2012 Peter A. Groblewski, Andrey E. Ryabinin, and Christopher L. Cunningham. “Activation and role of the medial prefrontal cortex (mPFC) in extinction of ethanol-induced associative learning in mice.” Neurobiology of Learning and Memory, 97, 1, Pp. 37–46. Abstract Although the medial prefrontal cortex (mPFC) has been shown to be integrally involved in extinction of a number of associative behaviors, its role in extinction of alcohol (ethanol)-induced associative learning has received little attention. Previous reports have provided evidence supporting a role for the mPFC in acquisition and extinction of amphetamine-induced conditioned place preference (CPP) in rats, however, it remains unknown if this region is necessary for extinction of ethanol (EtOH)-induced associative learning in mice. Using immunohistochemical analysis of phosphorylated and unphosphorylated cAMP response element-binding protein (CREB), the current set of experiments first showed that the prelimbic (PL) and infralimbic (IL) subregions of the mPFC exhibited dynamic responses in phosphorylation of CREB to a Pavlovian-conditioned, EtOH-paired cue. Interestingly, CREB phosphorylation within these regions was sensitive to manipulations of the EtOH-cue contingency-that is, the cue-induced increase of pCREB in both the PL and IL was absent following extinction. In order to confirm a functional role of the mPFC in regulating the extinction process, we then showed that electrolytic lesions of the mPFC following acquisition blocked subsequent extinction of EtOH-CPP. Together, these experiments indicate a role for the PL and IL subregions of the mPFC in processing changes of the EtOH-cue contingency, as well as in regulating extinction of EtOH-induced associative learning in mice. Cecilia M. Borghese and R. Adron Harris. “Alcohol Dependence and Genes Encoding α2 and γ1 GABAA Receptor Subunits.” Alcohol Research : Current Reviews, 34, 3, Pp. 345–354. Publisher’s Version Abstract One approach to identifying the causes of alcoholism, particularly without crossing ethical boundaries in human subjects, is to look at the person’s genome (and particularly at the variations that naturally arise in the DNA) to identify those variations that seem to be found more commonly in people with the disease. Some of these analyses have focused on the genes that encode subunits of the receptor for the brain chemical (i.e., neurotransmitter) γ-aminobutyric acid (GABA). Different epidemiological genetic studies have provided evidence that variations in certain GABAA receptor (GABAA-R) subunits, particularly subunits α2 and γ1, are correlated with alcohol dependence. Manipulations of these genes and their expression in mice and rats also are offering clues as to the role of specific GABAA-Rs in the molecular mechanisms underlying alcoholism and suggest possibilities for new therapeutic approaches. Richard L. Bell, Helen J. K. Sable, Giancarlo Colombo, Petri Hyytia, Zachary A. Rodd, and Lawrence Lumeng. “Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity.” Pharmacology, Biochemistry, and Behavior, 103, 1, Pp. 119–155. Abstract The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence. Y. A. Blednov, R. D. Mayfield, J. Belknap, and R. A. Harris. “Behavioral actions of alcohol: phenotypic relations from multivariate analysis of mutant mouse data.” Genes, Brain, and Behavior, 11, 4, Pp. 424–435. Abstract Behavioral studies on genetically diverse mice have proven powerful for determining relationships between phenotypes and have been widely used in alcohol research. Most of these studies rely on naturally occurring genetic polymorphisms among inbred strains and selected lines. Another approach is to introduce variation by engineering single-gene mutations in mice. We have tested 37 different mutant mice and their wild-type controls for a variety (31) of behaviors and have mined this data set by K-means clustering and analysis of correlations. We found a correlation between a stress-related response (activity in a novel environment) and alcohol consumption and preference for saccharin. We confirmed several relationships detected in earlier genetic studies, including positive correlation of alcohol consumption with saccharin consumption and negative correlations with conditioned taste aversion and alcohol withdrawal severity. Introduction of single-gene mutations either eliminated or greatly diminished these correlations. The three tests of alcohol consumption used (continuous two-bottle choice and two limited access tests: drinking in the dark and sustained high alcohol consumption) share a relationship with saccharin consumption, but differ from each other in their correlation networks. We suggest that alcohol consumption is controlled by multiple physiological systems where single-gene mutations can disrupt the networks of such systems. Yuri A. Blednov, Jill M. Benavidez, Gregg E. Homanics, and R. Adron Harris. “Behavioral characterization of knockin mice with mutations M287L and Q266I in the glycine receptor α1 subunit.” The Journal of Pharmacology and Experimental Therapeutics, 340, 2, Pp. 317–329. Abstract We used behavioral pharmacology to characterize heterozygous knockin mice with mutations (Q266I or M287L) in the α1 subunit of the glycine receptor (GlyR) (J Pharmacol Exp Ther 340:304-316, 2012). These mutations were designed to reduce (M287L) or eliminate (Q266I) ethanol potentiation of GlyR function. We asked which behavioral effects of ethanol would be reduced more in the Q266I mutant than the M287L and found rotarod ataxia to be the behavior that fulfilled this criterion. Compared with controls, the mutant mice also differed in ethanol consumption, ethanol-stimulated startle response, signs of acute physical dependence, and duration of loss of righting response produced by ethanol, butanol, ketamine, pentobarbital, and flurazepam. Some of these behavioral changes were mimicked in wild-type mice by acute injections of low, subconvulsive doses of strychnine. Both mutants showed increased acoustic startle response and increased sensitivity to strychnine seizures. Thus, in addition to reducing ethanol action on the GlyRs, these mutations reduced glycinergic inhibition, which may also alter sensitivity to GABAergic drugs. Amanda M. Barkley-Levenson and John C. Crabbe. “Bridging Animal and Human Models: Translating From (and to) Animal Genetics.” Alcohol Research: Current Reviews, 34, 3, Pp. 325–335. Abstract Genetics play an important role in the development and course of alcohol abuse, and understanding genetic contributions to this disorder may lead to improved preventative and therapeutic strategies in the future. Studies both in humans and in animal models are necessary to fully understand the neurobiology of alcoholism from the molecular to the cognitive level. By dissecting the complex facets of alcoholism into discrete, well-defined phenotypes that are measurable in both human populations and animal models of the disease, researchers will be better able to translate findings across species and integrate the knowledge obtained from various disciplines. Some of the key areas of alcoholism research where consilience between human and animal studies is possible are alcohol withdrawal severity, sensitivity to rewards, impulsivity, and dysregulated alcohol consumption. Marisa Roberto, Nicholas W. Gilpin, and George R. Siggins. “The Central Amygdala and Alcohol: Role of γ-Aminobutyric Acid, Glutamate, and Neuropeptides.” Cold Spring Harbor Perspectives in Medicine, 2, 12. Publisher’s Version Abstract Alcohol dependence is a chronically relapsing disorder characterized by compulsive drug seeking and drug taking, loss of control in limiting intake, and the emergence of a withdrawal syndrome in the absence of the drug. Accumulating evidence suggests an important role for synaptic transmission in the central amygdala (CeA) in mediating alcohol-related behaviors and neuroadaptative mechanisms associated with alcohol dependence. Acute alcohol facilitates γ-aminobutyric acid-ergic (GABAergic) transmission in CeA via both pre- and postsynaptic mechanisms, and chronic alcohol increases baseline GABAergic transmission. Acute alcohol inhibits glutamatergic transmission via effects at N-methyl-d-aspartate (NMDA) and AMPA receptors in CeA, whereas chronic alcohol up-regulates N-methyl-d-aspartate receptor (NMDAR)-mediated transmission. Pro- (e.g., corticotropin-releasing factor [CRF]) and anti-stress (e.g., NPY, nociceptin) neuropeptides affect alcohol- and anxiety-related behaviors, and also alter the alcohol-induced effects on CeA neurotransmission. Alcohol dependence produces plasticity in these neuropeptide systems, reflecting a recruitment of those systems during the transition to alcohol dependence., Alcohol has strong and persistent effects on synaptic transmission in the central amygdala. Most notably, it potentiates the GABAergic system. Cecilia M. Borghese, Yuri A. Blednov, Yu Quan, Sangeetha V. Iyer, Wei Xiong, S. John Mihic, Li Zhang, David M. Lovinger, James R. Trudell, Gregg E. Homanics, and R. Adron Harris. “Characterization