2019 SR Hauser, CP Knight, WA Truitt, RA Waeiss, IS Holt, GB Carvajal, RL Bell, and ZA Rodd. “Adolescent intermittent ethanol increases the sensitivity to the reinforcing properties of ethanol and the expression of select cholinergic and dopaminergic genes within the posterior ventral tegmental area.” Alcoholism: Clinical and Experimental Research, Pp. 43:1937-1948. Publisher’s Version Abstract Background Although not legally allowed to consume alcohol, adolescents account for 11% of all alcohol use in the United States and approximately 90% of adolescent intake is in the form of an alcohol binge. The adolescent intermittent ethanol (AIE) model developed by the NADIA consortium produces binge‐like EtOH exposure episodes. The current experiment examined the effects of AIE on the reinforcing properties of EtOH and genetic expression of cholinergic and dopaminergic factors within the posterior ventral tegmental area (pVTA) in Wistar male and female rats and in male alcohol‐preferring (P) rats. Methods Rats were exposed to the AIE or water during adolescence, and all testing occurred during adulthood. Wistar control and AIE rats were randomly assigned to groups that self‐administered 0 to 200 mg% EtOH. Male P rats self‐administered 0 to 100 mg%. Results The data indicated that exposure to AIE in both Wistar male and female rats (and male P rats) resulted in a significant leftward shift in dose–response curve for EtOH self‐administration into the pVTA. TaqMan array indicated that AIE exposure had divergent effects on the expression of nicotinic receptors (increased a7, reduction in a4 and a5). There were also sex‐specific effects of AIE on gene expression; male only reduction in D3 receptors. Conclusion Binge‐like EtOH exposure during adolescence enhances the sensitivity to the reinforcing properties of EtOH during adulthood which could be part of biological sequelae that are the basis for the deleterious effects of adolescent alcohol consumption on the rate of alcoholism during adulthood. Hauser SR, Knight CP, Truitt WA, Waeiss RA, Holt IS, Carvajal GB, Bell RL, and Rodd ZA. “Adolescent Intermittent Ethanol Increases the Sensitivity to the Reinforcing Properties of Ethanol and the Expression of Select Cholinergic and Dopaminergic Genes within the Posterior Ventral Tegmental Area.” Alcoholism: Clinical and Experimental Research, 43, 9, Pp. 1937-1948. Publisher’s Version Abstract Background Although not legally allowed to consume alcohol, adolescents account for 11% of all alcohol use in the United States and approximately 90% of adolescent intake is in the form of an alcohol binge. The adolescent intermittent ethanol (AIE) model developed by the NADIA consortium produces binge‐like EtOH exposure episodes. The current experiment examined the effects of AIE on the reinforcing properties of EtOH and genetic expression of cholinergic and dopaminergic factors within the posterior ventral tegmental area (pVTA) in Wistar male and female rats and in male alcohol‐preferring (P) rats. Methods Rats were exposed to the AIE or water during adolescence, and all testing occurred during adulthood. Wistar control and AIE rats were randomly assigned to groups that self‐administered 0 to 200 mg% EtOH. Male P rats self‐administered 0 to 100 mg%. Results The data indicated that exposure to AIE in both Wistar male and female rats (and male P rats) resulted in a significant leftward shift in dose–response curve for EtOH self‐administration into the pVTA. TaqMan array indicated that AIE exposure had divergent effects on the expression of nicotinic receptors (increased a7, reduction in a4 and a5). There were also sex‐specific effects of AIE on gene expression; male only reduction in D3 receptors. Conclusion Binge‐like EtOH exposure during adolescence enhances the sensitivity to the reinforcing properties of EtOH during adulthood which could be part of biological sequelae that are the basis for the deleterious effects of adolescent alcohol consumption on the rate of alcoholism during adulthood. KA Johnson, DJ Liput, GE Homanics, and DM Lovinger. “Age-dependent impairment of metabotropic glutamate receptor 2-dependent long-term depression in the mouse striatum by chronic ethanol exposure.” Alcohol, Pp. 82:11-21. Publisher’s Version Abstract Chronic alcohol exposure is associated with increased reliance on behavioral strategies involving the dorsolateral striatum (DLS), including habitual or stimulus-response behaviors. Presynaptic G protein-coupled receptors (GPCRs) on cortical and thalamic inputs to the DLS inhibit glutamate release, and alcohol-induced disruption of presynaptic GPCR function represents a mechanism by which alcohol could disinhibit DLS neurons and thus bias toward use of DLS-dependent behaviors. Metabotropic glutamate receptor 2 (mGlu2) is a Gi/o-coupled GPCR that robustly modulates glutamate transmission in the DLS, inducing long-term depression (LTD) at both cortical and thalamic synapses. Loss of mGlu2 function has recently been associated with increased ethanol seeking and consumption, but the ability of alcohol to produce adaptations in mGlu2 function in the DLS has not been investigated. We exposed male C57Bl/6J mice to a 2-week chronic intermittent ethanol (CIE) paradigm followed by a brief withdrawal period, then used whole-cell patch clamp recordings of glutamatergic transmission in the striatum to assess CIE effects on mGlu2-mediated synaptic plasticity. We report that CIE differentially disrupts mGlu2-mediated long-term depression in the DLS vs. dorsomedial striatum (DMS). Interestingly, CIE-induced impairment of mGlu2-LTD in the dorsolateral striatum is only observed when alcohol exposure occurs during adolescence. Incubation of striatal slices from CIE-exposed adolescent mice with a positive allosteric modulator of mGlu2 fully rescues mGlu2-LTD. In contrast to the 2-week CIE paradigm, acute exposure of striatal slices to ethanol concentrations that mimic ethanol levels during CIE exposure fails to disrupt mGlu2-LTD. We did not observe a reduction of mGlu2 mRNA or protein levels following CIE exposure, suggesting that alcohol effects on mGlu2 occur at the functional level. Our findings contribute to growing evidence that adolescents are uniquely vulnerable to certain alcohol-induced neuroadaptations, and identify enhancement of mGlu2 activity as a strategy to reverse the effects of adolescent alcohol exposure on DLS physiology. Johnson KA, Liput DJ, Homanics GE, and Lovinger DM. “Age-dependent impairment of metabotropic glutamate receptor 2-dependent long-term depression in the mouse striatum by chronic ethanol exposure.” Alcohol, 82, Pp. 11-21. Publisher’s Version Abstract Chronic alcohol exposure is associated with increased reliance on behavioral strategies involving the dorsolateral striatum (DLS), including habitual or stimulus-response behaviors. Presynaptic G protein-coupled receptors (GPCRs) on cortical and thalamic inputs to the DLS inhibit glutamate release, and alcohol-induced disruption of presynaptic GPCR function represents a mechanism by which alcohol could disinhibit DLS neurons and thus bias toward use of DLS-dependent behaviors. Metabotropic glutamate receptor 2 (mGlu2) is a Gi/o-coupled GPCR that robustly modulates glutamate transmission in the DLS, inducing long-term depression (LTD) at both cortical and thalamic synapses. Loss of mGlu2 function has recently been associated with increased ethanol seeking and consumption, but the ability of alcohol to produce adaptations in mGlu2 function in the DLS has not been investigated. We exposed male C57Bl/6J mice to a 2-week chronic intermittent ethanol (CIE) paradigm followed by a brief withdrawal period, then used whole-cell patch clamp recordings of glutamatergic transmission in the striatum to assess CIE effects on mGlu2-mediated synaptic plasticity. We report that CIE differentially disrupts mGlu2-mediated long-term depression in the DLS vs. dorsomedial striatum (DMS). Interestingly, CIE-induced impairment of mGlu2-LTD in the dorsolateral striatum is only observed when alcohol exposure occurs during adolescence. Incubation of striatal slices from CIE-exposed adolescent mice with a positive allosteric modulator of mGlu2 fully rescues mGlu2-LTD. In contrast to the 2-week CIE paradigm, acute exposure of striatal slices to ethanol concentrations that mimic ethanol levels during CIE exposure fails to disrupt mGlu2-LTD. We did not observe a reduction of mGlu2 mRNA or protein levels following CIE exposure, suggesting that alcohol effects on mGlu2 occur at the functional level. Our findings contribute to growing evidence that adolescents are uniquely vulnerable to certain alcohol-induced neuroadaptations, and identify enhancement of mGlu2 activity as a strategy to reverse the effects of adolescent alcohol exposure on DLS physiology. Kapoor M, Wang JC, Farris SP, Liu Y, McClintick J, Gupta I, Meyers JL, Bertelsen S, Chao M, Nurnberger J, Tischfield J, Harari O, Zeran L, Hesselbrock V, Bauer L, Raj T, Porjesz B, Agrawal A, Foroud T, Edenberg HJ, Mayfield RD, and Goate A. “Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism.” Translational Psychiatry, 9, Pp. 89. Abstract Alcohol exposure triggers changes in gene expression and biological pathways in human brain. We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and 73 controls of European descent, and identified 129 genes that showed altered expression (FDR < 0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45 (GADD45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related to calcium signaling pathways and showed significant downregulation of these pathways, as well as enrichment for biological processes related to nicotine response and opioid signaling. A second module (brown4) showed significant upregulation of pathways related to immune signaling. Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for genetic associations with alcohol dependence and alcohol consumption in large genome-wide studies included in the Psychiatric Genetic Consortium and the UK Biobank’s alcohol consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified genes and biological pathways that could provide insight for identifying therapeutic targets for alcohol dependence. Kapoor M, Farris SP, Liu Y, McClintick J, Gupta I, Meyers JL, Bertelsen S, Chao M, Nurnberger J, Tischfield J, Harari O, Zeran L, Hesselbrock V, Bauer L, Raj T, Porjesz B, Agrawal A, Foroud T, Edenberg HJ, Mayfield RD, and Goate A. “Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism.” Translational Psychiatry, 9, Pp. 89. Publisher’s Version Abstract Alcohol exposure triggers changes in gene expression and biological pathways in human brain. We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and 73 controls of European descent, and identified 129 genes that showed altered expression (FDR < 0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45 (GADD45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related to calcium signaling pathways and showed significant downregulation of these pathways, as well as enrichment for biological processes related to nicotine response and opioid signaling. A second module (brown4) showed significant upregulation of pathways related to immune signaling. Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for genetic associations with alcohol dependence and alcohol consumption in large genome-wide studies included in the Psychiatric Genetic Consortium and the UK Biobank’s alcohol consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified genes and biological pathways that could provide insight for identifying therapeutic targets for alcohol dependence. Sullivan EV and Pfefferbaum A. “Brain-behavior relations and effects of aging and common comorbidities in alcohol use disorder: A review.” Neuropsychology, 33, 6, Pp. 760-780. Publisher’s Version Abstract Objective: Alcohol use disorder (AUD) is a complex, dynamic condition that waxes and wanes with unhealthy drinking episodes and varies in drinking patterns and effects on brain structure and function with age. Its excessive use renders chronically heavy drinkers vulnerable to direct alcohol toxicity and a variety of comorbidities attributable to nonalcohol drug misuse, viral infections, and accelerated or premature aging. AUD affects widespread brain systems, commonly, frontolimbic, frontostriatal, and frontocerebellar networks. Method and Results: Multimodal assessment using selective neuropsychological testing and whole-brain neuroimaging provides evidence for AUD-related specific brain structure-function relations established with double dissociations. Longitudinal study using noninvasive imaging provides evidence for brain structural and functional improvement with sustained sobriety and further decline with relapse. Functional imaging suggests the possibility that some alcoholics in recovery can compensate for impairment by invoking brain systems typically not used for a target task but that can enable normal-level performance. Conclusions: Evidence for AUD-aging interactions, indicative of accelerated aging, together with increasing alcohol consumption in middle-age and older adults, put aging drinkers at special risk for developing cognitive decline and possibly dementia. (PsycINFO Database Record (c) 2019 APA, all rights reserved) EV Sullivan and A Pfefferbaum. “Brain-behavior relations and effects of aging and common comorbidities in alcohol use disorder: a review.” Neuropsychology, Pp. 33:760-780. Abstract OBJECTIVE: Alcohol use disorder (AUD) is a complex, dynamic condition that waxes and wanes with unhealthy drinking episodes and varies in drinking patterns and effects on brain structure and function with age. Its excessive use renders chronically heavy drinkers vulnerable to direct alcohol toxicity and a variety of comorbidities attributable to nonalcohol drug misuse, viral infections, and accelerated or premature aging. AUD affects widespread brain systems, commonly, frontolimbic, frontostriatal, and frontocerebellar networks. METHOD AND RESULTS: Multimodal assessment using selective neuropsychological testing and whole-brain neuroimaging provides evidence for AUD-related specific brain structure-function relations established with double dissociations. Longitudinal study using noninvasive imaging provides evidence for brain structural and functional improvement with sustained sobriety and further decline with relapse. Functional imaging suggests the possibility that some alcoholics in recovery can compensate for impairment by invoking brain systems typically not used for a target task but that can enable normal-level performance. CONCLUSIONS: Evidence for AUD-aging interactions, indicative of accelerated aging, together with increasing alcohol consumption in middle-age and older adults, put aging drinkers at special risk for developing cognitive decline and possibly dementia. (PsycINFO Database Record (c) 2019 APA, all rights reserved). Chung T and Harris RA. “Cannabis and Alcohol: From Basic Science to Public Policy.” Alcoholism: Clinical and Experimental Research, 43, 9, Pp. 1829-1833. Publisher’s Version Abstract The emergence of state-level approval of cannabis for both medical and recreational use is likely to increase the already prevalent co-use of alcohol and cannabis (Yurasek et al., 2017) and raise many important health and social concerns (National Academies of Sciences, 2017). Cannabis research has lagged behind that of alcohol research, but important studies are emerging on the interactions between alcohol and cannabinoids. In this Virtual Issue, Cannabis and Alcohol: From Basic Science to Public Policy, we present 9 leading-edge research publications spanning preclinical and epidemiological studies, as well as a critical review of the potential therapeutic use of