic function were detected: (a) proteins involved in synaptic vesicle trafficking-docking (e.g., SNAP-25, synapsin I and II, synaptotagmin I, II, and V, VAMP-2, syntaxin 1A and 1B, etc.); (b) proteins that function as transporters or receptors (e.g., excitatory amino acid transporters 1 and 2, GABA transporter 1); (c) proteins that are associated with the synaptic plasma membrane (e.g., post-synaptic density-95/synapse-associated protein-90 complex, neuromodulin (GAP-43), voltage-dependent anion-selective channel protein (VDACs), sodium-potassium ATPase subunits, alpha 2 spectrin, septin 7, etc.); and (d) proteins that mediate intracellular signaling cascades that modulate synaptic function (e.g., calmodulin, calcium-calmodulin-dependent protein kinase subunits, etc.). Other identified proteins are associated with mitochondrial or general cytosolic function. Of the two proteins identified as endoplasmic reticular, both interact with the synaptic SNARE complex to regulate vesicle trafficking. Taken together, these results suggest that the integrity of the synaptosomes was maintained during the isolation procedure and that this subcellular fractionation technique enables the enrichment of proteins associated with synaptic function. The results also suggest that this experimental approach can be used to study the differential expression of multiple proteins involved in alterations of synaptic function.

Orly Alter and Gene H. Golub. “Reconstructing the pathways of a cellular system from genome-scale signals by using matrix and tensor computations.” Proceedings of the National Academy of Sciences of the United States of America, 102, 49, Pp. 17559–17564. Publisher’s Version 

Abstract

We describe the use of the matrix eigenvalue decomposition (EVD) and pseudoinverse projection and a tensor higher-order EVD (HOEVD) in reconstructing the pathways that compose a cellular system from genome-scale nondirectional networks of correlations among the genes of the system. The EVD formulates a genes × genes network as a linear superposition of genes × genes decorrelated and decoupled rank-1 subnetworks, which can be associated with functionally independent pathways. The integrative pseudoinverse projection of a network computed from a “data” signal onto a designated “basis” signal approximates the network as a linear superposition of only the subnetworks that are common to both signals and simulates observation of only the pathways that are manifest in both experiments. We define a comparative HOEVD that formulates a series of networks as linear superpositions of decorrelated rank-1 subnetworks and the rank-2 couplings among these subnetworks, which can be associated with independent pathways and the transitions among them common to all networks in the series or exclusive to a subset of the networks. Boolean functions of the discretized subnetworks and couplings highlight differential, i.e., pathway-dependent, relations among genes. We illustrate the EVD, pseudoinverse projection, and HOEVD of genome-scale networks with analyses of yeast DNA microarray data.

C. Alling, J. D. Chick, R. Anton, R. D. Mayfield, M. Salaspuro, A. Helander, and R. A. Harris. “Revealing alcohol abuse: to ask or to test?.” Alcoholism, Clinical and Experimental Research, 29, 7, Pp. 1257–1263.

Carles Sanchis-Segura, Judy E. Grisel, M. Foster Olive, Sandra Ghozland, George F. Koob, Amanda J. Roberts, and Michael S. Cowen. “Role of the endogenous opioid system on the neuropsychopharmacological effects of ethanol: new insights about an old question.” Alcoholism, Clinical and Experimental Research, 29, 8, Pp. 1522–1527. 

Abstract

This article presents the proceedings of the symposium “Endogenous Opioids and Voluntary Ethanol Consumption: What Have We Learnt From Knock-out Mice?” presented at the meeting of the International Society for Biomedical Research on Alcoholism held in Heidelberg/Mannheim, Germany, in September/October 2004. The organizers and chairpersons were Michael S. Cowen and Carles Sanchis-Segura. The presentations were as follows: (1) Regulation of the Opioid System by Alcohol: Comparison of Alcohol-Preferring and -Nonpreferring Strains by Michael S. Cowen; (2) Endogenous Opioids and Alcohol: Lessons From Microdialysis and Knock-out Mice by M. Foster Olive; (3) From Neurochemistry to Neuroanatomy: The Hypothalamic Arcuate Nucleus as a Main Site for Ethanol-Opioids Interaction by Carles Sanchis-Segura; (4) Sensitivity to Ethanol Is Modulated by beta-Endorphin in Transgenic Mice by Judy E. Grisel, Amanda J. Roberts, and George F. Koob; and () The mu-Opioid Receptor Modulates Acute Ethanol Sensitivity and Ethanol Withdrawal Severity by Sandra Ghozland.