of Two Mutations, M287L and Q266I, in the α1 Glycine Receptor Subunit That Modify Sensitivity to Alcohols.” The Journal of Pharmacology and Experimental Therapeutics, 340, 2, Pp. 304–316. Publisher’s Version Abstract Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels. Ethanol potentiates glycine activation of the GlyR, and putative binding sites for alcohol are located in the transmembrane (TM) domains between and within subunits. To alter alcohol sensitivity of GlyR, we introduced two mutations in the GlyR α1 subunit, M287L (TM3) and Q266I (TM2). After expression in Xenopus laevis oocytes, both mutants showed a reduction in glycine sensitivity and glycine-induced maximal currents. Activation by taurine, another endogenous agonist, was almost abolished in the M287L GlyR. The ethanol potentiation of glycine currents was reduced in the M287L GlyR and eliminated in Q266I. Physiological levels of zinc (100 nM) potentiate glycine responses in wild-type GlyR and also enhance the ethanol potentiation of glycine responses. Although zinc potentiation of glycine responses was unchanged in both mutants, zinc enhancement of ethanol potentiation of glycine responses was absent in M287L GlyRs. The Q266I mutation decreased conductance but increased mean open time (effects not seen in M287L). Two lines of knockin mice bearing these mutations were developed. Survival of homozygous knockin mice was impaired, probably as a consequence of impaired glycinergic transmission. Glycine showed a decreased capacity for displacing strychnine binding in heterozygous knockin mice. Electrophysiology in isolated neurons of brain stem showed decreased glycine-mediated currents and decreased ethanol potentiation in homozygous knockin mice. Molecular models of the wild-type and mutant GlyRs show a smaller water-filled cavity within the TM domains of the Q266I α1 subunit. The behavioral characterization of these knockin mice is presented in a companion article (J Pharmacol Exp Ther 340:317–329, 2012). C. Del Boca, P. E. Lutz, J. Le Merrer, P. Koebel, and B. L. Kieffer. “Cholecystokinin knock-down in the basolateral amygdala has anxiolytic and antidepressant-like effects in mice.” Neuroscience, 218, Pp. 185–195. Abstract Cholecystokinin (CCK) is a neuropeptide widely distributed in the mammalian brain. This peptide regulates many physiological functions and behaviors, such as cardio-respiratory control, thermoregulation, nociception, feeding, memory processes and motivational responses, and plays a prominent role in emotional responses including anxiety and depression. CCK-expressing brain regions involved in these functions remain unclear and their identification represents an important step towards understanding CCK function in the brain. The basolateral amygdala (BLA) is strongly involved in emotional processing and expresses high levels of CCK. In this study we examined the contribution of CCK expressed in this brain region to emotional responses in mice. To knockdown CCK specifically in the BLA, we used stereotaxic delivery of recombinant adeno-associated viral vectors expressing a CCK-targeted shRNA. This procedure efficiently reduced CCK levels locally. shCCK-treated animals showed reduced levels of anxiety in the elevated plus-maze, and lower despair-like behavior in the forced swim test. Our data demonstrate that CCK expressed in the BLA represents a key brain substrate for anxiogenic and depressant effects of the peptide. The study also suggests that elevated amygdalar CCK could contribute to panic and major depressive disorders that have been associated with CCK dysfunction in humans. Angela R. Ozburn, R. D. Mayfield, Igor Ponomarev, Theresa A. Jones, Yuri A. Blednov, and R. A. Harris. “Chronic self-administration of alcohol results in elevated ΔFosB: comparison of hybrid mice with distinct drinking patterns.” BMC Neuroscience, 13, Pp. 130. Publisher’s Version Abstract The inability to reduce or regulate alcohol intake is a hallmark symptom for alcohol use disorders. Research on novel behavioral and genetic models of experience-induced changes in drinking will further our knowledge on alcohol use disorders. Distinct alcohol self-administration behaviors were previously observed when comparing two F1 hybrid strains of mice: C57BL/6J x NZB/B1NJ (BxN) show reduced alcohol preference after experience with high concentrations of alcohol and periods of abstinence while C57BL/6J x FVB/NJ (BxF) show sustained alcohol preference. These phenotypes are interesting because these hybrids demonstrate the occurrence of genetic additivity (BxN) and overdominance (BxF) in ethanol intake in an experience dependent manner. Specifically, BxF exhibit sustained alcohol preference and BxN exhibit reduced alcohol preference after experience with high ethanol concentrations; however, experience with low ethanol concentrations produce sustained alcohol preference for both hybrids. In the present study, we tested the hypothesis that these phenotypes are represented by differential production of the inducible transcription factor, ΔFosB, in reward, aversion, and stress related brain regions. Simranjit Kaur, Ju Li, Mary P. Stenzel-Poore, and Andrey E. Ryabinin. “Corticotropin releasing factor acting on corticotropin releasing factor receptor type 1 is critical for binge alcohol drinking in mice.” Alcoholism, Clinical and Experimental Research, 36, 2, Pp. 369–376. Publisher’s Version Abstract Background The corticotropin releasing factor (CRF) system has been implicated in the regulation of alcohol consumption. However, previous mouse knockout (KO) studies using continuous ethanol access have failed to conclusively confirm this. Recent studies have shown that CRF receptor 1 (CRFR1) antagonists attenuate alcohol intake in the limited access “drinking in the dark” (DID) model of binge drinking. To avoid the potential non-specific effects of antagonists, in the present study we tested alcohol drinking in CRFR1, CRFR2, CRF and Ucn1 KO and corresponding wild-type (WT) littermates using the DID paradigm. Methods On days 1–3, the CRFR1, CRFR2, Ucn1 and CRF KO mice and their respective wildtype (WT) littermates were provided with 20% ethanol or 10% sucrose for 2 hours with water available at all other times. On day 4, access to ethanol or sucrose was increased to 4 hours. At the end of each drinking session, the volume of ethanol consumed was recorded and at the conclusion of the last session, blood was also collected for blood ethanol concentration (BEC) analysis. Results CRFR1 KO mice had lower alcohol intakes and BECs and higher intakes of sucrose compared to WTs. In contrast, CRFR2 KO mice, while having reduced intakes initially, had similar alcohol intakes on days 2–4 and similar BECs as the WTs. In order to determine the ligand responsible, Ucn1 and CRF KO and WT mice were tested next. While Ucn1 KOs had similar alcohol intakes and BECs to their WTs, CRF KO mice showed reduced alcohol consumption and lower BECs compared to WTs. Conclusions Our results confirm that CRFR1 plays a key role in binge drinking and identify CRF as the ligand critically involved in excessive alcohol consumption. William J. Giardino and Andrey E. Ryabinin. “Corticotropin-releasing factor: innocent until proven guilty.” Nature Reviews Neuroscience, 13, 1, Pp. 70–70. Publisher’s Version Julie Le Merrer, Lauren Faget, Audrey Matifas, and Brigitte L. Kieffer. “Cues predicting drug or food reward restore morphine-induced place conditioning in mice lacking delta opioid receptors.” Psychopharmacology, 223, 1, Pp. 99–106. Abstract RATIONALE: The exact role of delta opioid receptors in drug-induced conditioned place preference (CPP) remains debated. Under classical experimental conditions, morphine-induced CPP is decreased in mice lacking delta opioid receptors (Oprd1 (-/-)). Morphine self-administration, however, is maintained, suggesting that drug-context association rather than drug reward is deficient in these animals. OBJECTIVES: This study further examined the role of delta opioid receptors in mediating drug-cue associations, which are necessary for the expression of morphine-induced CPP. METHODS: We first identified experimental conditions under which Oprd1 (-/-) mice are able to express CPP to morphine (5, 10 or 20 mg/kg) in a drug-free state and observed that, in this paradigm, CPP was dependent on circadian time conditions. We then took advantage of this particularity to assess the ability of various cues (internal or discrete), predicting either drug or food reward, to restore CPP induced by morphine (10 mg/kg) in Oprd1 (-/-) mice in conditions under which they normally fail to express CPP. RESULTS: We found that presentation of circadian, drug or auditory cues, predicting morphine or food reward, restored morphine CPP in Oprd1 (-/-) mice, which then performed as well as control mice. CONCLUSIONS: This study reveals that, in contrast to spatial cues, internal or discrete morphine-predicting stimuli permit full expression of morphine CPP in Oprd1 (-/-) mice. Delta receptors, therefore, appear to play a crucial role in modulating