cannabidiol (CBD) in the treatment of alcohol use disorder (AUD) (Turna et al., 2019), which recently appeared in Alcoholism: Clinical and Experimental Research. The Virtual Issue addresses the potential risks and benefits of alcohol and cannabis co-use, which may depend on the particular subgroup of individuals, and whether these drugs are used simultaneously (i.e., drug effects overlap) (Pakula et al., 2009) or concurrently (i.e., drug effects do not overlap in time) (Subbaraman et al., 2019). Simultaneous drug use may be perceived as a means to complement or enhance the effects of each substance (Patrick et al., 2018), despite some individuals reporting negative effects (Lee et al., 2017). The positive perception of complementary drug effects is concerning given the greater health risks associated with simultaneous use (Volkow et al., 2014; Yurasek et al., 2017). Another pattern of use has also developed that substitutes cannabis for alcohol use, particularly in individuals who are making efforts to reduce alcohol intake (Subbaraman, 2016). As summarized in the sections below, this Virtual Issue provides a current assessment of cannabis–alcohol interactions and shows patterns of drug use and risk profiles that may impact the prevalence of co-use and dependence. T Chung and RA Harris. “Cannabis and alcohol: from basic science to public policy.” Alcoholism: Clinical and Experimental Research, Pp. 43:1829-1833. Publisher’s Version Abstract The emergence of state‐level approval of cannabis for both medical and recreational use is likely to increase the already prevalent co‐use of alcohol and cannabis (Yurasek et al., 2017) and raise many important health and social concerns (National Academies of Sciences, 2017). Cannabis research has lagged behind that of alcohol research, but important studies are emerging on the interactions between alcohol and cannabinoids. In this Virtual Issue, Cannabis and Alcohol: From Basic Science to Public Policy, we present 9 leading‐edge research publications spanning preclinical and epidemiological studies, as well as a critical review of the potential therapeutic use of cannabidiol (CBD) in the treatment of alcohol use disorder (AUD) (Turna et al., 2019), which recently appeared in Alcoholism: Clinical and Experimental Research. The Virtual Issue addresses the potential risks and benefits of alcohol and cannabis co‐use, which may depend on the particular subgroup of individuals, and whether these drugs are used simultaneously (i.e., drug effects overlap) (Pakula et al., 2009) or concurrently (i.e., drug effects do not overlap in time) (Subbaraman et al., 2019). Simultaneous drug use may be perceived as a means to complement or enhance the effects of each substance (Patrick et al., 2018), despite some individuals reporting negative effects (Lee et al., 2017). The positive perception of complementary drug effects is concerning given the greater health risks associated with simultaneous use (Volkow et al., 2014; Yurasek et al., 2017). Another pattern of use has also developed that substitutes cannabis for alcohol use, particularly in individuals who are making efforts to reduce alcohol intake (Subbaraman, 2016). As summarized in the sections below, this Virtual Issue provides a current assessment of cannabis–alcohol interactions and shows patterns of drug use and risk profiles that may impact the prevalence of co‐use and dependence. Zahr NM, Pohl KM, Pfefferbaum A, and Sullivan EV. “Central Nervous System Correlates of “Objective” Neuropathy in Alcohol Use Disorder.” Alcoholism: Clinical and Experimental Research, 43, 10, Pp. 2144-2152. Publisher’s Version Abstract Background Among the neurological consequences of alcoholism is peripheral neuropathy. Relative to human immunodeficiency virus (HIV) or diabetes‐related neuropathies, neuropathy associated with alcohol use disorders (AUD ) is understudied. In both the diabetes and HIV literature, emerging evidence supports a central nervous system (CNS) component to peripheral neuropathy. Methods In seeking a central substrate for AUD ‐related neuropathy, the current study was conducted in 154 individuals with AUD (43 women, age 21 to 74 years) and 99 healthy controls (41 women, age 21 to 77 years) and explored subjective symptoms (self‐report) and objective signs (perception of vibration, deep tendon ankle reflex, position sense, 2‐point discrimination) of neuropathy separately. In addition to regional brain volumes, risk factors for AUD ‐related neuropathy, including age, sex, total lifetime ethanol consumed, nutritional indices (i.e., thiamine, folate), and measures of liver integrity (i.e., γ ‐glutamyltransferase), were evaluated. Results The AUD group described more subjective symptoms of neuropathy and was more frequently impaired on bilateral perception of vibration. From 5 correlates, the number of AUD ‐related seizures was most significantly associated with subjective symptoms of neuropathy. There were 15 correlates of impaired perception of vibration among the AUD participants: Of these, age and volume of frontal precentral cortex were the most robust predictors. Conclusions This study supports CNS involvement in objective signs of neuropathy in AUD. NM Zahr, KM Pohl, A Pfefferbaum, and EV Sullivan. “Central nervous system correlates of “objective” neuropathy in alcohol use disorder.” Alcoholism: Clinical and Experimental Research, Pp. 43:2144-2152. Publisher’s Version Abstract BACKGROUND: Among the neurological consequences of alcoholism is peripheral neuropathy. Relative to human immunodeficiency virus (HIV) or diabetes-related neuropathies, neuropathy associated with alcohol use disorders (AUD) is understudied. In both the diabetes and HIV literature, emerging evidence supports a central nervous system (CNS) component to peripheral neuropathy. METHODS: In seeking a central substrate for AUD-related neuropathy, the current study was conducted in 154 individuals with AUD (43 women, age 21 to 74 years) and 99 healthy controls (41 women, age 21 to 77 years) and explored subjective symptoms (self-report) and objective signs (perception of vibration, deep tendon ankle reflex, position sense, 2-point discrimination) of neuropathy separately. In addition to regional brain volumes, risk factors for AUD-related neuropathy, including age, sex, total lifetime ethanol consumed, nutritional indices (i.e., thiamine, folate), and measures of liver integrity (i.e., γ-glutamyltransferase), were evaluated. RESULTS: The AUD group described more subjective symptoms of neuropathy and was more frequently impaired on bilateral perception of vibration. From 5 correlates, the number of AUD-related seizures was most significantly associated with subjective symptoms of neuropathy. There were 15 correlates of impaired perception of vibration among the AUD participants: Of these, age and volume of frontal precentral cortex were the most robust predictors. CONCLUSIONS: This study supports CNS involvement in objective signs of neuropathy in AUD. Hauser SR, Deehan GA Jr, Knight CP, Waeiss RA, Truitt WA, Johnson PL, Bell RL, McBride WJ, and Rodd ZA. “Conditioned stimuli affect ethanol-seeking by female alcohol-preferring (P) rats: the role of repeated-deprivations, cue-pretreatment, and cue-temporal intervals.” Psychopharmacology, 236, 9, Pp. 2835-2846. Publisher’s Version Abstract Rationale Evidence indicates that drug-paired stimuli can evoke drug-craving leading to drug-seeking and repeated relapse periods can influence drug-seeking behaviors. Objectives The present study examined (1) the effect of an interaction between repeated deprivation cycles and excitatory conditioning stimuli (CS+) on ethanol (EtOH)-seeking; (2) the effects of EtOH-paired cue-exposure in a non-drug-paired environment on subsequent conditioning in a drug-paired environment; and (3) the temporal effects of conditioned cues on subsequent EtOH-seeking. Methods Adult female alcohol-preferring (P) rats were exposed to three conditioned odor cues; CS+ associated with EtOH self-administration, CS− associated with the absence of EtOH (extinction training), and a neutral stimulus (CS0) presented in a neutral non-drug-paired environment. The rats underwent four deprivation cycles or were non-deprived, following extinction they were maintained in a home cage for an EtOH-free period, and then exposed to no cue, CS+, CS−, or CS0 to assess the effect of the conditioned cues on EtOH-seeking behavior. Results Repeated deprivations enhanced and prolonged the duration of CS+ effects on EtOH-seeking. Presentation of the CS− in a non-drug-paired environment blocked the ability of a CS+ to enhance EtOH-seeking in a drug-paired environment. Presentation of the CS+ or CS− in a non-drug-paired environment 2 or 4 h earlier significantly altered EtOH-seeking. Conclusion Results indicated an interaction between repeated deprivation cycles and CS+ resulted in a potentiation of CS+ evoked EtOH-seeking. In addition, a CS− may have therapeutic potential by providing prophylactic protection against relapse behavior in the presence of cues in the drug-using environment. SR Hauser, GA Jr Deehan, CP Knight, RA Waeiss, WA Truitt, PL Johnson, RL Bell, WJ McBride, and ZA Rodd. “Conditioned stimuli affect ethanol-seeking by female alcohol-preferring (P) rats: the role of repeated-deprivations, cue-pretreatment, and cue-temporal intervals.” Psychopharmacology, Pp. 236:2835-2846. Publisher’s Version Abstract RATIONALE: Evidence indicates that drug-paired stimuli can evoke drug-craving leading to drug-seeking and repeated relapse periods can influence drug-seeking behaviors. OBJECTIVES: The present study examined (1) the effect of an interaction between repeated deprivation cycles and excitatory conditioning stimuli (CS+) on ethanol (EtOH)-seeking; (2) the effects of EtOH-paired cue-exposure in a non-drug-paired environment on subsequent conditioning in a drug-paired environment; and (3) the temporal effects of conditioned cues on subsequent EtOH-seeking. METHODS: Adult female alcohol-preferring (P) rats were exposed to three conditioned odor cues; CS+ associated with EtOH self-administration, CS- associated with the absence of EtOH (extinction training), and a neutral stimulus (CS0) presented in a neutral non-drug-paired environment. The rats underwent four deprivation cycles or were non-deprived, following extinction they were maintained in a home cage for an EtOH-free period, and then exposed to no cue, CS+, CS-, or CS0 to assess the effect of the conditioned cues on EtOH-seeking behavior. RESULTS: Repeated deprivations enhanced and prolonged the duration of CS+ effects on EtOH-seeking. Presentation of the CS- in a non-drug-paired environment blocked the ability of a CS+ to enhance EtOH-seeking in a drug-paired environment. Presentation of the CS+ or CS- in a non-drug-paired environment 2 or 4 h earlier significantly altered EtOH-seeking. CONCLUSION: Results indicated an interaction between repeated deprivation cycles and CS+ resulted in a potentiation of CS+ evoked EtOH-seeking. In addition, a CS- may have therapeutic potential by providing prophylactic protection against relapse behavior in the presence of cues in the drug-using environment. Y Otsu, E Darcq, K Pietrajtis, F Mátyás, E Schwartz, T Bessaih, S Abi Gerges, CV Rousseau, T Grand, S Dieudonné, P Paoletti, L Acsády, C Agulhon, BL Kieffer, and MA Diana. “Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula.” Science, Pp. 366:250-254. Publisher’s Version Abstract The unconventional N-methyl-D-aspartate (NMDA) receptor subunits GluN3A and GluN3B can, when associated with the other glycine-binding subunit GluN1, generate excitatory conductances purely activated by glycine. However, functional GluN1/GluN3 receptors have not been identified in native adult tissues. We discovered that GluN1/GluN3A receptors are operational in neurons of the mouse adult medial habenula (MHb), an epithalamic area controlling aversive physiological states. In the absence of glycinergic neuronal specializations in the MHb, glial cells tuned neuronal activity via GluN1/GluN3A receptors. Reducing GluN1/GluN3A receptor levels in the MHb prevented place-aversion conditioning. Our study extends the physiological and behavioral implications of glycine by demonstrating its control of negatively valued emotional associations via excitatory glycinergic NMDA receptors. Otsu Y, Darcq E, Pietrajtis K, Mátyás F, Schwartz E, Bessaih T, Abi Gerges S, Rousseau CV, Grand T, Dieudonné S, Paoletti P, Acsády L, Agulhon C, Kieffer BL, and Diana MA. “Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula.” Science, 366, 6462, Pp. 250-254. Publisher’s Version Abstract The unconventional N-methyl-D-aspartate (NMDA) receptor subunits GluN3A and GluN3B can, when associated with the other glycine-binding subunit GluN1, generate excitatory conductances purely activated by glycine. However, functional GluN1/GluN3 receptors have not been identified in native adult tissues. We discovered that GluN1/GluN3A receptors are operational in neurons of the mouse adult medial habenula (MHb), an epithalamic area controlling aversive physiological states. In the absence of glycinergic neuronal specializations in the MHb, glial cells tuned neuronal activity via GluN1/GluN3A receptors. Reducing GluN1/GluN3A receptor levels in the MHb prevented place-aversion conditioning. Our study extends the physiological and behavioral implications of glycine by demonstrating its control of negatively valued emotional associations via excitatory glycinergic NMDA receptors. Sullivan EV, Zahr NM, Saranathan M, Pohl KM, and Pfefferbaum A. “Convergence of three parcellation approaches demonstrating cerebellar lobule volume deficits in Alcohol Use Disorder.” Neuroimage: Clinical, 24. Publisher’s Version Abstract EV Sullivan, NM Zahr, M Saranathan, KM Pohl, and A Pfefferbaum. “Convergence of three parcellation approaches demonstrating cerebellar lobule volume deficits in Alcohol Use Disorder.” Neuroimage: Clinical, Pp. 24:101974. Publisher’s Version Abstract Recent advances in robust and reliable methods of MRI-derived cerebellar lobule parcellation volumetry present the opportunity to assess effects of Alcohol Use Disorder (AUD) on selective cerebellar lobules and relations with indices of nutrition and motor functions. In pursuit of this opportunity, we analyzed high-resolution MRI data acquired in 24 individuals with AUD and 20 age- and sex-matched controls with a 32-channel head coil using three different atlases: the online automated analysis pipeline volBrain Ceres, SUIT, and the Johns Hopkins atlas. Participants had also completed gait and balance examination and hematological analysis of nutritional and liver status, enabling testing of functional meaningfulness of each cerebellar parcellation scheme. Compared with controls, each quantification approach yielded similar patterns of group differences in regional volumes: All three approaches identified AUD-related deficits in total tissue and total gray matter, but only Ceres identified a total white matter volume deficit. Convergent volume differences occurred in lobules I-V, Crus I, VIIIB, and IX. Coefficients of variation (CVs) were <20% for 46 of 56 regions measured and in general were graded: Ceres<SUIT<Hopkins. The most robust correlations were identified between poorer stability in balancing on one leg and smaller lobule VI and Crus I volumes from the Ceres atlas. Lower values of two essential vitamins—thiamine (vitamin B1) and serum folate (vitamin B9)—along with lower red blood cell count, which are dependent on adequate levels of B vitamins, correlated with smaller gray matter volumes of lobule VI and Crus I. Higher γ-glutamyl transferase (GGT) levels, possibly reflecting compromised liver function, correlated with smaller