K. Cronise, D. A. Finn, P. Metten, and J. C. Crabbe. “Scheduled access to ethanol results in motor impairment and tolerance in female C57BL/6J mice.” Pharmacology Biochemistry and Behavior, 81, 4, Pp. 943–953. Publisher’s Version 

Abstract

We recently reported a method where water-restricted mice were given scheduled access to ethanol followed by access to water. C57BL/6J mice would repeatedly self-administer ethanol in amounts that produced high and stable blood ethanol concentrations (BEC) [Finn DA, Belknap JK, Cronise K, Yoneyama N, Murillo A, Crabbe JC. A procedure to produce high alcohol intake in mice. Psychopharmacol 2005;178:471–480]. The studies reported here demonstrate that behavioral signs of motor impairment result from these high alcohol intakes, and that there was some evidence of tolerance development across repeated sessions. Female C57BL/6J mice were allowed 30 min access to ethanol (5% v/v) followed by 2.5 h access to water either: every 3rd day for 12 days; every 2nd day for 28 days; or every 2nd day for 9 days. On intervening days, mice had 3 h access to water. A control group had daily access to water only. Mice consumed 2–2.5 g/kg ethanol in 30 min, resulting in BECs of 1.4–1.5 mg/ml. Motor impairment was assessed using the accelerating or fixed speed rotarod, balance beam or screen test. In all studies, mice were tested for motor impairment immediately after 30 min access to ethanol or water. In Experiment 1, ethanol-exposed mice had shorter latencies to fall from the fixed speed rotarod and more foot slips on the balance beam than the control group, indicating motor impairment. After drinking ethanol, mice also fell from a screen more quickly than during sober pretraining. In Experiment 2, mice tested (without prior training) for motor impairment and tolerance on the fixed speed rotarod at 6.5 and 10 RPM showed repeated motor impairment in the ethanol group, but did not develop tolerance. In Experiment 3, mice were first given rotarod training at 10 RPM. Following each fluid access period, performance was impaired in mice self-administering ethanol at 10, but not 15 RPM, when compared to control mice. There was no evidence of tolerance across days. However, on the last day, all mice were tested at both RPM following an i.p. injection of 2 g/kg ethanol. Ethanol-experienced mice were less impaired at both RPM than the ethanol-naïve mice, indicating tolerance development according to this between-groups index. These results suggest that C57BL/6J mice will repeatedly consume alcohol in amounts that produce motor impairment under these scheduled fluid access conditions, and that a modest degree of tolerance can be detected using appropriate tests.

George R. Breese, Kathleen Chu, Christopher V. Dayas, Douglas Funk, Darin J. Knapp, George F. Koob, Dzung Anh Lê, Laura E. O’Dell, David H. Overstreet, Amanda J. Roberts, Rajita Sinha, Glenn R. Valdez, and Friedbert Weiss. “Stress enhancement of craving during sobriety: a risk for relapse.” Alcoholism, Clinical and Experimental Research, 29, 2, Pp. 185–195. 

Abstract

This report of the proceedings of a symposium presented at the 2004 Research Society on Alcoholism Meeting provides evidence linking stress during sobriety to craving that increases the risk for relapse. The initial presentation by Rajita Sinha summarized clinical evidence for the hypothesis that there is an increased sensitivity to stress-induced craving in alcoholics. During early abstinence, alcoholics who were confronted with stressful circumstances showed increased susceptibility for relapse. George Breese presented data demonstrating that stress could substitute for repeated withdrawals from chronic ethanol to induce anxiety-like behavior. This persistent adaptive change induced by multiple withdrawals allowed stress to induce an anxiety-like response that was absent in animals that were not previously exposed to chronic ethanol. Subsequently, Amanda Roberts reviewed evidence that increased drinking induced by stress was dependent on corticotropin-releasing factor (CRF). In addition, rats that were stressed during protracted abstinence exhibited anxiety-like behavior that was also dependent on CRF. Christopher Dayas indicated that stress increases the reinstatement of an alcohol-related cue. Moreover, this effect was enhanced by previous alcohol dependence. These interactive effects between stress and alcohol-related environmental stimuli depended on concurrent activation of endogenous opioid and CRF systems. A.D. Lê covered information that indicated that stress facilitated reinstatement to alcohol responding and summarized the influence of multiple deprivations on this interaction. David Overstreet provided evidence that restraint stress during repeated alcohol deprivations increases voluntary drinking in alcohol-preferring (P) rats that results in withdrawal-induced anxiety that is not observed in the absence of stress. Testing of drugs on the stress-induced voluntary drinking implicated serotonin and CRF involvement in the sensitized response. Collectively, the presentations provided convincing support for an involvement of stress in the cause of relapse and continuing alcohol abuse and suggested novel pharmacological approaches for treating relapse induced by stress.