spatial contextual cue-related responses. This activity may be critical when context gains control over behavior, as is the case for context-induced relapse in drug abuse. Ronnie Dhaher, Kathleen K. McConnell, Zachary A. Rodd, William J. McBride, and Richard L. Bell. “Daily patterns of ethanol drinking in adolescent and adult, male and female, high alcohol drinking (HAD) replicate lines of rats.” Pharmacology, biochemistry, and behavior, 102, 4, Pp. 540–548. Publisher’s Version Abstract The rationale for our study was to determine the pattern of ethanol drinking by the high alcohol-drinking (HAD) replicate lines of rats during adolescence and adulthood in both male and female rats. Rats were given 30 days of 24 h free-choice access to ethanol (15%, v/v) and water, with ad lib access to food, starting at the beginning of adolescence (PND 30) or adulthood (PND 90). Water and alcohol drinking patterns were monitored 22 h/day with a “lickometer” set-up. The results indicated that adolescent HAD-1 and HAD-2 males consumed the greatest levels of ethanol and had the most well defined ethanol licking binges among the age and sex groups with increasing levels of ethanol consumption throughout adolescence. In addition, following the first week of adolescence, male and female HAD-1 and HAD-2 rats differed in both ethanol consumption levels and ethanol licking behavior. Adult HAD-1 male and female rats did not differ from one another and their ethanol intake or licking behaviors did not change significantly over weeks. Adult HAD-2 male rats maintained a relatively constant level of ethanol consumption across weeks, whereas adult HAD-2 female rats increased ethanol consumption levels over weeks, peaking during the third week when they consumed more than their adult male counterparts. The results indicate that the HAD rat lines could be used as an effective animal model to examine the development of ethanol consumption and binge drinking in adolescent male and female rats providing information on the long-range consequences of adolescent alcohol drinking. Tara L. Fidler, Matthew S. Powers, Jason J. Ramirez, Andrew Crane, Jennifer Mulgrew, Phoebe Smitasin, and Christopher L. Cunningham. “Dependence induced increases in intragastric alcohol consumption in mice.” Addiction Biology, 17, 1, Pp. 13–32. Abstract Three experiments used the intragastric alcohol consumption (IGAC) procedure to examine the effects of variations in passive ethanol exposure on withdrawal and voluntary ethanol intake in two inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2). Experimental treatments were selected to induce quantitative differences in ethanol dependence and withdrawal severity by: (1) varying the periodicity of passive ethanol exposure (three, six or nine infusions/day); (2) varying the dose per infusion (low, medium or high); and (3) varying the duration of passive exposure (3, 5 or 10 days). All experiments included control groups passively exposed to water. B6 mice generally self-infused more ethanol than D2 mice, but passive ethanol exposure increased IGAC in both strains, with D2 mice showing larger relative increases during the first few days of ethanol access. Bout data supported the characterization of B6 mice as sippers and D2 mice as gulpers. Three larger infusions per day produced a stronger effect on IGAC than six or nine smaller infusions, especially in D2 mice. Increased IGAC was strongly predicted by cumulative ethanol dose and intoxication during passive exposure in both strains. Withdrawal during the passive exposure phase was also a strong predictor of increased IGAC in D2 mice. However, B6 mice showed little withdrawal, precluding analysis of its potential role. Overall, these data support the hypothesis that dependence-induced increases in IGAC are jointly determined by two processes that might vary across genotypes: (1) tolerance to aversive postabsorptive ethanol effects and (2) negative reinforcement (i.e. alleviation of withdrawal by self-administered ethanol). Ovidiu D. Iancu, Priscila Darakjian, Sunita Kawane, Daniel Bottomly, Robert Hitzemann, and Shannon McWeeney. “Detection of Expression Quantitative Trait Loci in Complex Mouse Crosses: Impact and Alleviation of Data Quality and Complex Population Substructure.” Frontiers in Genetics, 3. Publisher’s Version Abstract Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolution for quantitative trait loci detection. However, increased genetic complexity challenges detection methods, with discordant results due to low data quality or complex genetic architecture. We quantified the impact of theses factors across three mouse crosses and two different detection methods, identifying procedures that greatly improve detection quality. Importantly, HS populations have complex genetic architectures not fully captured by the whole genome kinship matrix, calling for incorporating chromosome specific relatedness information. We analyze three increasingly complex crosses, using gene expression levels as quantitative traits. The three crosses were an F2 intercross, a HS formed by crossing four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collaborative cross. Brain (striatum) gene expression and genotype data were obtained using the Illumina platform. We found large disparities between methods, with concordance varying as genetic complexity increased; this problem was more acute for probes with distant regulatory elements (trans). A suite of data filtering steps resulted in substantial increases in reproducibility. Genetic relatedness between samples generated overabundance of detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates this problem. However, we find that relatedness between individuals is not evenly distributed across the genome; information from distinct chromosomes results in relatedness structure different from the whole genome kinship matrix. Shared polymorphisms from distinct chromosomes collectively affect expression levels, confounding eQTL detection. We suggest that considering chromosome specific relatedness can result in improved eQTL detection. Sheketha R. Hauser, Simon N. Katner, Gerald A. Deehan, Zheng-Ming Ding, Jamie E. Toalston, Briana J. Scott, Richard L. Bell, William J. McBride, and Zachary A. Rodd. “Development of an oral operant nicotine/ethanol co-use model in alcohol-preferring (p) rats.” Alcoholism, Clinical and Experimental Research, 36, 11, Pp. 1963–1972. Abstract BACKGROUND: Alcohol abuse is frequently associated with nicotine (Nic) use. The current experiments were conducted to establish an oral operant ethanol + Nic (EtOH + Nic) co-use model and to characterize some aspects of EtOH + Nic co-use. METHODS: Rats were allowed to choose between EtOH alone or EtOH + Nic solutions. Additionally, alcohol-preferring (P) rats were allowed to concurrently self-administer 3 distinct EtOH solutions (10, 20, and 30%) with varying amounts of Nic (0.07, 0.14, or 0.21 mg/ml) under operant conditions. P rats were also allowed to concurrently self-administer 2 distinct amounts of Nic (0.07 and 0.14 mg/ml) added to saccharin (Sacc; 0.025%) solutions. RESULTS: During acquisition, P rats responded for the EtOH + Nic solutions at the same level as for EtOH alone, and responding for EtOH + Nic solutions was present throughout all drinking conditions. P rats also readily maintained stable self-administration behaviors for Nic + Sacc solutions. The results demonstrated that P rats readily acquired and maintained stable self-administration behaviors for EtOH + 0.07 and EtOH + 0.14 mg/ml Nic solutions. Self-administration of EtOH + 0.21 mg/ml Nic was established in only 50% of the subjects. P rats readily expressed seeking behaviors for the EtOH + Nic solutions and reacquired EtOH + Nic self-administration during relapse testing. In addition, tail blood samples indicated that EtOH + Nic co-use resulted in pharmacologically relevant levels of both EtOH and Nic in the blood. CONCLUSIONS: Overall, the results indicate that P rats readily consume EtOH + Nic solutions concurrently in the presence of EtOH alone, express drug-seeking behaviors, and will concurrently consume physiologically relevant levels of both drugs. These results support the idea that this oral operant EtOH + Nic co-use model would be suitable for studying the development of co-abuse and the consequences of long-term chronic co-abuse. Matthew M. Ford, Aubrey D. McCracken, Natalie L. Davis, Andrey E. Ryabinin, and Kathleen A. Grant. “Discrimination of ethanol-nicotine drug mixtures in mice: dual interactive mechanisms of overshadowing and potentiation.” Psychopharmacology, 224, 4, Pp. 537–548. Abstract RATIONALE: One possible basis for the proclivity of ethanol and nicotine co-abuse is an interaction between the discriminative stimulus (S(D)) effects of each drug. OBJECTIVES: The current work sought to assess the discriminative control of ethanol and nicotine cues in mice trained with drug mixtures and to determine whether interactive mechanisms of overshadowing and potentiation occur. METHODS: Male C57BL/6J mice were trained to discriminate