volumes of lobules VI and X. These initial results based on high resolution data produced with clinically practical imaging procedures hold promise for expanding our knowledge about the relevance of focal cerebellar morphology in AUD and other neuropsychiatric conditions. Ferguson LB, Zhang L, Kircher D, Wang S, Mayfield RD, Crabbe JC, Morrisett RA, Harris RA, and Ponomarev I. “Dissecting Brain Networks Underlying Alcohol Binge Drinking Using a Systems Genomics Approach.” Molecular Neurobiology, 56, 4, Pp. 2791-2810. Publisher’s Version Abstract Alcohol use disorder (AUD) is a complex psychiatric disorder with strong genetic and environmental risk factors. We studied the molecular perturbations underlying risky drinking behavior by measuring transcriptome changes across the neurocircuitry of addiction in a genetic mouse model of binge drinking. Sixteen generations of selective breeding for high blood alcohol levels after a binge drinking session produced global changes in brain gene expression in alcohol-naïve High Drinking in the Dark (HDID-1) mice. Using gene expression profiles to generate circuit-level hypotheses, we developed a systems approach that integrated regulation of gene coexpression networks across multiple brain regions, neuron-specific transcriptional signatures, and knowledgebase analytics. Whole-cell, voltage-clamp recordings from nucleus accumbens shell neurons projecting to the ventral tegmental area showed differential ethanol-induced plasticity in HDID-1 and control mice and provided support for one of the hypotheses. There were similarities in gene networks between HDID-1 mouse brains and postmortem brains of human alcoholics, suggesting that some gene expression patterns associated with high alcohol consumption are conserved across species. This study demonstrated the value of gene networks for data integration across biological modalities and species to study mechanisms of disease. LB Ferguson, L Zhang, D Kircher, Wang S, RD Mayfield, JC Crabbe, RA Morrisett, RA Harris, and I. Ponomarev. “Dissecting brain networks underlying alcohol binge drinking using a systems genomics approach.” Molecular Neurobiology, 56, Pp. 2791-2810. Publisher’s Version Abstract Alcohol use disorder (AUD) is a complex psychiatric disorder with strong genetic and environmental risk factors. We studied the molecular perturbations underlying risky drinking behavior by measuring transcriptome changes across the neurocircuitry of addiction in a genetic mouse model of binge drinking. Sixteen generations of selective breeding for high blood alcohol levels after a binge drinking session produced global changes in brain gene expression in alcohol-naïve High Drinking in the Dark (HDID-1) mice. Using gene expression profiles to generate circuit-level hypotheses, we developed a systems approach that integrated regulation of gene coexpression networks across multiple brain regions, neuron-specific transcriptional signatures, and knowledgebase analytics. Whole-cell, voltage-clamp recordings from nucleus accumbens shell neurons projecting to the ventral tegmental area showed differential ethanol-induced plasticity in HDID-1 and control mice and provided support for one of the hypotheses. There were similarities in gene networks between HDID-1 mouse brains and postmortem brains of human alcoholics, suggesting that some gene expression patterns associated with high alcohol consumption are conserved across species. This study demonstrated the value of gene networks for data integration across biological modalities and species to study mechanisms of disease. You C, Savarese A, Vandegrift BJ, He D, Pandey SC, Lasek AW, and Brodie MS. “Ethanol acts on KCNK13 potassium channels in the ventral tegmental area to increase firing rate and modulate binge–like drinking.” Neuropharmacology, 114, Pp. 29-36. Publisher’s Version Abstract Alcohol excitation of the ventral tegmental area (VTA) is important in neurobiological processes related to the development of alcoholism. The ionotropic receptors on VTA neurons that mediate ethanol-induced excitation have not been identified. Quinidine blocks ethanol excitation of VTA neurons, and blockade of two-pore potassium channels is among the actions of quinidine. Therefore two-pore potassium channels in the VTA may be potential targets for the action of ethanol. Here, we explored whether ethanol activation of VTA neurons is mediated by the two-pore potassium channel KCNK13. Extracellular recordings of the response of VTA neurons to ethanol were performed in combination with knockdown of Kcnk13 using a short hairpin RNA (shRNA) in C57BL/6 J mice. Real-time PCR and immunohistochemistry were used to examine expression of this channel in the VTA. Finally, the role of KCNK13 in binge-like drinking was examined in the drinking in the dark test after knockdown of the channel. Kcnk13 expression in the VTA was increased by acute ethanol exposure. Ethanol-induced excitation of VTA neurons was selectively reduced by shRNA targeting Kcnk13. Importantly, knockdown of Kcnk13 in the VTA resulted in increased alcohol drinking. These results are consistent with the idea that ethanol stimulates VTA neurons at least in part by inhibiting KCNK13, a specific two-pore potassium channel, and that KCNK13 can control both VTA neuronal activity and binge drinking. KCNK13 is a novel alcohol-sensitive molecular target and may be amenable to the development of pharmacotherapies for alcoholism treatment. C You, A Savarese, BJ Vandegrift, D He, SC Pandey, AW Lasek, and MS Brodie. “Ethanol acts on KCNK13 potassium channels in the ventral tegmental area to increase firing rate and modulate binge-like drinking.” Neuropharmacology, 144, Pp. 29-36. Abstract Alcohol excitation of the ventral tegmental area (VTA) is important in neurobiological processes related to the development of alcoholism. The ionotropic receptors on VTA neurons that mediate ethanol-induced excitation have not been identified. Quinidine blocks ethanol excitation of VTA neurons, and blockade of two-pore potassium channels is among the actions of quinidine. Therefore two-pore potassium channels in the VTA may be potential targets for the action of ethanol. Here, we explored whether ethanol activation of VTA neurons is mediated by the two-pore potassium channel KCNK13. Extracellular recordings of the response of VTA neurons to ethanol were performed in combination with knockdown of Kcnk13 using a short hairpin RNA (shRNA) in C57BL/6 J mice. Real-time PCR and immunohistochemistry were used to examine expression of this channel in the VTA. Finally, the role of KCNK13 in binge-like drinking was examined in the drinking in the dark test after knockdown of the channel. Kcnk13 expression in the VTA was increased by acute ethanol exposure. Ethanol-induced excitation of VTA neurons was selectively reduced by shRNA targeting Kcnk13. Importantly, knockdown of Kcnk13 in the VTA resulted in increased alcohol drinking. These results are consistent with the idea that ethanol stimulates VTA neurons at least in part by inhibiting KCNK13, a specific two-pore potassium channel, and that KCNK13 can control both VTA neuronal activity and binge drinking. KCNK13 is a novel alcohol-sensitive molecular target and may be amenable to the development of pharmacotherapies for alcoholism treatment. Wolfe SA, Farris SP, Mayfield JE, Heaney CF, Erickson EK, RA Harris, RD Mayfield, and KF Raab-Graham. “Ethanol and a rapid-acting antidepressant produce overlapping changes in exon expression in the synaptic transcriptome.” Neuropharmacology, 146, Pp. 289-299. Abstract Crabbe JC, Metten P, Savarese AM, Ozburn AR, Schlumbohm JP, Spence SE, and Hack WR. “Ethanol conditioned taste aversion in high drinking in the dark mice.” Brain Sciences, 9, 1. Abstract Alcohol use disorder (AUD) and major depressive disorder (MDD) are prevalent, debilitating, and highly comorbid disorders. The molecular changes that underlie their comorbidity are beginning to emerge. For example, recent evidence showed that acute ethanol exposure produces rapid antidepressant-like biochemical and behavioral responses. Both ethanol and fast-acting antidepressants block N-methyl-D-aspartate receptor (NMDAR) activity, leading to synaptic changes and long-lasting antidepressant-like behavioral effects. We used RNA sequencing to analyze changes in the synaptic transcriptome after acute treatment with ethanol or the NMDAR antagonist, Ro 25-6981. Ethanol and Ro 25-6981 induced differential, independent changes in gene expression. In contrast with gene-level expression, ethanol and Ro 25-6981 produced overlapping changes in exons, as measured by analysis of differentially expressed exons (DEEs). A prominent overlap in genes with DEEs indicated that changes in exon usage were important for both ethanol and Ro 25-6981 action. Structural modeling provided evidence that ethanol-induced exon expression in the NMDAR1 amino-terminal domain could induce conformational changes and thus alter NMDAR function. These findings suggest that the rapid antidepressant effects of ethanol and NMDAR antagonists reported previously may depend on synaptic exon usage rather than gene expression. Crabbe JC, Metten P, Savarese AM, Ozburn AR, Schlumbohm JP, Spence SE, and Hack WR. “Ethanol Conditioned Taste Aversion in High Drinking in the Dark Mice.” Brain Sciences, 9, 1, Pp. E2. Publisher’s Version Abstract Two independent lines of High Drinking in the Dark (HDID-1, HDID-2) mice have been bred to reach high blood alcohol levels after a short period of binge-like ethanol drinking. Male mice of both lines were shown to have reduced sensitivity to develop a taste aversion to a novel flavor conditioned by ethanol injections as compared with their unselected HS/NPT founder stock. We have subsequently developed inbred variants of each line. The current experiments established that reduced ethanol-conditioned taste aversion is also seen in the inbred variants, in both males and females. In other experiments, we asked whether HDID mice would ingest sufficient doses of ethanol to lead to a conditioned taste aversion upon retest. Different manipulations were used to elevate consumption of ethanol on initial exposure. Access to increased ethanol concentrations, to multiple tubes of ethanol, and fluid restriction to increase thirst motivation all enhanced initial drinking of ethanol. Each condition led to reduced intake the next day, consistent with a mild conditioned taste aversion. These experiments support the conclusion that one reason contributing to the willingness of HDID mice to drink to the point of intoxication is a genetic insensitivity to the aversive effects of ethanol. DM Kircher, HC Aziz, RA Mangieri, and RA Morrisett. “Ethanol experience enhances glutamatergic ventral hippocampal inputs to D1 receptor-expressing medium spiny neurons in the nucleus accumbens shell.” Journal of Neuroscience, 39, Pp. 2459-2469. Publisher’s Version Abstract Two independent lines of High Drinking in the Dark (HDID-1, HDID-2) mice have been bred to reach high blood alcohol levels after a short period of binge-like ethanol drinking. Male mice of both lines were shown to have reduced sensitivity to develop a taste aversion to a novel flavor conditioned by ethanol injections as compared with their unselected HS/NPT founder stock. We have subsequently developed inbred variants of each line. The current experiments established that reduced ethanol-conditioned taste aversion is also seen in the inbred variants, in both males and females. In other experiments, we asked whether HDID mice would ingest sufficient doses of ethanol to lead to a conditioned taste aversion upon retest. Different manipulations were used to elevate consumption of ethanol on initial exposure. Access to increased ethanol concentrations, to multiple tubes of ethanol, and fluid restriction to increase thirst motivation all enhanced initial drinking of ethanol. Each condition led to reduced intake the next day, consistent with a mild conditioned taste aversion. These experiments support the conclusion that one reason contributing to the willingness of HDID mice to drink to the point of intoxication is a genetic insensitivity to the aversive effects of ethanol. Kircher DM, Aziz HC, Mangieri RA, and Morrisett RA. “Ethanol Experience Enhances Glutamatergic Ventral Hippocampal Inputs to D1 Receptor-Expressing Medium Spiny Neurons in the Nucleus Accumbens Shell.” Journal of Neuroscience, 39, 13, Pp. 2459-2469. Publisher’s Version Abstract Nucleus accumbens dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) have been implicated in the formation of dependence to many drugs of abuse including alcohol. Previous studies have revealed that acute alcohol exposure suppresses glutamatergic signaling within the accumbens and repeated alcohol exposure enhances glutamatergic signaling. D1-MSNs receive glutamatergic input from several brain regions and it is not currently known how individual inputs onto D1-MSNs are altered by alcohol experience. To Address this, we used virally mediated expression of Channelrhodopsin (ChR2) in ventral hippocampal (vHipp) glutamate neurons to selectively activate vHipp to D1-MSN synapses and compared synaptic adaptations in response to low and high alcohol experience in vitro and in vivo. Alcohol experience enhanced glutamatergic activity and abolished long-term depression (LTD) at ventral hippocampal (vHipp) to D1-MSN synapses. Following chronic alcohol experience GluA2-lacking AMPA receptors, which are Ca-permeable, were inserted into vHipp to D1-MSN synapses. These alcohol-induced adaptations of glutamatergic signaling occurred at lower levels of exposure than previously reported. The loss of LTD expression and enhancement in glutamatergic signaling from the vHipp to D1-MSNs in the nucleus accumbens may play a critical role in the formation of alcohol dependence and enhancements in ethanol consumption. Reversal of alcohol-induced insertion of Ca-permeable AMPA receptors and enhancement of glutamatergic activity at vHipp to D1-MSNs presents potential targets for intervention during early exposure to alcohol. SIGNIFICANCE STATEMENT The work presented here is the first to elucidate how an individual glutamatergic input onto D1-MSNs of the accumbens shell (shNAc) are altered by repeated ethanol exposure. Our findings suggest that glutamatergic input from the ventral hippocampus (vHipp) onto D1-MSNs is enhanced following drinking in a two-bottle choice (2BC) paradigm and is further enhanced by chronic intermittent ethanol (CIE) vapor exposure which escalated volitional ethanol intake. A critical finding was the insertion of Ca-permeable AMPA receptors into vHipp-shNAc D1-MSN synapses following CIE exposure, and more importantly following ethanol consumption in the absence of vapor exposure. These findings suggest that enhancements of glutamatergic input from the vHipp and insertion of Ca-permeable AMPARs play a role in the formation of ethanol dependence. Kircher DM, Aziz H, Mangieri R, and Morrisett R. “Ethanol experience enhances glutamatergic ventral hippocampal inputs to D1 receptor-expressing medium spiny neurons in the nucleus accumbens shell.” The Journal of neuroscience, 39, 13, Pp. 2459-2469. Publisher’s Version Abstract Nucleus accumbens dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) have been implicated in the formation of dependence to many drugs of abuse including alcohol. Previous studies have revealed that acute alcohol exposure suppresses glutamatergic signaling within the accumbens and repeated alcohol exposure enhances glutamatergic signaling. D1-MSNs receive glutamatergic input from several brain regions and it is not currently known how individual inputs onto D1-MSNs are altered by alcohol experience. To Address this, we used