T. A. Zhang, A. W. Hendricson, M. F. Wilkemeyer, M. J. Lippmann, M. E. Charness, and R. A. Morrisett. “Synergistic effects of the peptide fragment D-NAPVSIPQ on ethanol inhibition of synaptic plasticity and NMDA receptors in rat hippocampus.” Neuroscience, 134, 2, Pp. 583–593. 

Abstract

The L1 cell adhesion molecule has been implicated in ethanol teratogenesis as well as NMDAR-dependent long-term potentiation (LTP) of synaptic transmission, a process thought to be critical for neural development. Ethanol inhibits LTP at least in part by interacting with NMDA receptors. Ethanol also inhibits L1-mediated cell adhesion in a manner that is prevented by an octapeptide, D-NAPVSIPQ (D-NAP), as well as long chain alcohols such as 1-octanol. Here we analyzed the effects of D-NAP and 1-octanol on ethanol modulation of LTP induced by theta burst stimulation in two subfields of the rat hippocampus, the dentate gyrus and area CA1. When theta burst stimulation was delivered in ethanol (50 mM), LTP was inhibited by about 50%. Surprisingly, when D-NAP (10(-7) M) and ethanol were co-applied or applied sequentially, LTP was completely absent. The effects of D-NAP were persistent, since delivery of a second theta burst stimulation following washout of D-NAP and ethanol elicited minimal plasticity. Application of D-NAP alone had no effect on LTP induction or expression. The synergistic effect of D-NAP on ethanol inhibition of LTP was concentration-dependent since D-NAP (10(-10) M) had an intermediate effect, while D-NAP (10(-13) M) had no effect on ethanol suppression of LTP. These observations were also replicated with a different ethanol antagonist, 1-octanol, in area CA1. To address the mechanisms underlying this long-lasting suppression of LTP, the sensitivity of pharmacologically isolated NMDAR extracellular field potentials to combinations of D-NAP and ethanol was determined. D-NAP (10(-7)M) alone had no effect on NMDA extracellular field potentials; however, the peptide significantly increased the inhibitory action of ethanol on NMDA extracellular field potential. The findings suggest that D-NAP and 1-octanol selectively interact with NMDA receptors in an ethanol-dependent manner, further implicating the L1 cell adhesion molecule in alcohol-related brain disorders.

Christoph Fehr, Renee L. Shirley, John C. Crabbe, John K. Belknap, Kari J. Buck, and Tamara J. Phillips. “The syntaxin binding protein 1 gene (Stxbp1) is a candidate for an ethanol preference drinking locus on mouse chromosome 2.” Alcoholism, Clinical and Experimental Research, 29, 5, Pp. 708–720. 

Abstract

{BACKGROUND: We previously mapped a quantitative trait locus (QTL) for ethanol preference drinking to mouse chromosome 2 (mapped with high confidence

George Robert Siggins, Marisa Roberto, and Zhiguo Nie. “The tipsy terminal: Presynaptic effects of ethanol.” Pharmacology & Therapeutics, 107, 1, Pp. 80–98. Publisher’s Version 

Abstract

Considerable evidence suggests that the synapse is the most sensitive CNS element for ethanol effects. Although most alcohol research has focussed on the postsynaptic sites of ethanol action, especially regarding interactions with the glutamatergic and GABAergic receptors, few such studies have directly addressed the possible presynaptic loci of ethanol action, and even fewer describe effects on synaptic terminals. Nonetheless, there is burgeoning evidence that presynaptic terminals play a major role in ethanol effects. The methods used to verify such ethanol actions range from electrophysiological analysis of paired-pulse facilitation (PPF) and spontaneous and miniature synaptic potentials to direct recording of ion channel activity and transmitter/messenger release from acutely isolated synaptic terminals, and microscopic observation of vesicular release, with a focus predominantly on GABAergic, glutamatergic, and peptidergic synapses. The combined data suggest that acute ethanol administration can both increase and decrease the release of these transmitters from synaptic terminals, and more recent results suggest that prolonged or chronic ethanol treatment (CET) can also alter the function of presynaptic terminals. These new findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain the role of presynaptic terminals and their involvement in alcohol’s behavioral actions. Other future directions should include an assessment of ethanol’s effects on presynaptic signal transduction linkages and on the molecular machinery of transmitter release and exocytosis in general. Such studies could lead to the formulation of new treatment strategies for alcohol intoxication, alcohol abuse, and alcoholism.