ethanol (1.5 g/kg) alone or ethanol plus nicotine (0.4, 0.8, or 1.2 mg/kg base) in experiment 1 and nicotine (0.8 mg/kg) alone or nicotine plus ethanol (0.5, 1.0, or 2.0 g/kg) in experiment 2. Stimulus generalizations of the training mixtures to ethanol, nicotine, and the drug combination were assessed. RESULTS: Ethanol (1.5 g/kg) retained discriminative control despite the inclusion of a progressively larger nicotine dose within the training mixtures in experiment 1. Although the nicotine S(D) was overshadowed by ethanol training doses \textgreater 0.5 g/kg in experiment 2, nicotine did potentiate the effects of low-dose ethanol. CONCLUSIONS: These findings are suggestive of dual mechanisms whereby ethanol (\textgreater0.5 g/kg) overshadows the S(D) effects of nicotine, and at lower doses (\textless1 g/kg) the salience of ethanol’s S(D) effects is potentiated by nicotine. These mechanisms may contribute to the escalation of concurrent drinking and smoking in a binge-like fashion. Amanda M. Barkley-Levenson and John C. Crabbe. “Ethanol drinking microstructure of a high drinking in the dark selected mouse line.” Alcoholism, Clinical and Experimental Research, 36, 8, Pp. 1330–1339. Abstract BACKGROUND: The High Drinking in the Dark (HDID) selected mouse line was bred for high blood ethanol (EtOH) concentration (BEC) following the limited access drinking in the dark (DID) test and is a genetic animal model of binge-like drinking. This study examines the microstructure of EtOH drinking in these mice and their control line during 3 versions of the DID test to determine how drinking structure differences might relate to overall intake and BEC. METHODS: Male mice from the HDID-1 replicate line and HS/Npt progenitor stock were tested in separate experiments on 2- and 4-day versions of the DID test, and on a 2-day 2-bottle choice DID test with 20% EtOH and water. Testing took place in home cages connected to a continuous fluid intake monitoring system, and drinking during the DID test was analyzed for drinking microstructure. RESULTS: HDID-1 mice had more drinking bouts, shorter interbout interval, larger bout size, greater total EtOH intake, and higher BECs than HS/Npt mice on the second day of the 2-day DID test. The 4-day DID test showed greater bout size, total EtOH intake, and BEC in the HDID-1 mice than the HS/Npt mice. Total EtOH intake and BECs for the HDID-1 mice in the DID tests averaged 2.6 to 3.0 g/kg and 0.4 to 0.5 mg/ml, respectively. The 2-bottle choice test showed no genotype differences in drinking microstructure or total consumption but did show greater preference for the EtOH solution in HDID-1 mice than HS/Npt. CONCLUSIONS: These results suggest that inherent differences in EtOH drinking structure between the HDID-1 and HS/Npt mice, especially the larger bout size in the HDID-1 mice, contribute to the difference in intake during the standard DID test. John C. Crabbe, Lauren C. Kruse, Alexandre M. Colville, Andy J. Cameron, Stephanie E. Spence, Jason P. Schlumbohm, Lawrence C. Huang, and Pamela Metten. “Ethanol Sensitivity in High Drinking in the Dark Selectively Bred Mice.” Alcoholism: Clinical and Experimental Research, 36, 7, Pp. 1162–1170. Publisher’s Version Abstract Background Mouse lines are being selectively bred in replicate for high blood ethanol concentrations (BECs) achieved after a short period of ethanol (EtOH) drinking early in the circadian dark phase. High Drinking in the Dark-1 (HDID-1) mice were in selected generation S18, and the replicate HDID-2 line in generation S11. Methods To determine other traits genetically correlated with high DID, we compared naïve animals from both lines with the unselected, segregating progenitor stock, HS/Npt. Differences between HDID-1 and HS would imply commonality of genetic influences on DID and these traits. Results HDID-1 mice showed less basal activity, greater EtOH stimulated activity, and greater sensitivity to EtOH-induced foot slips than HS. They showed lesser sensitivity to acute EtOH hypothermia and longer duration loss of righting reflex than HS. HDID-1 and control HS lines did not differ in sensitivity on 2 measures of intoxication, the balance beam and the accelerating rotarod. None of the acute response results could be explained by differences in EtOH metabolism. HDID-2 differed from HS on some, but not all, of the above responses. Conclusions These results show that some EtOH responses share common genetic control with reaching high BECs after DID, a finding consistent with other data regarding genetic contributions to EtOH responses. John C. Crabbe, Alexandre M. Colville, Lauren C. Kruse, Andy J. Cameron, Stephanie E. Spence, Jason P. Schlumbohm, Lawrence C. Huang, and Pamela Metten. “Ethanol tolerance and withdrawal severity in high drinking in the dark selectively bred mice.” Alcoholism, Clinical and Experimental Research, 36, 7, Pp. 1152–1161. Abstract BACKGROUND: Mouse lines are being selectively bred in replicate for high blood ethanol concentrations (BECs) achieved after limited access of ethanol (EtOH) drinking early in the circadian dark phase. High Drinking in the Dark-1 (HDID-1) mice are in selected generation S21, and the replicate HDID-2 line in generation S14. Tolerance and withdrawal symptoms are 2 of the 7 diagnostic criteria for alcohol dependence. Withdrawal severity has been found in mouse studies to be negatively genetically correlated with EtOH preference drinking. METHODS: To determine other traits genetically correlated with high DID, we compared naïve animals from both lines with the unselected, segregating progenitor stock, HS/Npt. Differences between HDID-1 and HS would imply commonality of genetic influences on DID and these traits. RESULTS: Female HDID-1 and HDID-2 mice tended to develop less tolerance than HS to EtOH hypothermia after their third daily injection. A trend toward greater tolerance was seen in the HDID males. HDID-1, HDID-2, and control HS lines did not differ in the severity of acute or chronic withdrawal from EtOH as indexed by the handling-induced convulsion (HIC). Both HDID-1 and HDID-2 mice tended to have greater HIC scores than HS regardless of drug treatment. CONCLUSIONS: These results show that tolerance to EtOH’s hypothermic effects may share some common genetic control with reaching high BECs after DID, a finding consistent with other data regarding genetic contributions to EtOH responses. Withdrawal severity was not negatively genetically correlated with DID, unlike its correlation with preference drinking, underscoring the genetic differences between preference drinking and DID. HDID lines showed greater basal HIC scores than HS, suggestive of greater central nervous system excitability. Alexis W. Ary, Debra K. Cozzoli, Deborah A. Finn, John C. Crabbe, Marlin H. Dehoff, Paul F. Worley, and Karen K. Szumlinski. “Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.” Alcohol (Fayetteville, N.Y.), 46, 4, Pp. 377–387. Abstract Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol. John C. Crabbe, Pamela Metten, Lawrence C. Huang, Jason P. Schlumbohm, Stephanie E. Spence, Amanda M. Barkley-Levenson, Deborah A. Finn, Justin S. Rhodes, and Andy J. Cameron. “Ethanol Withdrawal-Associated Drinking and Drinking in the Dark: Common and Discrete Genetic Contributions.” Addiction genetics, 1, Pp. 3–11. Publisher’s Version Abstract Individual mice differ in the dose of ethanol they will ingest voluntarily when it is offered during limited access periods in the circadian dark, a phenotype called drinking in the dark (DID). Substantial genetic variation in DID has been reported across a few standard inbred mouse strains, and a line of High Drinking in the Dark (HDID) mice has been established through selective breeding on the blood ethanol concentration (BEC) they attain at the end of a drinking session. Here, we report ethanol DID data for 23 inbred mouse strains, including 11 not previously reported, corroborating the genetic contributions to this trait. We also report data on a different ethanol drinking trait, the increased intake seen after multiple cycles of chronic intermittent exposure to ethanol vapor (CIE). Drinking escalated significantly during ethanol withdrawal. However, HDID mice and their HS controls showed equivalent escalation during withdrawal, demonstrating that withdrawal-associated drinking escalation is not a clear genetic correlate of selection on DID. Across inbred strains, DID is substantially genetically correlated with previously-published two-bottle ethanol preference drinking data assessed under conditions of continuous ethanol access. Although inbred strain data for withdrawal-associated drinking are not available, the current pattern of results suggests that withdrawal-associated drinking is genetically distinct from DID, while genetic contributions to DID and two-bottle preference drinking are substantially similar. Scott D. Philibin, Andy J. Cameron, Jason P. Schlumbohm, Pamela Metten, and John C. Crabbe. “Ethanol withdrawal-induced motor impairment in mice.” Psychopharmacology, 220, 2, Pp. 367–378. Abstract