virally mediated expression of Channelrhodopsin (ChR2) in ventral hippocampal (vHipp) glutamate neurons to selectively activate vHipp to D1-MSN synapses and compared synaptic adaptations in response to low and high alcohol experience in vitro and in vivo. Alcohol experience enhanced glutamatergic activity and abolished long-term depression (LTD) at ventral hippocampal (vHipp) to D1-MSN synapses. Following chronic alcohol experience GluA2-lacking AMPA receptors, which are Ca-permeable, were inserted into vHipp to D1-MSN synapses. These alcohol-induced adaptations of glutamatergic signaling occurred at lower levels of exposure than previously reported. The loss of LTD expression and enhancement in glutamatergic signaling from the vHipp to D1-MSNs in the nucleus accumbens may play a critical role in the formation of alcohol dependence and enhancements in ethanol consumption. Reversal of alcohol-induced insertion of Ca-permeable AMPA receptors and enhancement of glutamatergic activity at vHipp to D1-MSNs presents potential targets for intervention during early exposure to alcohol. SIGNIFICANCE STATEMENT The work presented here is the first to elucidate how an individual glutamatergic input onto D1-MSNs of the accumbens shell (shNAc) are altered by repeated ethanol exposure. Our findings suggest that glutamatergic input from the ventral hippocampus (vHipp) onto D1-MSNs is enhanced following drinking in a two-bottle choice (2BC) paradigm and is further enhanced by chronic intermittent ethanol (CIE) vapor exposure which escalated volitional ethanol intake. A critical finding was the insertion of Ca-permeable AMPA receptors into vHipp-shNAc D1-MSN synapses following CIE exposure, and more importantly following ethanol consumption in the absence of vapor exposure. These findings suggest that enhancements of glutamatergic input from the vHipp and insertion of Ca-permeable AMPARs play a role in the formation of ethanol dependence. Homanics GE. “Gene-edited CRISPy Critters for alcohol research.” Alcohol, 74, Pp. 11-19. Publisher’s Version Abstract Genetically engineered animals are powerful tools that have provided invaluable insights into mechanisms of alcohol action and alcohol-use disorder. Traditionally, production of gene-targeted animals was a tremendously expensive, time consuming, and technically demanding undertaking. However, the recent advent of facile methods for editing the genome at very high efficiency is revolutionizing how these animals are made. While pioneering approaches to create gene-edited animals first used zinc finger nucleases and subsequently used transcription activator-like effector nucleases, these approaches have been largely supplanted in an extremely short period of time with the recent discovery and precocious maturation of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system. CRISPR uses a short RNA sequence to guide a non-specific CRISPR-associated nuclease (Cas) to a precise, single location in the genome. Because the CRISPR/Cas system can be cheaply, rapidly, and easily reprogrammed to target nearly any genomic locus of interest simply by recoding the sequence of the guide RNA, this gene-editing system has been rapidly adopted by numerous labs around the world. With CRISPR/Cas, it is now possible to perform gene editing directly in early embryos from every species of animals that is of interest to the alcohol field. Techniques have been developed that enable the rapid production of animals in which a gene has been inactivated (knockout) or modified to harbor specific nucleotide changes (knockins). This system has also been used to insert specific DNA sequences such as reporter or recombinase genes into specific loci of interest. Genetically engineered animals created with the CRISPR/Cas system (CRISPy Critters) are being produced at an astounding pace. Animal production is no longer a significant bottleneck to new discoveries. CRISPy animal studies are just beginning to appear in the alcohol literature, but their use is expected to explode in the near future. CRISPy mice, rats, and other model organisms are sure to facilitate advances in our understanding of alcohol-use disorder. Homanics GE. “Gene-edited CRISPy Critters for alcohol research.” Alcohol, 74, Pp. 11-19. Abstract Genetically engineered animals are powerful tools that have provided invaluable insights into mechanisms of alcohol action and alcohol-use disorder. Traditionally, production of gene-targeted animals was a tremendously expensive, time consuming, and technically demanding undertaking. However, the recent advent of facile methods for editing the genome at very high efficiency is revolutionizing how these animals are made. While pioneering approaches to create gene-edited animals first used zinc finger nucleases and subsequently used transcription activator-like effector nucleases, these approaches have been largely supplanted in an extremely short period of time with the recent discovery and precocious maturation of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system. CRISPR uses a short RNA sequence to guide a non-specific CRISPR-associated nuclease (Cas) to a precise, single location in the genome. Because the CRISPR/Cas system can be cheaply, rapidly, and easily reprogrammed to target nearly any genomic locus of interest simply by recoding the sequence of the guide RNA, this gene-editing system has been rapidly adopted by numerous labs around the world. With CRISPR/Cas, it is now possible to perform gene editing directly in early embryos from every species of animals that is of interest to the alcohol field. Techniques have been developed that enable the rapid production of animals in which a gene has been inactivated (knockout) or modified to harbor specific nucleotide changes (knockins). This system has also been used to insert specific DNA sequences such as reporter or recombinase genes into specific loci of interest. Genetically engineered animals created with the CRISPR/Cas system (CRISPy Critters) are being produced at an astounding pace. Animal production is no longer a significant bottleneck to new discoveries. CRISPy animal studies are just beginning to appear in the alcohol literature, but their use is expected to explode in the near future. CRISPy mice, rats, and other model organisms are sure to facilitate advances in our understanding of alcohol-use disorder. Erickson EK, Blednov YA, Harris RA, and Mayfield RD. “Glial gene networks associated with alcohol dependence.” Scientific Reports, 9, 1, Pp. 10949. Publisher’s Version Abstract Chronic alcohol abuse alters the molecular structure and function of brain cells. Recent work suggests adaptations made by glial cells, such as astrocytes and microglia, regulate physiological and behavioral changes associated with addiction. Defining how alcohol dependence alters the transcriptome of different cell types is critical for developing the mechanistic hypotheses necessary for a nuanced understanding of cellular signaling in the alcohol-dependent brain. We performed RNA-sequencing on total homogenate and glial cell populations isolated from mouse prefrontal cortex (PFC) following chronic intermittent ethanol vapor exposure (CIE). Compared with total homogenate, we observed unique and robust gene expression changes in astrocytes and microglia in response to CIE. Gene co-expression network analysis revealed biological pathways and hub genes associated with CIE in astrocytes and microglia that may regulate alcohol-dependent phenotypes. Astrocyte identity and synaptic calcium signaling genes were enriched in alcohol-associated astrocyte networks, while TGF-β signaling and inflammatory response genes were disrupted by CIE treatment in microglia gene networks. Genes related to innate immune signaling, specifically interferon pathways, were consistently up-regulated across CIE-exposed astrocytes, microglia, and total homogenate PFC tissue. This study illuminates the cell-specific effects of chronic alcohol exposure and provides novel molecular targets for studying alcohol dependence. EK Erickson, YA Blednov, RA Harris, and RD Mayfield. “Glial gene networks associated with alcohol dependence.” Scientific Reports, Pp. 9:10949. Publisher’s Version Abstract Chronic alcohol abuse alters the molecular structure and function of brain cells. Recent work suggests adaptations made by glial cells, such as astrocytes and microglia, regulate physiological and behavioral changes associated with addiction. Defining how alcohol dependence alters the transcriptome of different cell types is critical for developing the mechanistic hypotheses necessary for a nuanced understanding of cellular signaling in the alcohol-dependent brain. We performed RNA-sequencing on total homogenate and glial cell populations isolated from mouse prefrontal cortex (PFC) following chronic intermittent ethanol vapor exposure (CIE). Compared with total homogenate, we observed unique and robust gene expression changes in astrocytes and microglia in response to CIE. Gene co-expression network analysis revealed biological pathways and hub genes associated with CIE in astrocytes and microglia that may regulate alcohol-dependent phenotypes. Astrocyte identity and synaptic calcium signaling genes were enriched in alcohol-associated astrocyte networks, while TGF-β signaling and inflammatory response genes were disrupted by CIE treatment in microglia gene networks. Genes related to innate immune signaling, specifically interferon pathways, were consistently up-regulated across CIE-exposed astrocytes, microglia, and total homogenate PFC tissue. This study illuminates the cell-specific effects of chronic alcohol exposure and provides novel molecular targets for studying alcohol dependence. Meirsman AC, Ben Hamida S, Clarke E, de Kerchove d’Exaerde A, Darcq E, and Kieffer BL. “GPR88 in D1R- and D2R-Type Medium Spiny Neurons Differentially Regulates Affective and Motor Behaviors.” eNeuro, 6, 4. Publisher’s Version Abstract The orphan receptor GPR88 is highly expressed in D1R- and D2R-medium spiny neurons (MSNs) and has been associated to striatum-dependent functions in rodents. The total deletion of Gpr88 in mice was shown to decrease anxiety-like behaviors, increase stereotypies and locomotion, and impair motor coordination and motor learning. Knowing the opposing role of D1R- and D2R-MSNs, we here investigated the respective roles of GPR88 in the two MSN subtypes for these behaviors. To do so, we compared effects of a conditional Gpr88 gene knockout (KO) in D1R-MSNs (D1R-Gpr88 mice) or D2R-MSNs (A2AR-Gpr88 mice) with effects of the total Gpr88 KO (CMV-Gpr88 mice). Overall, most phenotypes of CMV-Gpr88 mice were recapitulated in A2AR-Gpr88 mice, including reduced marble burying, increased social interactions, increased locomotor activity and stereotypies in the open field, and reduced motor coordination in the rotarod. Exceptions were the reduced habituation to the open field and reduced motor skill learning, which were observed in CMV-Gpr88 and D1R-Gpr88 mice, but not in A2AR-Gpr88 mice. D1R-Gpr88 mice otherwise showed no other phenotype in this study. Our data together show that GPR88 modulates the function of both D1R- and D2R-MSNs, and that GPR88 activity in these two neuron populations has very different and dissociable impacts on behavior. We suggest that GPR88 in D2R-MSNs shapes defensive and social behavior and contributes in maintaining the inhibition of basal ganglia outputs to control locomotion, stereotypies and motor coordination, while GPR88 in D1R-MSNs promotes novelty habituation and motor learning. Significance Statement GPR88, an orphan G-protein-coupled receptor, has been implicated in the regulation of striatum-dependent behaviors. In the striatum, GPR88 is most abundant in both medium spiny neurons expressing dopamine D1 and D2 receptors. We compared effects of a conditional Gpr88 gene knockout in D1R-MSNs or D2R-MSNs with effects of the total Gpr88 deletion. Our data suggest that GPR88 in D2R-MSNs shapes defensive and social behavior and contributes in maintaining the inhibition of basal ganglia outputs to control locomotion, stereotypies and motor coordination, while GPR88 in D1R-MSNs promotes novelty habituation and motor learning. Gpr88 therefore plays very distinct roles in modulating D1R- and D2R-type neurons function and the related behaviors. AC Meirsman, S Ben Hamida, E Clarke, A de Kerchove d’Exaerde, E Darcq, and BL Kieffer. “GPR88 in D1R-type and D2R-type medium spiny neurons differentially regulates affective and motor behavior.” eNeuro, Pp. 6(4): ENEURO.0035-19.2019. Publisher’s Version Abstract The orphan receptor GPR88 is highly expressed in D1 receptor (D1R)- and D2R-medium spiny neurons (MSNs) and has been associated to striatum-dependent functions in rodents. The total deletion of Gpr88 in mice was shown to decrease anxiety-like behaviors, increase stereotypies and locomotion, and impair motor coordination and motor learning. Knowing the opposing role of D1R- and D2R-MSNs, we here investigated the respective roles of GPR88 in the two MSN subtypes for these behaviors. To do so, we compared effects of a conditional Gpr88 gene knock-out (KO) in D1R-MSNs (D1R-Gpr88 mice) or D2R-MSNs (A2AR-Gpr88 mice) with effects of the total Gpr88 KO (CMV-Gpr88 mice). Overall, most phenotypes of CMV-Gpr88 mice were recapitulated in A2AR-Gpr88 mice, including reduced marble burying, increased social interactions, increased locomotor activity and stereotypies in the open field, and reduced motor coordination in the rotarod. Exceptions were the reduced habituation to the open field and reduced motor skill learning, which were observed in CMV-Gpr88 and D1R-Gpr88 mice, but not in A2AR-Gpr88 mice. D1R-Gpr88 mice otherwise showed no other phenotype in this study. Our data together show that GPR88 modulates the function of both D1R- and D2R-MSNs, and that GPR88 activity in these two neuron populations has very different and dissociable impacts on behavior. We suggest that GPR88 in D2R-MSNs shapes defensive and social behavior and contributes in maintaining the inhibition of basal ganglia outputs to control locomotion, stereotypies and motor coordination, while GPR88 in D1R-MSNs promotes novelty habituation and motor learning. NM Zahr, KM Pohl, M Saranathan, EV Sullivan, and A. Pfefferbaum. “Hippocampal subfield CA2+3 exhibits accelerated aging in alcohol use disorder: a preliminary study.” Neuroimage: Clinical, 22, Pp. 101764. Abstract The profile of brain structural dysmorphology of individuals with Alcohol Use Disorders (AUD) involves disruption of the limbic system. In vivo imaging studies report hippocampal volume loss in AUD relative to controls, but only recently has it been possible to articulate different regions of this complex structure. Volumetric analysis of hippocampal regions rather than total hippocampal volume may augment differentiation of disease processes. For example, damage to hippocampal subfield cornu ammonis 1 (CA1) is often reported in Alzheimer’s disease (AD), whereas deficits in CA4/dentate gyrus are described in response to stress and trauma. Two previous studies explored the effects of chronic alcohol use on hippocampal subfields: one reported smaller volume of the CA2+3 in alcohol-dependent subjects relative to controls, associated with years of alcohol consumption; the other, smaller volumes of presubiculum, subiculum, and fimbria in alcohol-dependent relative to control men. The current study, conducted in 24 adults with DSM5-diagnosed AUD (7 women, 53.7 ± 8.8) and 20 controls (7 women, 54.1 ± 9.3), is the first to use FreeSurfer 6.0, which provides state-of-the art hippocampal parcellation, to explore the sensitivity of hippocampal sufields to alcoholism. T1- and T2- images were collected on a GE MR750 system