Matthew M. Ford, Jeffrey D. Nickel, and Deborah A. Finn. “Treatment with and withdrawal from finasteride alter ethanol intake patterns in male C57BL/6J mice: potential role of endogenous neurosteroids?.” Alcohol (Fayetteville, N.Y.), 37, 1, Pp. 23–33. 

Abstract

Exogenous administration of the gamma-aminobutyric acid (GABA)-ergic neurosteroid allopregnanolone (ALLO) can increase ethanol intake in rats and mice. To determine the contribution of endogenous neurosteroids (i.e., ALLO and related pregnane steroids) in the regulation of established ethanol consumption patterns in male C57BL/6J (B6) mice, the 5alpha-reductase (5alpha-R) enzyme inhibitor, finasteride (FIN), was chronically administered and then subsequently withdrawn. Mice were provided daily 2-h limited access to a 10% vol/vol ethanol solution (10E) and water in lickometer chambers during the dark phase. Following the establishment of stable 10E intake patterns, mice were injected intraperitoneally with either vehicle (20% wt/vol 2-hydroxypropyl-beta-cyclodextrin; n=8) or FIN (50 mg/kg; n=16) for 7 days. Effects of withdrawal from FIN treatment were subsequently assessed for an additional 7 days. Ethanol intakes were significantly decreased with acute FIN treatment (days 1-3) and during early withdrawal (days 1-3). Acute FIN treatment was also associated with an extended latency to first bout, reduced first bout size, and greatly attenuated sipper contact count during the initial 20-min interval of 10E access. These findings collectively indicated that acute FIN treatment markedly attenuated the initiation of 10E consumption during the limited access sessions. The influence of FIN on 10E intake patterns was largely dissipated with chronic treatment, suggesting that compensatory changes in neurosteroid modulation of inhibitory tone may have occurred. Thus, acute FIN treatment modulated ethanol intake patterns in a manner opposite to that previously demonstrated for a physiologically relevant, exogenous ALLO dose, consistent with the ability of a alpha-R inhibitor to block ALLO biosynthesis. Manipulation of endogenous neurosteroid activity via biosynthetic enzyme inhibition or antagonism of steroid binding to the GABA type A receptor may prove to be a beneficial pharmacotherapeutic strategy in the intervention of alcohol abuse and alcoholism.

V. F. Turek, N. O. Tsivkovskaia, P. Hyytia, S. Harding, A. D. Lê, and A. E. Ryabinin. “Urocortin 1 expression in five pairs of rat lines selectively bred for differences in alcohol drinking.” Psychopharmacology, 181, 3, Pp. 511–517. 

Abstract

RATIONALE: There is accumulating evidence that the neuropeptide urocortin 1 (Ucn1) is involved in alcohol consumption. Thus far, however, most studies have been performed in mice. OBJECTIVES: The purpose of the present study was to characterize Ucn1 expression in rats selectively bred for either high or low alcohol intake. METHODS: Brains from naive male rats of five pairs of independently selected lines (iP/iNP, AA/ANA, HARF/LARF, HAD1/LAD1, and HAD2/LAD2) were analyzed by immunohistochemistry. RESULTS: Significant differences were found between iP/iNP, HARF/LARF, and HAD2/LAD2 in number of Ucn1-containing cells in the Edinger-Westphal (EW) nucleus (the main source of Ucn1 in the brain), whereas no significant differences were found between HAD1/LAD1 and AA/ANA. Similarly, significant differences in the optical density of Ucn1 immunoreactivity in EW were found between iP/iNP, HARF/LARF, and HAD2/LAD2, whereas no differences on this measure were found between HAD1/LAD1 and AA/ANA. In the lateral septum (LS, the main projection area of Ucn1-containing neurons in the rat), significant differences were found only between AA/ANA and HAD2/LAD2; however, a meta-analysis indicated that across all five lines, preferring animals had a significantly greater number of Ucn1-positive fibers than nonpreferring animals. CONCLUSIONS: These results provide evidence that, in rats, Ucn1 may be involved in regulation of alcohol intake, and that this regulation may occur through the Ucn1 projections to LS.

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2026