RATIONALE: Human ethanol withdrawal manifests as multiple behavioral deficits with distinct time courses. Most studies with mice index ethanol withdrawal severity with the handling-induced convulsion (HIC). Using the accelerating rotarod (ARR), we recently showed that ethanol withdrawal produced motor impairment. OBJECTIVES: This study aimed (a) to characterize further the ARR withdrawal trait, (b) to assess generalizability across additional behavioral assays, and (c) to test the genetic correlation between ethanol withdrawal ARR impairment and HICs. RESULTS: The severity of the ARR performance deficit depends on ethanol vapor dose and exposure duration, and lasts 1-4 days. Fatigue could not explain the deficits, which were also evident after intermittent exposure to ethanol vapor. Withdrawing mice were also impaired on a balance beam, but not on a static dowel or in foot slip errors per distance traveled in the parallel rod floor test, where they showed reduced locomotor activity. To assess genetic influences, we compared Withdrawal Seizure-Prone and -Resistant mice, genetically selected to express severe vs. mild withdrawal HICs, respectively. The ARR scores were approximately equivalent in all groups treated with ethanol vapor, though Withdrawal Seizure-Prone (WSP) mice may have displayed a slightly more severe deficit as control-treated WSP mice performed better than control-treated Withdrawal Seizure-Resistant mice. CONCLUSIONS: These studies show that ethanol withdrawal motor impairment is sensitive to a range of ethanol doses and lasts for several days. Multiple assays of behavioral impairment are affected, but the effects depend on the assay employed. Genetic contributions to withdrawal-induced ARR impairment appear largely distinct from those leading to severe or mild HICs. Igor Ponomarev, Shi Wang, Lingling Zhang, R. Adron Harris, and R. Dayne Mayfield. “Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence.” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 5, Pp. 1884–1897. Abstract Alcohol abuse causes widespread changes in gene expression in human brain, some of which contribute to alcohol dependence. Previous microarray studies identified individual genes as candidates for alcohol phenotypes, but efforts to generate an integrated view of molecular and cellular changes underlying alcohol addiction are lacking. Here, we applied a novel systems approach to transcriptome profiling in postmortem human brains and generated a systemic view of brain alterations associated with alcohol abuse. We identified critical cellular components and previously unrecognized epigenetic determinants of gene coexpression relationships and discovered novel markers of chromatin modifications in alcoholic brain. Higher expression levels of endogenous retroviruses and genes with high GC content in alcoholics were associated with DNA hypomethylation and increased histone H3K4 trimethylation, suggesting a critical role of epigenetic mechanisms in alcohol addiction. Analysis of cell-type-specific transcriptomes revealed remarkable consistency between molecular profiles and cellular abnormalities in alcoholic brain. Based on evidence from this study and others, we generated a systems hypothesis for the central role of chromatin modifications in alcohol dependence that integrates epigenetic regulation of gene expression with pathophysiological and neuroadaptive changes in alcoholic brain. Our results offer implications for epigenetic therapeutics in alcohol and drug addiction. William J. McBride, Mark W. Kimpel, Jeanette N. McClintick, Zheng-Ming Ding, Petri Hyytia, Giancarlo Colombo, Howard J. Edenberg, Lawrence Lumeng, and Richard L. Bell. “Gene expression in the ventral tegmental area of 5 pairs of rat lines selectively bred for high or low ethanol consumption.” Pharmacology, Biochemistry, and Behavior, 102, 2, Pp. 275–285. Abstract The objective of this study was to determine if there are common innate differences in gene expression or gene pathways in the ventral tegmental area (VTA) among 5 different pairs of rat lines selectively bred for high (HEC) or low (LEC) ethanol consumption: (a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats; (b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (replicate line pairs 1 and 2); (c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats; and (d) Sardinian alcohol-preferring (sP) vs. alcohol-nonpreferring (sNP) rats. Microarray analysis revealed between 370 and 1340 unique named genes that significantly differed in expression between the individual line-pairs. Analysis using Gene Ontology (GO) and Ingenuity Pathways information indicated significant categories and networks in common for up to 3 line-pairs, but not for all 5 line-pairs; moreover, there were few genes in common in these categories and networks. ANOVA of the combined data for the 5 line-pairs indicated 1295 significant (p\textless0.01) differences in expression of named genes. Although no individual named gene was significant across all 5 line-pairs, there were 22 genes that overlapped in the same direction in 3 or 4 of the line-pairs. Overall, the findings suggest that (a) some biological categories or networks may be in common for subsets of line-pairs; and (b) regulation of different genes and/or combinations of multiple biological systems (e.g., transcription, synaptic function, intracellular signaling and protection against oxidative stress) within the VTA (possibly involving dopamine and glutamate) may be contributing to the disparate alcohol drinking behaviors of these line-pairs. Candice Contet. “Gene Expression Under the Influence: Transcriptional Profiling of Ethanol in the Brain.” Current Psychopharmacology, 1, 4, Pp. 301–314. Abstract Sensitivity to ethanol intoxication, propensity to drink ethanol and vulnerability to develop alcoholism are all influenced by genetic factors. Conversely, exposure to ethanol or subsequent withdrawal produce gene expression changes, which, in combination with environmental variables, may participate in the emergence of compulsive drinking and relapse. The present review offers an integrated perspective on brain gene expression profiling in rodent models of predisposition to differential ethanol sensitivity or consumption, in rats and mice subjected to acute or chronic ethanol exposure, as well as in human alcoholics. The functional categories over-represented among differentially expressed genes suggest that the transcriptional effects of chronic ethanol consumption contribute to the neuroplasticity and neurotoxicity characteristic of alcoholism. Importantly, ethanol produces distinct transcriptional changes within the different brain regions involved in intoxication, reinforcement and addiction. Special emphasis is put on recent profiling studies that have provided some insights into the molecular mechanisms potentially mediating genome-wide regulation of gene expression by ethanol. In particular, current evidence for a role of transcription factors, chromatin remodeling and microRNAs in coordinating the expression of large sets of genes in animals predisposed to excessive ethanol drinking or exposed to protracted abstinence, as well as in human alcoholics, is presented. Finally, studies that have compared ethanol with other drugs of abuse have highlighted common gene expression patterns that may play a central role in drug addiction. The availability of novel technologies and a focus on mechanistic approaches are shaping the future of ethanol transcriptomics. Howard J. Edenberg. “Genes contributing to the development of alcoholism: an overview.” Alcohol research : current reviews, 34, 3, Pp. 336–338. Publisher’s Version Thomas D. Hurley and Howard J. Edenberg. “Genes encoding enzymes involved in ethanol metabolism.” Alcohol Research: Current Reviews, 34, 3, Pp. 339–344. Abstract The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer. Torsten Rohlfing, Christopher D. Kroenke, Edith V. Sullivan, Mark F. Dubach, Douglas M. Bowden, Kathleen Grant, and Adolf Pfefferbaum. “The INIA19 Template and NeuroMaps Atlas for Primate Brain Image Parcellation and Spatial Normalization.” Frontiers in Neuroinformatics, 6. Publisher’s Version Abstract The INIA19 is a new, high-quality template for imaging-based studies of non-human primate brains created from high-resolution T1-weighted magnetic resonance (MR) images of 19 rhesus macaque (Macaca mulatta) animals. Combined with the comprehensive cortical and subcortical label map of the NeuroMaps atlas, the INIA19 is equally suitable for studies requiring both spatial normalization and atlas label propagation. Population-averaged template images are provided for both the brain and the whole head, to allow alignment of the atlas with both skull-stripped and unstripped data, and thus to facilitate its use for skull stripping of new images. This article describes the construction of the template using freely-available software tools, as well as the template itself, which is being made available to the scientific community (http://nitrc.org/projects/inia19/). John C. Crabbe, John