with a 32-channel Nova head coil. FreeSurfer 6.0 hippocampal subfield analysis produced 12 subfields: parasubiculum; presubiculum; subiculum; CA1; CA2+3; CA4; GC-ML-DG (Granule Cell (GC) and Molecular Layer (ML) of the Dentate Gyrus (DG)); molecular layer; hippocampus-amygdala-transition-area (HATA); fimbria; hippocampal tail; hippocampal fissure; and whole volume for left and right hippocampi. A comprehensive battery of neuropsychological tests comprising attention, memory and learning, visuospatial abilities, and executive functions was administered. Multiple regression analyses of raw volumetric data for each subfields by group, age, sex, hemisphere, and supratentorial volume (svol) showed significant effects of svol (p < .04) on nearly all structures (excluding tail and fissure). Volumes corrected for svol showed effects of age (fimbria, fissure) and group (subiculum, CA1, CA4, GC-ML-DG, HATA, fimbria); CA2+3showed a diagnosis-by-age interaction indicating older AUD individuals had a smaller volume than would be expected for their age. There were no selective relations between hippocampalsubfields and performance on neuropsychological tests, likely due to lack of statistical power. The current results concur with the previous study identifying CA2+3 as sensitive to alcoholism, extend them by identifying an alcoholism-age interaction, and suggest an imaging phenotype distinguishing AUD from AD and stress/trauma. Zahr NM, Pohl KM, Saranathan M, Sullivan EV, and Pfefferbaum A. “Hippocampal subfield CA2+3 exhibits accelerated aging in Alcohol Use Disorder: A preliminary study.” Neuroimage: Clinical, 22, Pp. 101764. Publisher’s Version Abstract The profile of brain structural dysmorphology of individuals with Alcohol Use Disorders (AUD) involves disruption of the limbic system. In vivo imaging studies report hippocampal volume loss in AUD relative to controls, but only recently has it been possible to articulate different regions of this complex structure. Volumetric analysis of hippocampal regions rather than total hippocampal volume may augment differentiation of disease processes. For example, damage to hippocampal subfield cornu ammonis 1 (CA1) is often reported in Alzheimer’s disease (AD), whereas deficits in CA4/dentate gyrus are described in response to stress and trauma. Two previous studies explored the effects of chronic alcohol use on hippocampal subfields: one reported smaller volume of the CA2+3 in alcohol-dependent subjects relative to controls, associated with years of alcohol consumption; the other, smaller volumes of presubiculum, subiculum, and fimbria in alcohol-dependent relative to control men. The current study, conducted in 24 adults with DSM5-diagnosed AUD (7 women, 53.7 ± 8.8) and 20 controls (7 women, 54.1 ± 9.3), is the first to use FreeSurfer 6.0, which provides state-of-the art hippocampal parcellation, to explore the sensitivity of hippocampal sufields to alcoholism. T1- and T2- images were collected on a GE MR750 system with a 32-channel Nova head coil. FreeSurfer 6.0 hippocampal subfield analysis produced 12 subfields: parasubiculum; presubiculum; subiculum; CA1; CA2+3; CA4; GC-ML-DG (Granule Cell (GC) and Molecular Layer (ML) of the Dentate Gyrus (DG)); molecular layer; hippocampus-amygdala-transition-area (HATA); fimbria; hippocampal tail; hippocampal fissure; and whole volume for left and right hippocampi. A comprehensive battery of neuropsychological tests comprising attention, memory and learning, visuospatial abilities, and executive functions was administered. Multiple regression analyses of raw volumetric data for each subfields by group, age, sex, hemisphere, and supratentorial volume (svol) showed significant effects of svol (p < .04) on nearly all structures (excluding tail and fissure). Volumes corrected for svol showed effects of age (fimbria, fissure) and group (subiculum, CA1, CA4, GC-ML-DG, HATA, fimbria); CA2+3 showed a diagnosis-by-age interaction indicating older AUD individuals had a smaller volume than would be expected for their age. There were no selective relations between hippocampal subfields and performance on neuropsychological tests, likely due to lack of statistical power. The current results concur with the previous study identifying CA2+3 as sensitive to alcoholism, extend them by identifying an alcoholism-age interaction, and suggest an imaging phenotype distinguishing AUD from AD and stress/trauma. Chen WY, Zhang H, Gatta E, Glover EJ, Pandey SC, and Lasek AW. “The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alleviates depression-like behavior and normalizes epigenetic changes in the hippocampus during ethanol withdrawal.” Alcohol, 78, Pp. 79-87. Publisher’s Version Abstract Withdrawal from chronic alcohol drinking can cause depression, leading to an inability to function in daily life and an increased risk for relapse to harmful drinking. Understanding the causes of alcohol withdrawal-related depression may lead to new therapeutic targets for treatment. Epigenetic factors have recently emerged as important contributors to both depression and alcohol use disorder (AUD). Specifically, acetylation of the N-terminal tails of histone proteins that package DNA into nucleosomes is altered in stress-induced models of depression and during alcohol withdrawal. The goal of this study was to examine depression-like behavior during alcohol withdrawal and associated changes in histone acetylation and expression of histone deacetylase 2 (HDAC2) in the hippocampus, a brain region critical for mood regulation and depression. Male Sprague–Dawley rats were treated with the Lieber-DeCarli ethanol liquid diet for 15 days and then underwent withdrawal. Rats were treated with the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), during withdrawal and were tested for depression-like behavior. In a separate group of rats, the hippocampus was analyzed for mRNA and protein expression of HDAC2 and levels of histone H3 lysine 9 acetylation (H3K9ac) during chronic ethanol exposure and withdrawal. Rats undergoing ethanol withdrawal exhibited depression-like behavior and had increased HDAC2 and decreased H3K9ac levels in specific structures of the hippocampus. Treatment with SAHA during withdrawal ameliorated depression-like behavior and normalized changes in hippocampal HDAC2 and H3K9ac levels. These results demonstrate that ethanol withdrawal causes an altered epigenetic state in the hippocampus. Treatment with an HDAC inhibitor can correct this state and alleviate depression-like symptoms developed during withdrawal. Targeting histone acetylation may be a novel strategy to reduce ethanol withdrawal-induced depression. WY Chen, H Zhang, E Gatta, EJ Glover, SC Pandey, and AW Lasek. “The histone deacetylase inhibitorsuberoylanilide hydroxamic acid (SAHA) alleviates depression-like behavior and normalizes epigeneticchanges in the hippocampus during ethanol withdrawal.” Alcohol, Pp. 78:79-87. Publisher’s Version Abstract Withdrawal from chronic alcohol drinking can cause depression, leading to an inability to function in daily life and an increased risk for relapse to harmful drinking. Understanding the causes of alcohol withdrawal-related depression may lead to new therapeutic targets for treatment. Epigenetic factors have recently emerged as important contributors to both depression and alcohol use disorder (AUD). Specifically, acetylation of the N-terminal tails of histone proteins that package DNA into nucleosomes is altered in stress-induced models of depression and during alcohol withdrawal. The goal of this study was to examine depression-like behavior during alcohol withdrawal and associated changes in histone acetylation and expression of histone deacetylase 2 (HDAC2) in the hippocampus, a brain region critical for mood regulation and depression. Male Sprague-Dawley rats were treated with the Lieber-DeCarli ethanol liquid diet for 15 days and then underwent withdrawal. Rats were treated with the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), during withdrawal and were tested for depression-like behavior. In a separate group of rats, the hippocampus was analyzed for mRNA and protein expression of HDAC2 and levels of histone H3 lysine 9 acetylation (H3K9ac) during chronic ethanol exposure and withdrawal. Rats undergoing ethanol withdrawal exhibited depression-like behavior and had increased HDAC2 and decreased H3K9ac levels in specific structures of the hippocampus. Treatment with SAHA during withdrawal ameliorated depression-like behavior and normalized changes in hippocampal HDAC2 and H3K9ac levels. These results demonstrate that ethanol withdrawal causes an altered epigenetic state in the hippocampus. Treatment with an HDAC inhibitor can correct this state and alleviate depression-like symptoms developed during withdrawal. Targeting histone acetylation may be a novel strategy to reduce ethanol withdrawal-induced depression. Mulligan MK, Abreo T, Neuner SM, Parks C, Watkins CE, Houseal MT, Shapaker TM, M Hook, H Tan, Wang X, Ingels J, Peng J, L Lu, CC Kaczorowski, CD Bryant, GE Homanics, and RW Williams. “Identification of a functional non-coding variant in the GABA (A) receptor α2 subunit of the C57BL/6J mouse reference genome: major implications for neuroscience research.” Frontiers in Genetics, 10, Pp. 188. Publisher’s Version Abstract GABA type-A (GABA-A) receptors containing the α2 subunit (GABRA2) are expressed in most brain regions and are critical in modulating inhibitory synaptic function. Genetic variation at the GABRA2 locus has been implicated in epilepsy, affective and psychiatric disorders, alcoholism and drug abuse. Gabra2 expression varies as a function of genotype and is modulated by sequence variants in several brain structures and populations, including F2 crosses originating from C57BL/6J (B6J) and the BXD recombinant inbred family derived from B6J and DBA/2J. Here we demonstrate a global reduction of GABRA2 brain protein and mRNA in the B6J strain relative to other inbred strains, and identify and validate the causal mutation in B6J. The mutation is a single base pair deletion located in an intron adjacent to a splice acceptor site that only occurs in the B6J reference genome. The deletion became fixed in B6J between 1976 and 1991 and is now pervasive in many engineered lines, BXD strains generated after 1991, the Collaborative Cross, and the majority of consomic lines. Repair of the deletion using CRISPR-Cas9-mediated gene editing on a B6J genetic background completely restored brain levels of GABRA2 protein and mRNA. Comparison of transcript expression in hippocampus, cortex, and striatum between B6J and repaired genotypes revealed alterations in GABA-A receptor subunit expression, especially in striatum. These results suggest that naturally occurring variation in GABRA2 levels between B6J and other substrains or inbred strains may also explain strain differences in anxiety-like or alcohol and drug response traits related to striatal function. Characterization of the B6J private mutation in the Gabra2 gene is of critical importance to molecular genetic studies in neurobiological research because this strain is widely used to generate genetically engineered mice and murine genetic populations, and is the most widely utilized strain for evaluation of anxiety-like, depression-like, pain, epilepsy, and drug response traits that may be partly modulated by GABRA2 function. Mulligan MK, Abreo T, Neuner SM, Parks C, Watkins CE, Houseal MT, Shapaker TM, Hook M, Tan H, Wang X, Ingels J, Peng J, Lu L, Kaczorowski CC, Bryant CD, Homanics GE, and Williams RW. “Identification of a functional non-coding variant in the GABA (A) receptor α2 subunit of the C57BL/6J mouse reference genome: major implications for neuroscience research.” Frontiers in Genetics. Publisher’s Version Abstract GABA type-A (GABA-A) receptors containing the α2 subunit (GABRA2) are expressed in most brain regions and are critical in modulating inhibitory synaptic function. Genetic variation at the GABRA2 locus has been implicated in epilepsy, affective and psychiatric disorders, alcoholism and drug abuse. Gabra2 expression varies as a function of genotype and is modulated by sequence variants in several brain structures and populations, including F2 crosses originating from C57BL/6J (B6J) and the BXD recombinant inbred family derived from B6J and DBA/2J. Here we demonstrate a global reduction of GABRA2 brain protein and mRNA in the B6J strain relative to other inbred strains, and identify and validate the causal mutation in B6J. The mutation is a single base pair deletion located in an intron adjacent to a splice acceptor site that only occurs in the B6J reference genome. The deletion became fixed in B6J between 1976 and 1991 and is now pervasive in many engineered lines, BXD strains generated after 1991, the Collaborative Cross, and the majority of consomic lines. Repair of the deletion using CRISPR-Cas9-mediated gene editing on a B6J genetic background completely restored brain levels of GABRA2 protein and mRNA. Comparison of transcript expression in hippocampus, cortex, and striatum between B6J and repaired genotypes revealed alterations in GABA-A receptor subunit expression, especially in striatum. These results suggest that naturally occurring variation in GABRA2 levels between B6J and other substrains or inbred strains may also explain strain differences in anxiety-like or alcohol and drug response traits related to striatal function. Characterization of the B6J private mutation in the Gabra2 gene is of critical importance to molecular genetic studies in neurobiological research because this strain is widely used to generate genetically engineered mice and murine genetic populations, and is the most widely utilized strain for evaluation of anxiety-like, depression-like, pain, epilepsy, and drug response traits that may be partly modulated by GABRA2 function. J Zhao, C. Chen, RL Bell, H Qing, and Z Lin. “Identification of HIVEP2 as a dopaminergic transcription factor related to substance use disorders in rats and humans.” Translational Psychiatry, Pp. 9:247. Publisher’s Version Abstract Playing an important role in the etiology of substance use disorder (SUD), dopamine (DA) neurons are subject to various regulations but transcriptional regulations are largely understudied. For the first time, we report here that the Human Immunodeficiency Virus Type I Enhancer Binding Protein 2 (HIVEP2) is a dopaminergic transcriptional regulator. HIVEP2 is expressed in both the cytoplasm and nuclei of DA neurons. Therein, HIVEP2 can target the intronic sequence GTGGCTTTCT of SLC6A3 and thereby activate the gene. In naive rats from the bi-directional selectively bred substance-preferring P vs -nonpreferring NP rat model of substance abuse vulnerability, increased gene activity in males was associated with the vulnerability, whereas decreased gene activity in the females was associated with the same vulnerability. In clinical subjects, extensive and significant HIVEP2-SLC6A3 interactions were observed for SUD. Collectively, HIVEP2-mediated transcriptional mechanisms are implicated in dopaminergic pathophysiology of SUD. Zhao J, Chen C, Bell RL, Qing H, and Lin Z. “Identification of HIVEP2 as a dopaminergic transcription factor related to substance use disorders in rats and humans.” Translational Psychiatry, 9, 1, Pp. 247. Publisher’s Version Abstract Playing an important role in the etiology of substance use disorder (SUD), dopamine (DA) neurons are subject to various regulations but transcriptional regulations are largely understudied. For the first time, we report here that the Human Immunodeficiency Virus Type I Enhancer Binding Protein 2 (HIVEP2) is a dopaminergic transcriptional regulator. HIVEP2 is expressed in both the cytoplasm and nuclei of DA neurons. Therein, HIVEP2 can target the intronic sequence GTGGCTTTCT of SLC6A3 and thereby activate the gene. In naive rats from the bi-directional selectively bred substance-preferring P vs -nonpreferring NP rat model of substance abuse vulnerability, increased gene activity in males was associated with the vulnerability, whereas decreased gene activity in the females was associated with the same vulnerability. In clinical subjects, extensive and significant HIVEP2-SLC6A3 interactions were observed for SUD. Collectively, HIVEP2-mediated transcriptional mechanisms are implicated in dopaminergic pathophysiology of SUD. Patel RR, Khom S, Steinman MQ, Varodayan FP, Kiosses WB, Hedges DM, Vlkolinsky R, Nadav T, Polis I, Bajo M, Roberts AJ, and Roberto M. “IL-1β expression is increased and regulates GABA transmission following chronic ethanol in mouse central amygdala.” Brain, Behavior and Immunity, 75, Pp. 208-219. Publisher’s Version Abstract The interleukin-1 system (IL-1) is a prominent pro-inflammatory pathway responsible for the initiation and regulation of immune responses. Human genetic and preclinical studies suggest a critical role for IL-1β signaling in ethanol drinking and dependence, but little is known about the effects of chronic ethanol on the IL-1 system in addiction-related brain regions such as the central amygdala (CeA). In this study, we generated naïve, non-dependent (Non-Dep) and dependent (Dep) male mice using a paradigm of chronic-intermittent ethanol vapor exposure interspersed with two-bottle choice to examine 1) the expression of IL-1β, 2) the role of the IL-1 system on GABAergic transmission, and 3) the potential interaction with the acute effects of ethanol in the CeA. Immunohistochemistry with confocal microscopy was used to assess expression of IL-1β in microglia and neurons in the CeA, and whole-cell patch clamp recordings were obtained from CeA neurons to measure the effects of IL-1β (50 ng/ml) or the endogenous IL-1 receptor antagonist (IL-1ra; 100 ng/ml) on action potential-dependent spontaneous inhibitory postsynaptic currents (sIPSCs). Overall, we found that IL-1β expression is significantly increased in microglia and neurons of Dep compared to Non-Dep and naïve mice, IL-1β and IL-1ra bi-directionally modulate GABA transmission through both pre- and postsynaptic mechanisms in all three groups, and IL-1β and IL-1ra do not alter the facilitation of GABA release induced by acute ethanol. These data suggest that while ethanol dependence induces a neuroimmune response in the CeA, as indicated by increased IL-1β expression, this does not significantly alter the neuromodulatory role of IL-1β on synaptic transmission. Patel RR, Khom S, Steinman MQ, Varodayan FP, Kiosses WB, Hedges DM, Vlkolinsky R, Nadav T, Polis I, Bajo M, Roberts AJ, and Roberto M. “IL-1β expression is increased and regulates GABA transmission following chronic ethanol in mouse central amygdala.” Brain, Behavior and Immunity, 75, Pp. 208-219. Abstract The interleukin-1 system (IL-1) is a prominent pro-inflammatory pathway responsible for the initiation and regulation of immune responses. Human genetic and preclinical studies suggest a critical role for IL-1β signaling in ethanol drinking and dependence, but little is known about the effects of chronic ethanol on the IL-1 system in addiction-related brain regions such as the central amygdala (CeA). In this study, we generated naïve, non-dependent (Non-Dep) and dependent (Dep) male mice using a paradigm of chronic-intermittent ethanol vapor exposure interspersed with two-bottle choice to examine 1) the expression of IL-1β, 2) the role of the IL-1 system on GABAergic transmission, and 3) the potential interaction with the acute effects of ethanol in the CeA. Immunohistochemistry with confocal microscopy was used to assess expression of IL-1β in microglia and neurons in the CeA, and whole-cell patch clamp recordings were obtained from CeA neurons to measure the effects of IL-1β (50 ng/ml) or the endogenous IL-1 receptor antagonist (IL-1ra; 100 ng/ml) on action potential-dependent spontaneous inhibitory postsynaptic currents (sIPSCs). Overall, we found that IL-1β expression is significantly increased in microglia and neurons of Dep compared to Non-Dep and naïve mice, IL-1β and IL-1ra bi-directionally modulate GABA transmission through both pre- and postsynaptic mechanisms in all three groups, and IL-1β and IL-1ra do not alter the facilitation of GABA release induced by acute ethanol. These data suggest that while ethanol dependence induces a neuroimmune response in the CeA, as indicated by increased IL-1β expression, this does not significantly alter the neuromodulatory role of IL-1β on synaptic transmission. de Guglielmo G, Kallupi M, Pomrenze MB, Crawford E, Simpson S, Schweitzer P, Koob GF, Messing RO, and George O. “Inactivation of a CRF-dependent amygdalofugal pathway reverses addiction-like behaviors in alcohol-dependent rats.” Nature Communications, 10, 1, Pp. 1238. Publisher’s Version Abstract The activation of a neuronal ensemble in the central nucleus of the amygdala (CeA) during alcohol withdrawal has been hypothesized to induce high levels of alcohol drinking in dependent rats. In the present study we describe that the CeA neuronal ensemble that is activated by withdrawal from chronic alcohol exposure contains ~80% corticotropin-releasing factor (CRF) neurons and that the optogenetic inactivation of these CeA CRF+ neurons prevents recruitment of the neuronal ensemble, decreases the escalation of alcohol drinking, and decreases the intensity of somatic signs of withdrawal. Optogenetic dissection of the downstream neuronal pathways demonstrates that the reversal of addiction-likebehaviors is observed after the inhibition of CeA CRF projections to the bed nucleus of the stria terminalis (BNST) and that inhibition of the CRFCeA-BNST pathway is mediated by inhibition of the CRF-CRF1 system and inhibition of BNST cell firing. These results suggest that the CRFCeA-BNST pathway could be targeted for the treatment of excessive drinking in alcohol use disorder. G de Guglielmo, M Kallupi, MB Pomrenze, E Crawford, S Simpson, P Schweitzer, GF Koob, RO Messing, and O. George. “Inactivation of a CRF-dependent amygdalofugal pathway reverses addiction-like behaviors in alcohol-dependent rats.” Nature Communications, 2019, Pp. 1238. Publisher’s Version Abstract The activation of a neuronal ensemble in the central nucleus of the amygdala (CeA) during alcohol withdrawal has been hypothesized to induce high levels of alcohol drinking in dependent rats. In the present study we describe that the CeA neuronal ensemble that is activated by withdrawal from chronic alcohol exposure contains ~80% corticotropin-releasing factor (CRF) neurons and that the optogenetic inactivation of these CeA CRF+ neurons prevents recruitment of the neuronal ensemble, decreases the escalation of alcohol drinking, and decreases the intensity of somatic signs of withdrawal. Optogenetic dissection of the downstream neuronal pathways demonstrates that the reversal of addiction-like behaviors is observed after the inhibition of CeA CRF projections to the bed nucleus of the stria terminalis (BNST) and that inhibition of the CRFCeA-BNST pathway is mediated by inhibition of the CRF-CRF1 system and inhibition of BNST cell firing. These results suggest that the CRFCeA-BNST pathway could be targeted for the treatment of excessive drinking in alcohol use disorder. Roberts AJ, Khom S, Bajo M, Vlkolinsky R, Polis I, Cates-Gatto C, Roberto M, and Gruol DL. “Increased IL-6 expression in astrocytes is associated with emotionality, alterations in central amygdala GABAergic transmission, and excitability during alcohol withdrawalv.” Brain Behavior and Immunity, 82, Pp. 188-202. Publisher’s Version Abstract Accumulating evidence from preclinical and clinical studies has implicated a role for the cytokine IL-6 in a variety of CNS diseases including anxiety-like and depressive-like behaviors, as well as alcohol use disorder. Here we use homozygous and heterozygous transgenic mice expressing elevated levels of IL-6 in the CNS due to increased astrocyte expression and non-transgenic littermates to examine a role for astrocyte-produced IL-6 in emotionality (response to novelty, anxiety-like, and depressive-like behaviors). Our results from homozygous IL-6 mice in a variety of behavioral tests (light/dark transfer, open field, digging, tail suspension, and forced swim tests) support a role for IL-6 in stress-coping behaviors. Ex vivo electrophysiological studies of neuronal excitability and inhibitory GABAergic synaptic transmission in the central nucleus of the amygdala (CeA) of the homozygous transgenic mice revealed increased inhibitory GABAergic signaling and increased excitability of CeA neurons, suggesting a role for astrocyte produced IL-6 in the amygdala in exploratory drive and depressive-like behavior. Furthermore, studies in the hippocampus of activation/expression of proteins associated with IL-6 signal transduction and inhibitory GABAergic mechanisms support a role for astrocyte produced IL-6 in depressive-like behaviors. Our studies indicate a complex and dose-dependent relationship between IL-6 and behavior and implicate IL-6 induced neuroadaptive changes in neuronal excitability and the inhibitory GABAergic system as important contributors to altered behavior associated with IL-6 expression in the CNS. AJ Roberts, S Khom, M Bajo, R Vlkolinsky, I Polis, C Cates-Gatto, M Roberto, and DL Gruol. “Increased IL-6 expression in astrocytes is associated with emotionality, alterations in central amygdala GABAergic transmission, and excitability during alcohol withdrawal.” Brain Behavior and Immunity, Pp. 82:188-202. Publisher’s Version Abstract Accumulating evidence from preclinical and clinical studies has implicated a role for the cytokine IL-6 in a variety of CNS diseases including anxiety-like and depressive-like behaviors, as well as alcohol use disorder. Here we use homozygous and heterozygous transgenic mice expressing elevated levels of IL-6 in the CNS due to increased astrocyte expression and non-transgenic littermates to examine a role for astrocyte-produced IL-6 in emotionality (response to novelty, anxiety-like, and depressive-like behaviors). Our results from homozygous IL-6 mice in a variety of behavioral tests (light/dark transfer, open field, digging, tail suspension, and forced swim tests) support a role for IL-6 in stress-coping behaviors. Ex vivo electrophysiological studies of neuronal excitability and inhibitory GABAergic synaptic transmission in the central nucleus of the amygdala (CeA) of the homozygous transgenic mice revealed increased inhibitory GABAergic signaling and increased excitability of CeA neurons, suggesting a role for astrocyte produced IL-6 in the amygdala in exploratory drive and depressive-like behavior. Furthermore, studies in the hippocampus of activation/expression of proteins associated with IL-6 signal transduction and inhibitory GABAergic mechanisms support a role for astrocyte produced IL-6 in depressive-like behaviors. Our studies indicate a complex and dose-dependent relationship between IL-6 and behavior and implicate IL-6 induced neuroadaptive changes in neuronal excitability and the inhibitory GABAergic system as important contributors to altered behavior associated with IL-6 expression in the CNS. GR Rompala and GE Homanics. “Intergenerational effects of alcohol: a review of paternal preconception ethanol exposure studies and epigenetic mechanisms in the male germline.” Alcoholism: Clinical and Experimental Research, Pp. 43:1032-1045. Publisher’s Version Abstract While alcohol use disorder (AUD) is a highly heritable psychiatric disease, efforts to elucidate that heritability by examining genetic variation (e.g., single nucleotide polymorphisms) have been insufficient to fully account for familial AUD risk. Perhaps not coincidently, there has been a burgeoning interest in novel nongenomic mechanisms of inheritance (i.e., epigenetics) that are shaped in the male or female germ cells by significant lifetime experiences such as exposure to chronic stress, malnutrition, or drugs of abuse. While many epidemiological and preclinical studies have long pointed to a role for the parental preconception environment in offspring behavior, over the last decade many studies have implicated a causal relationship between the environmentally sensitive sperm epigenome and intergenerational phenotypes. This critical review will detail the heritable effects of alcohol and the potential role for epigenetics. Rompala GR and Homanics GE. “Intergenerational Effects of Alcohol: A Review of Paternal Preconception Ethanol Exposure Studies and Epigenetic Mechanisms in the Male Germline.” Alcoholism: Clinical and Experimental Research, 43, 6, Pp. 1032-1045. Publisher’s Version Abstract Wolfe SA, Sidhu H, Patel RR, Kreifeldt M, D’Ambrosio SR, Contet C, and Roberto M. “Molecular, Morphological, and Functional Characterization of Corticotropin-Releasing Factor Receptor 1-Expressing Neurons in the Central Nucleus of the Amygdala.” eNeuro, 6, 3. Publisher’s Version Abstract The central nucleus of the amygdala (CeA) is a brain region implicated in anxiety, stress-related disorders and the reinforcing effects of drugs of abuse. Corticotropin-releasing factor (CRF, Crh) acting at cognate type 1 receptors (CRF1, Crhr1) modulates inhibitory and excitatory synaptic transmission in the CeA. Here, we used CRF1:GFP reporter mice to characterize the morphological, neurochemical and electrophysiological properties of CRF1-expressing (CRF1+) and CRF1-non-expressing (CRF1–) neurons in the CeA. We assessed these two neuronal populations for distinctions in the expression of GABAergic subpopulation markers and neuropeptides, dendritic spine density and morphology, and excitatory transmission. We observed that CeA CRF1+ neurons are GABAergic but do not segregate with calbindin (CB), calretinin (CR), parvalbumin (PV), or protein kinase C-δ (PKCδ). Among the neuropeptides analyzed, Penk and Sst had the highest percentage of co-expression with Crhr1 in both the medial and lateral CeA subdivisions. Additionally, CeA CRF1+ neurons had a lower density of dendritic spines, which was offset by a higher proportion of mature spines compared to neighboring CRF1– neurons. Accordingly, there was no difference in basal spontaneous glutamatergic transmission between the two populations. Application of CRF increased overall vesicular glutamate release onto both CRF1+ and CRF1– neurons and does not affect amplitude or kinetics of EPSCs in either population. These novel data highlight important differences in the neurochemical make-up and morphology of CRF1+ compared to CRF1– neurons, which may have important implications for the transduction of CRF signaling in the CeA. Keywords: calcium binding proteins, corticotropin-releasing factor, dendritic spines, glutamatergic signaling, neuropeptides, stress and anxiety Ben Hamida S, Boulos LJ, McNicholas M, Charbogne P, and Kieffer BL. “Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking.” Addiction Biology, 24, 1, Pp. 28-39. Publisher’s Version Abstract Mu opioid receptors (MORs) are widely distributed throughout brain reward circuits and their role in drug and social reward is well established. Substantial evidence has implicated MOR and the endogenous opioid system in alcohol reward, but circuit mechanisms of MOR‐mediated alcohol reward and intake behavior remain elusive, and have not been investigated by genetic approaches. We recently created conditional knockout (KO) mice targeting the Oprm1 gene in GABAergic forebrain neurons. These mice (Dlx‐MOR KO) show a major MOR deletion in the striatum, whereas receptors