H. Harkness, Stephanie E. Spence, Lawrence C. Huang, and Pamela Metten. “Intermittent availability of ethanol does not always lead to elevated drinking in mice.” Alcohol and Alcoholism (Oxford, Oxfordshire), 47, 5, Pp. 509–517. Abstract AIMS: Intermittent access (IA) to an alcohol (ethanol) solution can lead rats to higher ethanol intakes than continuous access, and a recent report showed increased drinking in C57BL/6J mice offered 20% ethanol vs. water 3X/week (Prior studies have offered ethanol during 24 h periods, either continuously or intermittently.). METHODS: We tested the high-preference C57BL/6J inbred mice: we also studied High Drinking in the Dark (HDID) mice, a line we have selectively bred to reach intoxicating blood ethanol levels after a short period of access to a single bottle of 20% ethanol. RESULTS: Neither HDID or C57BL/6J male mice offered ethanol every other day during only a 4-h access period showed greater daily intake than mice offered ethanol daily for 4 h. There was a small increase in drinking with 24 h IA in C57BL/6J mice. An experiment with HDID mice and their control heterogeneous stock stock modeled closely after a published study with C57BL/6J mice (Hwa, Chu, Levinson SA et al. Persistent escalation of alcohol drinking in C57BL/6J mice with intermittent access to 20% ethanol. Alcohol Clin Exp Res 2011;35:1938-1947) showed no significant elevation with 24 h IA exposure in either sex of any genotype. Finally, a near replication of the Hwa et al. study showed modestly greater intake in C57BL/6J mice, confirming the efficacy of 24 h IA. CONCLUSION: We conclude that 4 h of IA is likely insufficient to elevate drinking in mice. The lack of effect in HDID mice and their controls further suggests that not all genotypes respond to intermittency. Richard L. Bell, Kelle M. Franklin, Sheketha R. Hauser, and Feng C. Zhou. “Introduction to the Special Issue “Pharmacotherapies for the Treatment of Alcohol Abuse and Dependence” and a Summary of Patents Targeting other Neurotransmitter Systems.” Recent patents on CNS drug discovery, 7, 2, Pp. 93–112. Publisher’s Version Abstract This paper introduces the Special Section: Pharmacotherapies for the Treatment of Alcohol Abuse and Dependence and provides a summary of patents targeting neurotransmitter systems not covered in the other four chapters. The World Health Organization notes that alcoholic-type drinking results in 2.5 million deaths per year, and these deaths occur to a disproportionately greater extent among adolescents and young adults. Developing a pharmacological treatment targeting alcohol abuse and dependence is complicated by (a) the heterogeneous nature of the disease(s), (b) alcohol affecting multiple neurotransmitter and neuromodulator systems, and (c) alcohol affecting multiple organ systems which in turn influence the function of the central nervous system. Presently, the USA Federal Drug Administration has approved three pharmacotherapies for alcoholism: disulfiram, naltrexone, and acamprosate. This chapter provides a summary of the following systems, which are not covered in the accompanying chapters; alcohol and acetaldehyde metabolism, opioid, glycinergic, GABA-A, neurosteroid, dopaminergic, serotonergic, and endocannabinoid, as well as patents targeting these systems for the treatment of alcoholism. Finally, an overview is presented on the use of pharmacogenetics and pharmacogenomics in tailoring treatments for certain subpopulations of alcoholics, which is expected to continue in the future. Yuri A. Blednov, Igor Ponomarev, Chelsea Geil, Susan Bergeson, George F. Koob, and R. Adron Harris. “Neuroimmune regulation of alcohol consumption: Behavioral validation of genes obtained from genomic studies.” Addiction biology, 17, 1, Pp. 108–120. Publisher’s Version Abstract Analysis of mouse brain gene expression, using strains that differ in alcohol consumption, provided a number of novel candidate genes that potentially regulate alcohol consumption. We selected six genes [beta-2-microglobulin (B2m), cathepsin S (Ctss), cathepsin F (Ctsf), interleukin 1 receptor antagonist (Il1rn), CD14 molecule (Cd14) and interleukin 6 (Il6)] for behavioral validation using null mutant mice. These genes are known to be important for immune responses but were not specifically linked to alcohol consumption by previous research. Null mutant mice were tested for ethanol intake in three tests: 24 hr two-bottle choice, limited access two-bottle choice and limited access to one bottle of ethanol. Ethanol consumption and preference were reduced in all the null mutant mice in the 24 hr two-bottle choice test, the test that was the basis for selection of these genes. No major differences were observed in consumption of saccharin in the null mutant mice. Deletion of B2m, Ctss, Il1rn, Cd14 and Il6 also reduced ethanol consumption in the limited access two bottle choice test for ethanol intake; with the Il1rn and Ctss null mutants showing reduced intake in all three tests (with some variation between males and females). These results provide the most compelling evidence to date that global gene expression analysis can identify novel genetic determinants of complex behavioral traits. Specifically, they suggest a novel role for neuroimmune signaling in regulation of alcohol consumption. Debra K. Cozzoli, Justin Courson, Amanda L. Caruana, Bailey W. Miller, Daniel I. Greentree, Andrew B. Thomspon, Melissa G. Wroten, Ping-Wu Zhang, Bo Xiao, Jia-Hua Hu, Matthias Klugmann, Pamela Metten, Paul F. Worley, John C. Crabbe, and Karen K. Szumlinski. “Nucleus accumbens mGluR5-associated signaling regulates binge alcohol drinking under Drinking-in-the-Dark procedures.” Alcoholism, clinical and experimental research, 36, 9, Pp. 1623–1633. Publisher’s Version Abstract Background Alcohol increases the expression of Group 1 metabotropic glutamate receptors (mGluRs), their associated scaffolding protein Homer2, and stimulates phosphatidylinositol 3-kinase (PI3K) within the nucleus accumbens (NAC). Moreover, functional studies suggest that NAC Group 1 mGluR/Homer2/PI3K signaling may be a potential target for pharmacotherapeutic intervention in alcoholism. Methods Immunoblotting was conducted to examine the effects of alcohol consumption under Drinking-in-the-Dark (DID) procedures on Group 1 mGluR-associated proteins in C57BL/6J (B6) mice. Follow-up behavioral studies examined the importance of Group 1 mGluR/Homer2/PI3K signaling within the NAC shell for limited access alcohol drinking. Finally, immunoblotting examined whether the NAC expression of Group 1 mGluR-associated proteins is a genetic correlate of high alcohol drinking using a selectively bred high DID (HDID-1) mouse line. Results Limited access alcohol drinking under DID procedures up-regulated NAC shell Homer2 levels, concomitant with increases in mGluR5 and NR2B. Intra-NAC shell blockade of mGluR5, Homer2, or PI3K signaling, as well as transgenic disruption of the Homer binding site on mGluR5 decreased alcohol consumption in B6 mice. Moreover, transgenic disruption of the Homer binding site on mGluR5 and Homer2 deletion both prevented the attenuating effect of mGluR5 and PI3K blockade upon intake. Finally, the basal NAC shell protein expression of mGluR1 and Homer2 was increased in offspring of HDID-1 animals. Conclusions Taken together, these data further implicate Group1 mGluR signaling through Homer2 within the NAC in excessive alcohol consumption. Julie Le Merrer, Katia Befort, Olivier Gardon, Dominique Filliol, Emmanuel Darcq, Doulaye Dembele, Jerome A. J. Becker, and Brigitte L. Kieffer. “Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network.” Addiction Biology, 17, 1, Pp. 1–12. Abstract Addiction is a chronic brain disorder. Prolonged abstinence from drugs of abuse involves dysphoria, high stress responsiveness and craving. The neurobiology of drug abstinence, however, is poorly understood. We previously identified a unique set of hundred mu-opioid receptor-dependent genes in the extended amygdala, a key site for hedonic and stress processing in the brain. Here we examined these candidate genes either immediately after chronic morphine, nicotine, Δ9-tetrahydrocannabinol or alcohol, or following 4 weeks of abstinence. Regulation patterns strongly differed among chronic groups. In contrast, gene regulations strikingly converged in the abstinent groups and revealed unforeseen common adaptations within a novel huntingtin-centered molecular network previously unreported in addiction research. This study demonstrates that, regardless the drug, a specific set of transcriptional regulations develops in the abstinent brain, which possibly contributes to the negative affect characterizing protracted abstinence. This transcriptional signature may represent a hallmark of drug abstinence and a unitary adaptive molecular mechanism in substance abuse disorders. Michal Bajo, Samuel G. Madamba, Xiaoying Lu, Lisa M. Sharkey, Tamas Bartfai, and George Robert Siggins. “Receptor subtype-dependent galanin actions on gamma-aminobutyric acidergic neurotransmission and ethanol responses