in midbrain (including the Ventral Tegmental Area or VTA) and hindbrain are intact. Here, we compared alcohol‐drinking behavior and rewarding effects in total (MOR KO) and conditional KO mice. Concordant with our previous work, MOR KO mice drank less alcohol in continuous and intermittent two‐bottle choice protocols. Remarkably, Dlx‐MOR KO mice showed reduced drinking similar to MOR KO mice, demonstrating that MOR in the forebrain is responsible for the observed phenotype. Further, alcohol‐induced conditioned place preference was detected in control but not MOR KO mice, indicating that MOR is essential for alcohol reward and again, Dlx‐MOR KO recapitulated the MOR KO phenotype. Taste preference and blood alcohol levels were otherwise unchanged in mutant lines. Together, our data demonstrate that MOR expressed in forebrain GABAergic neurons is essential for alcohol reward‐driven behaviors, including drinking and place conditioning. Challenging the prevailing VTA‐centric hypothesis, this study reveals another mechanism of MOR‐mediated alcohol reward and consumption, which does not necessarily require local VTA MORs but rather engages striatal MOR‐dependent mechanisms. Hamida B, Boulos, LJ., McNicholas, M., Charbogne, P., and Kieffer BL. “Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking.” Addiction Biology, 24, Pp. 28-39. Abstract Mu opioid receptors (MORs) are widely distributed throughout brain reward circuits and their role in drug and social reward is well established. Substantial evidence has implicated MOR and the endogenous opioid system in alcohol reward, but circuit mechanisms of MOR‐mediated alcohol reward and intake behavior remain elusive, and have not been investigated by genetic approaches. We recently created conditional knockout (KO) mice targeting the Oprm1 gene in GABAergic forebrain neurons. These mice (Dlx‐MOR KO) show a major MOR deletion in the striatum, whereas receptors in midbrain (including the Ventral Tegmental Area or VTA) and hindbrain are intact. Here, we compared alcohol‐drinking behavior and rewarding effects in total (MOR KO) and conditional KO mice. Concordant with our previous work, MOR KO mice drank less alcohol in continuous and intermittent two‐bottle choice protocols. Remarkably, Dlx‐MOR KO mice showed reduced drinking similar to MOR KO mice, demonstrating that MOR in the forebrain is responsible for the observed phenotype. Further, alcohol‐induced conditioned place preference was detected in control but not MOR KO mice, indicating that MOR is essential for alcohol reward and again, Dlx‐MOR KO recapitulated the MOR KO phenotype. Taste preference and blood alcohol levels were otherwise unchanged in mutant lines. Together, our data demonstrate that MOR expressed in forebrain GABAergic neurons is essential for alcohol reward‐driven behaviors, including drinking and place conditioning. Challenging the prevailing VTA‐centric hypothesis, this study reveals another mechanism of MOR‐mediated alcohol reward and consumption, which does not necessarily require local VTA MORs but rather engages striatal MOR‐dependent mechanisms. Erickson EK, Grantham EK, Warden AS, and RA Harris. “Neuroimmune signaling in alcohol use disorder.” Pharmacology Biochemistry and Behavior, 177, Pp. 34-60. Abstract Alcohol use disorder (AUD) is a widespread disease with limited treatment options. Targeting the neuroimmune system is a new avenue for developing or repurposing effective pharmacotherapies. Alcohol modulates innate immune signaling in different cell types in the brain by altering gene expression and the molecular pathways that regulate neuroinflammation. Chronic alcohol abuse may cause an imbalance in neuroimmune function, resulting in prolonged perturbations in brain function. Likewise, manipulating the neuroimmune system may change alcohol-related behaviors. Psychiatric disorders that are comorbid with AUD, such as post-traumatic stress disorder, major depressive disorder, and other substance use disorders, may also have underlying neuroimmune mechanisms; current evidence suggests that convergent immune pathways may be involved in AUD and in these comorbid disorders. In this review, we provide an overview of major neuroimmune cell-types and pathways involved in mediating alcohol behaviors, discuss potential mechanisms of alcohol-induced neuroimmune activation, and present recent clinical evidence for candidate immune-related drugs to treat AUD. Erickson EK, Grantham EK, Warden AS, and Harris RA. “Neuroimmune signaling in alcohol use disorder.” Pharmacology Biochemistry and Behavior, 177, Pp. 34-60. Publisher’s Version Abstract Alcohol use disorder (AUD) is a widespread disease with limited treatment options. Targeting the neuroimmune system is a new avenue for developing or repurposing effective pharmacotherapies. Alcohol modulates innate immune signaling in different cell types in the brain by altering gene expression and the molecular pathways that regulate neuroinflammation. Chronic alcohol abuse may cause an imbalance in neuroimmune function, resulting in prolonged perturbations in brain function. Likewise, manipulating the neuroimmune system may change alcohol-related behaviors. Psychiatric disorders that are comorbid with AUD, such as post-traumatic stress disorder, major depressive disorder, and other substance use disorders, may also have underlying neuroimmune mechanisms; current evidence suggests that convergent immune pathways may be involved in AUD and in these comorbid disorders. In this review, we provide an overview of major neuroimmune cell-types and pathways involved in mediating alcohol behaviors, discuss potential mechanisms of alcohol-induced neuroimmune activation, and present recent clinical evidence for candidate immune-related drugs to treat AUD. Fama R, Le Berre AP, Hardcastle C, Sassoon SA, Pfefferbaum A, EV Sullivan, and NM Zahr. “Neurological, nutritional and alcohol consumption factors underlie cognitive and motor deficits in chronic alcoholism.” Addiction Biology, 24, 2, Pp. 290-302. Abstract Variations in pattern and extent of cognitive and motor impairment occur in alcoholism (ALC). Causes of such heterogeneity are elusive and inconsistently accounted for by demographic or alcohol consumption differences. We examined neurological and nutritional factors as possible contributors to heterogeneity in impairment. Participants with ALC (n = 96) and a normal comparison group (n = 41) were examined on six cognitive and motor domains. Signs of historically determined subclinical Wernicke’s encephalopathy were detected using the Caine et al. criteria, which were based on postmortem examination and chart review of antemortem data of alcoholic cases with postmortem evidence for Wernicke’s encephalopathy. Herein, four Caine criteria provided quantification of dietary deficiency, cerebellar dysfunction, low general cognitive functioning and oculomotor abnormalities in 86 of the 96 ALC participants. Subgroups based on Caine criteria yielded a graded effect, where those meeting more criteria exhibited greater impairment than those meeting no to fewer criteria. These results could not be accounted for by history of drug dependence. Multiple regression indicated that compromised performance on ataxia, indicative of cerebellar dysfunction, predicted non‐mnemonic and upper motor deficits, whereas low whole blood thiamine level, consistent with limbic circuit dysfunction, predicted mnemonic deficits. This double dissociation indicates biological markers that contribute to heterogeneity in expression of functional impairment in ALC. That non‐mnemonic and mnemonic deficits are subserved by the dissociable neural systems of frontocerebellar and limbic circuitry, both commonly disrupted in ALC, suggests neural mechanisms that can differentially affect selective functions, thereby contributing to heterogeneity in pattern and extent of dysfunction in ALC. Fama R, Le Berre AP, Hardcastle C, Sassoon SA, Pfefferbaum A, Sullivan EV, and Zahr NM. “Neurological, nutritional and alcohol consumption factors underlie cognitive and motor deficits in chronic alcoholism.” Addiction Biology, 24, 2, Pp. 290-302. Publisher’s Version Abstract Variations in pattern and extent of cognitive and motor impairment occur in alcoholism (ALC). Causes of such heterogeneity are elusive and inconsistently accounted for by demographic or alcohol consumption differences. We examined neurological and nutritional factors as possible contributors to heterogeneity in impairment. Participants with ALC (n = 96) and a normal comparison group (n = 41) were examined on six cognitive and motor domains. Signs of historically determined subclinical Wernicke’s encephalopathy were detected using the Caine et al. criteria, which were based on postmortem examination and chart review of antemortem data of alcoholic cases with postmortem evidence for Wernicke’s encephalopathy. Herein, four Caine criteria provided quantification of dietary deficiency, cerebellar dysfunction, low general cognitive functioning and oculomotor abnormalities in 86 of the 96 ALC participants. Subgroups based on Caine criteria yielded a graded effect, where those meeting more criteria exhibited greater impairment than those meeting no to fewer criteria. These results could not be accounted for by history of drug dependence. Multiple regression indicated that compromised performance on ataxia, indicative of cerebellar dysfunction, predicted non-mnemonic and upper motor deficits, whereas low whole blood thiamine level, consistent with limbic circuit dysfunction, predicted mnemonic deficits. This double dissociation indicates biological markers that contribute to heterogeneity in expression of functional impairment in ALC. That non-mnemonic and mnemonic deficits are subserved by the dissociable neural systems of frontocerebellar and limbic circuitry, both commonly disrupted in ALC, suggests neural mechanisms that can differentially affect selective functions, thereby contributing to heterogeneity in pattern and extent of dysfunction in ALC. Ferguson LB, Patil S, Moskowitz BA, Ponomarev I, Harris RA, Mayfield RD, and Messing RO. “A Pathway-Based Genomic Approach to Identify Medications: Application to Alcohol Use Disorder.” Brain Sciences, 9, 12, Pp. E381. Publisher’s Version Abstract Chronic, excessive alcohol use alters brain gene expression patterns, which could be important for initiating, maintaining, or progressing the addicted state. It has been proposed that pharmaceuticals with opposing effects on gene expression could treat alcohol use disorder (AUD). Computational strategies comparing gene expression signatures of disease to those of pharmaceuticals show promise for nominating novel treatments. We reasoned that it may be sufficient for a treatment to target the biological pathway rather than lists of individual genes perturbed by AUD. We analyzed published and unpublished transcriptomic data using gene set enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to identify biological pathways disrupted in AUD brain and by compounds in the Library of Network-based Cellular Signatures (LINCS L1000) and Connectivity Map (CMap) databases. Several pathways were consistently disrupted in AUD brain, including an up-regulation of genes within the Complement and Coagulation Cascade, Focal Adhesion, Systemic Lupus Erythematosus, and MAPK signaling, and a down-regulation of genes within the Oxidative Phosphorylation pathway, strengthening evidence for their importance in AUD. Over 200 compounds targeted genes within those pathways in an opposing manner, more than twenty of which have already been shown to affect alcohol consumption, providing confidence in our approach. We created a user-friendly web-interface that researchers can use to identify drugs that target pathways of interest or nominate mechanism of action for drugs. This study demonstrates a unique systems pharmacology approach that can nominate pharmaceuticals that target pathways disrupted in disease states such as AUD and identify compounds that could be repurposed for AUD if sufficient evidence is attained in preclinical studies Waeiss RA, Knight CP, Carvajal GB, Bell RL, Engleman EA, McBride WJ, Hauser SR, and Rodd ZA. “Peri-adolescent alcohol consumption increases sensitivity and dopaminergic response to nicotine during adulthood in female alcohol-preferring (P) rats: Alterations to α7 nicotinic acetylcholine receptor expression.” Behavioural Brain Research, 376. Publisher’s Version Abstract Adolescent alcohol drinking has been linked to increased risk for drug abuse during adulthood. Nicotine microinjected directly into the posterior ventral tegmental area (pVTA) stimulates dopamine (DA) release in the nucleus accumbens (NAc) shell. The α7 nicotinic acetylcholine receptor (nAChR) is a potent regulator of dopaminergic activity in the pVTA. The current experiments examined the effects of peri-adolescent ethanol (EtOH) drinking on the ability of intra-pVTA nicotine to stimulate DA release during adulthood and alterations in α7 nAChR expression within the pVTA. Alcohol-preferring (P) female rats consumed EtOH and/or water during adolescence (post-natal day [PND] 30–60) or adulthood (PND 90–120). Thirty days following removal of EtOH, subjects received microinjections of 1 μM, 10 μM, or 50 μM nicotine into the pVTA concurrently with microdialysis for extracellular DA in the NAc shell. Brains were harvested from an additional cohort after PND 90 for quantification of α7 nAChR within the pVTA. The results indicated that only adolescent EtOH consumption produced a leftward and upward shift in the dose response curve for nicotine to stimulate DA release in the NAc shell. Investigation of α7 nAChR expression within the pVTA revealed a significant increase in animals that consumed EtOH during adolescence compared to naïve animals. The data suggests that peri-adolescent EtOH consumption produced cross-sensitization to the effects of nicotine during adulthood. The interaction between adolescent EtOH consumption and inflated adult risk for drug dependency could be predicated, at least in part, upon alterations in α7 nAChR expression within the mesolimbic reward pathway. RA Waeiss, CP Knight, GB Carvajal, RL Bell, EA Engleman, WJ McBride, SR Hauser, and ZA Rodd. “Peri-adolescent alcohol consumption increases sensitivity and dopaminergic response to nicotine during adulthood in female alcohol-preferring (P) rats: Alterations to α7 nicotinic acetylcholine receptor expression.” Behavioural Brain Research, Pp. 376:112190. Publisher’s Version Abstract Adolescent alcohol drinking has been linked to increased risk for drug abuse during adulthood. Nicotine microinjected directly into the posterior ventral tegmental area (pVTA) stimulates dopamine (DA) release in the nucleus accumbens (NAc) shell. The α7 nicotinic acetylcholine receptor (nAChR) is a potent regulator of dopaminergic activity in the pVTA. The current experiments examined the effects of peri-adolescent ethanol (EtOH) drinking on the ability of intra-pVTA nicotine to stimulate DA release during adulthood and alterations in α7 nAChR expression within the pVTA. Alcohol-preferring (P) female rats consumed EtOH and/or water during adolescence (post-natal day [PND] 30-60) or adulthood (PND 90-120). Thirty days following removal of EtOH, subjects received microinjections of 1 μM, 10 μM, or 50 μM nicotine into the pVTA concurrently with microdialysis for extracellular DA in the NAc shell. Brains were harvested from an additional cohort after PND 90 for quantification of α7 nAChR within the pVTA. The results indicated that only adolescent EtOH consumption produced a leftward and upward shift in the dose response curve for nicotine to stimulate DA release in the NAc shell. Investigation of α7 nAChR expression