in the central amygdala.” Addiction Biology, 17, 4, Pp. 694–705. Abstract The neuropeptide galanin and its three receptor subtypes (GalR1-3) are expressed in the central amygdala (CeA), a brain region involved in stress- and anxiety-related behaviors, as well as alcohol dependence. Galanin also has been suggested to play a role in alcohol intake and alcohol dependence. We examined the effects of galanin in CeA slices from wild-type and knockout (KO) mice deficient of GalR2 and both GalR1 and GalR2 receptors. Galanin had dual effects on gamma-aminobutyric acid (GABA)-ergic transmission, decreasing the amplitudes of pharmacologically isolated GABAergic inhibitory postsynaptic potentials (IPSPs) in over half of CeA neurons but augmenting IPSPs in the others. The increase in IPSP size was absent after superfusion of the GalR3 antagonist SNAP 37889, whereas the IPSP depression was absent in CeA neurons of GalR1 × GalR2 double KO and GalR2 KO mice. Paired-pulse facilitation studies showed weak or infrequent effects of galanin on GABA release. Thus, galanin may act postsynaptically through GalR3 to augment GABAergic transmission in some CeA neurons, whereas GalR2 receptors likely are involved in the depression of IPSPs. Co-superfusion of ethanol, which augments IPSPs presynaptically, together with galanin caused summated effects of ethanol and galanin in those CeA neurons showing galanin-augmented IPSPs, suggesting the two agents act via different mechanisms in this population. However, in neurons showing IPSP-diminishing galanin effects, galanin blunted the ethanol effects, suggesting a preemptive effect of galanin. These findings may increase understanding of the complex cellular mechanisms that underlie the anxiety-related behavioral effects of galanin and ethanol in CeA. Raúl Pastor, Cheryl Reed, Paul J. Meyer, Carrie McKinnon, Andrey E. Ryabinin, and Tamara J. Phillips. “Role of corticotropin-releasing factor and corticosterone in behavioral sensitization to ethanol.” The Journal of Pharmacology and Experimental Therapeutics, 341, 2, Pp. 455–463. Abstract Neuroadaptations underlying sensitization to drugs of abuse seem to influence compulsive drug pursuit and relapse associated with addiction. Our previous data support a role for the corticotropin-releasing factor (CRF) type-1 receptor (CRF₁) in ethanol (EtOH)-induced psychomotor sensitization. CRF₁ is endogenously activated by CRF and urocortin-1. Because genetic deletion of urocortin-1 did not affect EtOH sensitization, we hypothesized that CRF is the important ligand underlying EtOH sensitization. To test this hypothesis, we used heterozygous and homozygous knockout (KO) mice, which lack one or both copies of the gene coding for CRF, and their respective wild-type controls. EtOH sensitization was normal in heterozygous, but absent in homozygous, CRF KO mice. Corticosterone (CORT) levels were drastically reduced only in CRF KO mice. Because CRF/CRF₁ initiate EtOH-induced activation of the hypothalamic-pituitary-adrenal axis, we investigated CORT effects on EtOH sensitization. The CORT synthesis inhibitor metyrapone prevented the acquisition, but not the expression, of EtOH sensitization. Exogenous CORT administration sensitized the locomotor response to a subsequent EtOH challenge; we observed, however, that the exogenous CORT levels necessary to induce sensitization to EtOH were significantly higher than those produced by EtOH treatment. Therefore, participation of CORT seems to be necessary, but not sufficient, to explain the role of CRF/CRF₁ in the acquisition of sensitization to EtOH. Extra-hypothalamic CRF/CRF₁ mechanisms are suggested to be involved in the expression of EtOH sensitization. The present results are consistent with current theories proposing a key role for CRF and CRF₁ in drug-induced neuroplasticity, dependence, and addictive behavior. Emmanuel Darcq, Katia Befort, Pascale Koebel, Solange Pannetier, Megan K. Mahoney, Claire Gaveriaux-Ruff, André Hanauer, and Brigitte L. Kieffer. “RSK2 signaling in medial habenula contributes to acute morphine analgesia.” Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 37, 5, Pp. 1288–1296. Abstract It has been established that mu opioid receptors activate the ERK1/2 signaling cascade both in vitro and in vivo. The Ser/Thr kinase RSK2 is a direct downstream effector of ERK1/2 and has a role in cellular signaling, cell survival growth, and differentiation; however, its role in biological processes in vivo is less well known. Here we determined whether RSK2 contributes to mu-mediated signaling in vivo. Knockout mice for the rsk2 gene were tested for main morphine effects, including analgesia, tolerance to analgesia, locomotor activation, and sensitization to this effect, as well as morphine withdrawal. The deletion of RSK2 reduced acute morphine analgesia in the tail immersion test, indicating a role for this kinase in mu receptor-mediated nociceptive processing. All other morphine effects and adaptations to chronic morphine were unchanged. Because the mu opioid receptor and RSK2 both show high density in the habenula, we specifically downregulated RSK2 in this brain metastructure using an adeno-associated-virally mediated shRNA approach. Remarkably, morphine analgesia was significantly reduced, as observed in the total knockout animals. Together, these data indicate that RSK2 has a role in nociception, and strongly suggest that a mu opioid receptor-RSK2 signaling mechanism contributes to morphine analgesia at the level of habenula. This study opens novel perspectives for both our understanding of opioid analgesia, and the identification of signaling pathways operating in the habenular complex. Sami Ben Hamida, Jeremie Neasta, Amy W. Lasek, Viktor Kharazia, Mimi Zou, Sebastien Carnicella, Patricia H. Janak, and Dorit Ron. “The small G protein H-Ras in the mesolimbic system is a molecular gateway to alcohol-seeking and excessive drinking behaviors.” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 45, Pp. 15849–15858. Abstract Uncontrolled consumption of alcohol is a hallmark of alcohol abuse disorders; however, the central molecular mechanisms underlying excessive alcohol consumption are still unclear. Here, we report that the GTP binding protein, H-Ras in the nucleus accumbens (NAc) plays a key role in neuroadaptations that underlie excessive alcohol-drinking behaviors. Specifically, acute (15 min) systemic administration of alcohol (2.5 g/kg) leads to the activation of H-Ras in the NAc of mice, which is observed even 24 h later. Similarly, rat operant self-administration of alcohol (20%) also results in the activation of H-Ras in the NAc. Using the same procedures, we provide evidence suggesting that the exchange factor GRF1 is upstream of H-Ras activation by alcohol. Importantly, we show that infection of mice NAc with lentivirus expressing a short hairpin RNA that targets the H-Ras gene produces a significant reduction of voluntary consumption of 20% alcohol. In contrast, knockdown of H-Ras in the NAc of mice did not alter water, quinine, and saccharin intake. Furthermore, using two-bottle choice and operant self-administration procedures, we show that inhibiting H-Ras activity by intra-NAc infusion of the farnesyltransferase inhibitor, FTI-276, produced a robust decrease of rats’ alcohol drinking; however, sucrose consumption was unaltered. Finally, intra-NAc infusion of FTI-276 also resulted in an attenuation of seeking for alcohol. Together, these results position H-Ras as a central molecular mediator of alcohol’s actions within the mesolimbic system and put forward the potential value of the enzyme as a novel target to treat alcohol use disorders. Jesse R. Schank, Andrey E. Ryabinin, William J. Giardino, Roberto Ciccocioppo, and Markus Heilig. “Stress-related neuropeptides and addictive behaviors: beyond the usual suspects.” Neuron, 76, 1, Pp. 192–208. Abstract Addictive disorders are chronic, relapsing conditions that cause extensive disease burden. Genetic factors partly account for susceptibility to addiction, but environmental factors such as stressful experiences and prolonged exposure of the brain to addictive drugs promote its development. Progression to addiction involves neuroadaptations within neurocircuitry that mediates stress responses and is influenced by several peptidergic neuromodulators. While corticotrophin releasing factor is the prototypic member of this class, recent work has identified several additional stress-related neuropeptides that play an important role in regulation of drug intake and relapse, including the urocortins, nociceptin, substance P, and neuropeptide S. Here, we review this emerging literature, discussing to what extent the properties of these neuromodulators are shared or distinct and considering their potential as drug targets. Xavier Gallego, Jessica Ruiz-Medina, Olga Valverde, Susanna Molas, Noemí Robles, Josefa Sabrià, John C. Crabbe, and Mara Dierssen. “Transgenic over expression of nicotinic receptor alpha 5, alpha 3, and beta 4 subunit genes reduces ethanol intake in mice.” Alcohol (Fayetteville, N.Y.), 46, 3, Pp. 205–215. Abstract Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol’s as well as nicotine’s effects. J. C. Crabbe. “Translational behaviour-genetic studies of alcohol: are we there yet?.” Genes, Brain, and Behavior, 11, 4, Pp. 375–386. Abstract In biomedical research, one key stage of translating basic science knowledge to clinical practice is the reconciliation of phenotypes employed for laboratory animal studies with those important for the clinical condition. Alcohol dependence (AD) is a prototypic complex genetic trait. There is a long history of behaviour-genetic studies of AD in both human subjects and various genetic animal models. This review assesses the state of the art in our understanding of the genetic contributions to AD. In particular, it primarily focuses on the phenotypes studied in mouse genetic animal models, comparing them to the aspects of the human condition they are intended to target. It identifies several features of AD where genetic animal models have been particularly useful, and tries to identify understudied areas where there is good promise for further genetic animal model work. Yury O. Nunez and R. Dayne Mayfield. “Understanding Alcoholism Through microRNA Signatures in Brains of Human Alcoholics.” Frontiers in Genetics, 3, Pp. 43. Abstract Advances in the fields of genomics and genetics in the last decade have identified a large number of genes that can potentially influence alcohol-drinking behavior in humans as well as animal models. Consequently, the task of identifying efficient molecular targets that could be used to develop effective therapeutics against the disease has become increasingly daunting. One of the reasons for this is the fact that each of the many alcohol-responsive genes only contributes a small effect to the overall mechanism and disease phenotype, as is characteristic of complex traits. Current research trends are hence shifting toward the analysis of gene networks rather than emphasizing individual genes. The discovery of microRNAs and their mechanisms of action on regulation of transcript level and protein translation have made evident the utility of these small non-coding RNA molecules that act as central coordinators of multiple cross-communicating cellular pathways. Cells exploit the fact that a single microRNA can target hundreds of mRNA transcripts and that a single mRNA transcript can be simultaneously targeted by distinct microRNAs, to ensure fine-tuned and/or redundant control over a large number of cellular functions. By the same token, we can use these properties of microRNAs to develop novel, targeted strategies to combat complex disorders. In this review, we will focus on recent discoveries of microRNA signatures in brain of human alcoholics supporting the hypothesis that changes in gene expression and regulation by microRNAs are responsible for long-term neuroadaptations occurring during development of alcoholism. We also discuss insights into the potential modulation of epigenetic regulators by a subset of microRNAs. Taken together, microRNA activity may be controlling many of the cellular mechanisms already known to be involved in the development of alcoholism, and suggests potential targets for the development of novel therapeutic interventions. Andrey E. Ryabinin, Michael M. Tsoory, Tamas Kozicz, Todd E. Thiele, Adi Neufeld-Cohen, Alon Chen, Emily G. Lowery-Gionta, William J. Giardino, and Simranjit Kaur. “Urocortins: CRF’s siblings and their potential role in anxiety, depression and alcohol drinking behavior.” Alcohol (Fayetteville, N.Y.), 46, 4, Pp. 349–357. Abstract It is widely accepted that stress, anxiety, depression and alcohol abuse-related disorders are in large part controlled by corticotropin-releasing factor (CRF) receptors. However, evidence is accumulating that some of the actions on these receptors are mediated not by CRF, but by a family of related Urocortin (Ucn) peptides Ucn1, Ucn2 and Ucn3. The initial narrow focus on CRF as the potential main player acting on CRF receptors appears outdated. Instead it is suggested that CRF and the individual Ucns act in a complementary and brain region-specific fashion to regulate anxiety-related behaviors and alcohol consumption. This review, based on a symposium held in 2011 at the research meeting on “Alcoholism and Stress” in Volterra, Italy, highlights recent evidence for regulation of these behaviors by Ucns. In studies on stress and anxiety, the roles of Ucns, and in particular Ucn1, appear more visible in experiments analyzing adaptation to stressors rather than testing basal anxiety states. Based on these studies, we propose that the contribution of Ucn1 to regulating mood follows a U-like pattern with both high and low activity of Ucn1 contributing to high anxiety states. In studies on alcohol use disorders, the CRF system appears to regulate not only dependence-induced drinking, but also binge drinking and even basal consumption of alcohol. While dependence-induced and binge drinking rely on the actions of CRF on CRFR1 receptors, alcohol consumption in models of these behaviors is inhibited by actions of Ucns on CRFR2. In contrast, alcohol preference is positively influenced by actions of Ucn1, which is capable of acting on both CRFR1 and CRFR2. Because of complex distribution of Ucns in the nervous system, advances in this field will critically depend on development of new tools allowing site-specific analyses of the roles of Ucns and CRF. Matthew T. Reilly, R. Adron Harris, and Antonio Noronha. “Using Genetically Engineered Animal Models in the Postgenomic Era to Understand Gene Function in Alcoholism.” Alcohol Research : Current Reviews, 34, 3, Pp. 282–292. Publisher’s Version Abstract Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene’s function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput “next-generation sequencing” technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism. Ovidiu D. Iancu, Sunita Kawane, Daniel Bottomly, Robert Searles, Robert Hitzemann, and Shannon McWeeney. “Utilizing RNA-Seq data for de novo coexpression network inference.” Bioinformatics (Oxford, England), 28, 12, Pp. 1592–1597. Abstract MOTIVATION: RNA-Seq experiments have shown great potential for transcriptome profiling. While sequencing increases the level of biological detail, integrative data analysis is also important. One avenue is the construction of coexpression networks. Because the capacity of RNA-Seq data for network construction has not been previously evaluated, we constructed a coexpression network using striatal samples, derived its network properties and compared it with microarray-based networks. RESULTS: The RNA-Seq coexpression network displayed scale-free, hierarchical network structure. We detected transcripts groups (modules) with correlated profiles; modules overlap distinct ontology categories. Neuroanatomical data from the Allen Brain Atlas reveal several modules with spatial colocalization. The network was compared with microarray-derived networks; correlations from RNA-Seq data were higher, likely because greater sensitivity and dynamic range. Higher correlations result in higher network connectivity, heterogeneity and centrality. For transcripts present across platforms, network structure appeared largely preserved. From this study, we present the first RNA-Seq data de novo network inference. Colin N. Haile, Yanli Hao, Patrick O’Malley, Thomas F. Newton, and Therese A. Kosten. “The α1 Antagonist Doxazosin Alters the Behavioral Effects of Cocaine in Rats.” Brain Sciences, 2, 4, Pp. 619–633. Publisher’s Version Abstract Medications that target norepinephrine (NE) neurotransmission alter the behavioral effects of cocaine and may be beneficial for stimulant-use disorders. We showed previously that the short-acting, α1-adrenergic antagonist, prazosin, blocked drug-induced reinstatement of cocaine-seeking in rats and doxazosin (DOX), a longer-acting α1 antagonist blocked cocaine’s subjective effects in cocaine-dependent volunteers. To further characterize DOX as a possible pharmacotherapy for cocaine dependence, we assessed its impact on the development and expression of cocaine-induced locomotor sensitization in rats. Rats (n = 6–8) were administered saline, cocaine (COC, 10 mg/kg) or DOX (0.3 or 1.0 mg/kg) alone or in combination for 5 consecutive days (development). Following 10-days of drug withdrawal, all rats were administered COC and locomotor activity was again assessed (expression). COC increased locomotor activity across days indicative of sensitization. The high dose (1.0 mg/kg), but not the low dose (0.3 mg/kg) of DOX significantly decreased the development and expression of COC sensitization. DOX alone did not differ from saline. These results are consistent with studies showing that α1 receptors are essential for the development and expression of cocaine’s behavioral effects. Results also suggest that blockade of both the development and expression of locomotor sensitization may be important characteristics of possible pharmacotherapies for cocaine dependence in humans.