within the pVTA revealed a significant increase in animals that consumed EtOH during adolescence compared to naïve animals. The data suggests that peri-adolescent EtOH consumption produced cross-sensitization to the effects of nicotine during adulthood. The interaction between adolescent EtOH consumption and inflated adult risk for drug dependency could be predicated, at least in part, upon alterations in α7 nAChR expression within the mesolimbic reward pathway. Bajo M, Patel RR, Hedges DM, Varodayan FP, Vlkolinsky R, Davis TD, Burkart MD, Blednov YA, and Roberto M. “Role of MyD88 in IL-1β and ethanol modulation of GABAergic transmission in the central amygdala.” Brain Sciences, 9, 12, Pp. 361. Publisher’s Version Abstract Myeloid differentiation primary response protein (MyD88) is a critical neuroimmune adaptor protein in TLR (Toll-like receptor) and IL-1R (Interleukin-1 receptor) signaling complexes. These two pro-inflammatory families play an important role in the neurobiology of alcohol use disorder, specifically MyD88 regulates ethanol drinking, ethanol-induced sedation, and ethanol-induced deficits in motor coordination. In this study, we examined the role of MyD88 in mediating the effects of IL-1β and ethanol on GABAergic transmission in the central amygdala (CeA) of male mice using whole-cell patch-clamp recordings in combination with pharmacological (AS-1, a mimetic that prevents MyD88 recruitment by IL-1R) and genetic (Myd88 knockout mice) approaches. We demonstrate through both approaches that IL-1β and ethanol’s modulatory effects at CeA GABA synapses are not dependent on MyD88. Myd88 knockout potentiated IL-1β’s actions in reducing postsynaptic GABAA receptor function. Pharmacological inhibition of MyD88 modulates IL-1β’s action at CeA GABA synapses similar to Myd88 knockout mice. Additionally, ethanol-induced CeA GABA release was greater in Myd88 knockout mice compared to wildtype controls. Thus, MyD88 is not essential to IL-1β or ethanol regulation of CeA GABA synapses but plays a role in modulating the magnitude of their effects, which may be a potential mechanism by which it regulates ethanol-related behaviors Blednov YA, Bajo M, Roberts AJ, Da Costa AJ, Black M, Edmunds S, Mayfield J, Roberto M, Homanics GE, Lasek AW, Hitzemann RJ, and Harris RA. “Scn4b regulates the hypnotic effects of ethanol and other sedative drugs.” Genes Brain and Behavior, Pp. e12562. Abstract The voltage‐gated sodium channel subunit β4 (SCN4B) regulates neuronal activity by modulating channel gating and has been implicated in ethanol consumption in rodent models and human alcoholics. However, the functional role for Scn4b in ethanol‐mediated behaviors is unknown. We determined if genetic global knockout (KO) or targeted knockdown of Scn4b in the central nucleus of the amygdala (CeA) altered ethanol drinking or related behaviors. We used four different ethanol consumption procedures (continuous and intermittent two‐bottle choice (2BC), drinking‐in‐the dark and chronic intermittent ethanol vapor) and found that male and female Scn4b KO mice did not differ from their wild‐type (WT) littermates in ethanol consumption in any of the tests. Knockdown of Scn4b mRNA in the CeA also did not alter 2BC ethanol drinking. However, Scn4b KO mice showed longer duration of the loss of righting reflex induced by ethanol, gaboxadol, pentobarbital and ketamine. KO mice showed slower recovery to basal levels of handling‐induced convulsions after ethanol injection, which is consistent with the increased sedative effects observed in these mice. However, Scn4b KO mice did not differ in the severity of acute ethanol withdrawal. Acoustic startle responses, ethanol‐induced hypothermia and clearance of blood ethanol also did not differ between the genotypes. There were also no functional differences in the membrane properties or excitability of CeA neurons from Scn4b KO and WT mice. Although we found no evidence that Scn4b regulates ethanol consumption in mice, it was involved in the acute hypnotic effects of ethanol and other sedatives. Blednov YA, Bajo M, Roberts AJ, Da Costa AJ, Black M, Edmunds S, Mayfield J, Roberto M, Homanics GE, Lasek AW, Hitzemann RJ, and Harris RA. “Scn4b regulates the hypnotic effects of ethanol and other sedative drugs.” Genes Brain and Behavior, 18, 6, Pp. e12562. Publisher’s Version Abstract The voltage-gated sodium channel subunit β4 (SCN4B) regulates neuronal activity by modulating channel gating and has been implicated in ethanol consumption in rodent models and human alcoholics. However, the functional role for Scn4b in ethanol-mediated behaviors is unknown. We determined if genetic global knockout or targeted knockdown of Scn4b in the central nucleus of the amygdala (CeA) altered ethanol drinking or related behaviors. We used four different ethanol consumption procedures (continuous and intermittent two-bottle choice, drinking-in-the dark, and chronic intermittent ethanol vapor) and found that male and female Scn4b knockout mice did not differ from their wild-type littermates in ethanol consumption in any of the tests. Knockdown of Scn4b mRNA in the CeA also did not alter two-bottle choice ethanol drinking. However, Scn4b knockout mice demonstrated longer duration of the loss of righting reflex induced by ethanol, gaboxadol, pentobarbital, and ketamine. Knockout mice showed slower recovery to basal levels of handling-induced convulsions after ethanol injection, which is consistent with the increased sedative effects observed in these mice. However, Scn4b knockout mice did not differ in the severity of acute ethanol withdrawal. Acoustic startle responses, ethanol-induced hypothermia, and clearance of blood ethanol also did not differ between the genotypes. There were also no functional differences in the membrane properties or excitability of CeA neurons from Scn4b knockout and wild-type mice. Although we found no evidence that Scn4b regulates ethanol consumption in mice, it was involved in the acute hypnotic effects of ethanol and other sedatives. Mittal N, Fleming SM, Martinez A, Thakore N, Bell RL, Maddox WT, Schallert T, and Duvauchelle CL. “Sex differences in cognitive performance and alcohol consumption in High Alcohol-Drinking (HAD-1) rats.” Behavioural Brain Research, 381. Publisher’s Version Abstract Excessive alcohol (ethanol) consumption negatively impacts social, emotional, as well as cognitive function and well-being. Thus, identifying behavioral and/or biological predictors of excessive ethanol consumption is important for developing prevention and treatment strategies against alcohol use disorders (AUDs). Sex differences in alcohol consumption patterns are observed in humans, primates, and rodents. Selectively bred high alcohol-drinking rat lines, such as the “HAD-1” lines are recognized animal models of alcoholism. The present work examined sex differences in alcohol consumption, object recognition, and exploratory behavior in male and female HAD-1 rats. Naïve male and female HAD-1 rats were tested in an object recognition test (ORT) prior to a chronic 24 h intermittent ethanol access procedure for five weeks. Object recognition parameters measured included exploratory behavior, object investigation, and time spent near objects. During the initial training trial, rearing, active object investigation and amount of time spent in the object-containing section was significantly greater in female HAD-1 rats compared to their male counterparts. During the subsequent testing trial, time spent in the object-containing section was greater in female, compared to male, rats; but active object investigation and rearing did not statistically differ between females and males. In addition, female HAD-1 rats consumed significantly more ethanol than their male counterparts, replicating previous findings. Moreover, across all animals there was a significant positive correlation between exploratory behavior in ORT and ethanol consumption level. These results indicate there are significant sex differences in cognitive performance and alcohol consumption in HAD-1 rats, which suggests neurobiological differences as well. Mittal N, Thakore N, Bell RL, Maddox WT, Schallert T, and Duvauchelle CL. “Sex-specific ultrasonic vocalization patterns and alcohol consumption in high alcohol-drinking (HAD-1) rats.” Physiology and Behavior, 203, Pp. 81-90. Publisher’s Version Abstract Ultrasonic vocalizations (USVs) have been established as an animal model of emotional status and are often utilized in drug abuse studies as motivational and emotional indices. Further USV functionality has been demonstrated in our recent work showing accurate identification of selectively-bred high versus low alcohol-consuming male rats ascertained exclusively from 22 to 28 kHz and 50–55 kHz FM USV acoustic parameters. With the hypothesis that alcohol-sensitive sex differences could be revealed through USV acoustic parameters, the present study examined USVs and alcohol consumption in male and female selectively bred high-alcohol drinking (HAD-1) rats. For the current study, we examined USV data collected during a 12-week experiment in male and female HAD-1 rats. Experimental phases included Baseline (2 weeks), 4-h EtOH Access (4 weeks), 24-h EtOH Access (4 weeks) and Abstinence (2 weeks). Findings showed that both male and female HAD-1 rats spontaneously emitted a large number of 22–28 kHz and 50–55 kHz FM USVs and that females drank significantly more alcohol compared to males over the entire course of the experiment. Analyses of USV acoustic characteristics (i.e. mean frequency, duration, bandwidth and power) revealed distinct sex-specific phenotypes in both 50–55 kHz FM and 22–28 kHz USV transmission that were modulated by ethanol exposure. Moreover, by using a linear combination of these acoustic characteristics, we were able to develop binomial logistic regression models able to discriminate between male and female HAD-1 rats with high accuracy. Together these results highlight unique emotional phenotypes in male and female HAD-1 rats that are differentially modulated by alcohol experience. Mittal N, Thakore N, Bell RL, Maddox WT, Schallert T, and CL Duvauchelle. “Sex-specific ultrasonic vocalization patterns and alcohol consumption in high alcohol-drinking (HAD-1) rats.” Physiology and Behavior, 203, Pp. 81-90. Abstract Ultrasonic vocalizations (USVs) have been established as an animal model of emotional status and are often utilized in drug abuse studies as motivational and emotional indices. Further USV functionality has been demonstrated in our recent work showing accurate identification of selectively-bred high versus low alcohol-consuming male rats ascertained exclusively from 22 to 28kHz and 50-55kHz FM USV acoustic parameters. With the hypothesis that alcohol-sensitive sex differences could be revealed through USV acoustic parameters, the present study examined USVs and alcohol consumption in male and female selectively bred high-alcohol drinking (HAD-1) rats. For the current study, we examined USV data collected during a 12-week experiment in male and female HAD-1 rats. Experimental phases included Baseline (2weeks), 4-h EtOH Access (4weeks), 24-h EtOH Access (4weeks) and Abstinence (2weeks). Findings showed that both male and female HAD-1 rats spontaneously emitted a large number of 22-28kHz and 50-55kHz FM USVs and that females drank significantly more alcohol compared to males over the entire course of the experiment. Analyses of USV acoustic characteristics (i.e. mean frequency, duration, bandwidth and power) revealed distinct sex-specific phenotypes in both 50-55kHz FM and 22-28kHz USV transmission that were modulated by ethanol exposure. Moreover, by using a linear combination of these acoustic characteristics, we were able to develop binomial logistic regression models able to discriminate between male and female HAD-1 rats with high accuracy. Together these results highlight unique emotional phenotypes in male and female HAD-1 rats that are differentially modulated by alcohol experience. D Most, NA Salem, GR Tiwari, YA Blednov, RD Mayfield, and RA Harris. “Silencing synaptic MicroRNA-411 reduces voluntary alcohol consumption in mice.” Addiction Biology, Pp. 24:604-616. Abstract Chronic alcohol consumption alters the levels of microRNAs and mRNAs in the brain, but the specific microRNAs and processes that target mRNAs to affect cellular function and behavior are not known. We examined the in vivo manipulation of previously identified alcohol-responsive microRNAs as potential targets to reduce alcohol consumption. Silencing of miR-411 by infusing antagomiR-411 into the prefrontal cortex of female C57BL/6J mice reduced alcohol consumption and preference, without altering total fluid consumption, saccharin consumption, or anxiety-related behaviors. AntagomiR-411 reduced alcohol consumption when given to mice exposed to a chronic alcohol drinking paradigm but did not affect the acquisition of consumption in mice without a history of alcohol exposure, suggesting that antagomiR-411 has a neuroadaptive, alcohol-dependent effect. AntagomiR-411 decreased the levels of miR-411, as well as the association of immunoprecipitated miR-411 with Argonaute2; and, it increased levels of Faah and Ppard mRNAs. Moreover, antagomiR-411 increased the neuronal expression of glutamate receptor AMPA-2 protein, a known alcohol target and a predicted target of miR-411. These results suggest that alcohol and miR-411 function in a homeostatic manner to regulate synaptic mRNA and protein, thus reversing alcohol-related neuroadaptations and reducing chronic alcohol consumption. Publisher’s Version.pdf Most D, Salem NA, Tiwari GR, Blednov YA, Mayfield RD, and Harris RA. “Silencing synaptic MicroRNA‐411 reduces voluntary alcohol consumption in mice.” Addiction Biology, 24, 4, Pp. 604-616. Publisher’s Version Abstract Chronic alcohol consumption alters the levels of microRNAs and mRNAs in the brain, but the specific microRNAs and processes that target mRNAs to affect cellular function and behavior are not known. We examined the in vivo manipulation of previously identified alcohol‐responsive microRNAs as potential targets to reduce alcohol consumption. Silencing of miR‐411 by infusing antagomiR‐411 into the prefrontal cortex of female C57BL/6J mice reduced alcohol consumption and preference, without altering total fluid consumption, saccharin consumption, or anxiety‐related behaviors. AntagomiR‐411 reduced alcohol consumption when given to mice exposed to a chronic alcohol drinking paradigm but did not affect the acquisition of consumption in mice without a history of alcohol exposure, suggesting that antagomiR‐411 has a neuroadaptive, alcohol‐dependent effect. AntagomiR‐411 decreased the levels of miR‐411, as well as the association of immunoprecipitated miR‐411 with Argonaute2; and, it increased levels of Faah and Ppard mRNAs. Moreover, antagomiR‐411 increased the neuronal expression of glutamate receptor AMPA‐2 protein, a known alcohol target and a predicted target of miR‐411. These results suggest that alcohol and miR‐411 function in a homeostatic manner to regulate synaptic mRNA and protein, thus reversing alcohol‐related neuroadaptations and reducing chronic alcohol consumption. VA Jimenez, MA Herman, VC Cuzon Carlson, NA Walter, KA Grant, and M Roberto. “Synaptic adaptations in the central amygdala and hypothalamic paraventricular nucleus associated with protracted ethanol abstinence in male rhesus monkeys.” Neuropsychopharmacology, Pp. 44:982-993. Publisher’s Version Abstract Jimenez VA, Herman MA, Cuzon Carlson VC, Walter NA, Grant KA, and Roberto M. “Synaptic adaptations in the central amygdala and hypothalamic paraventricular nucleus associated with protracted ethanol abstinence in male rhesus monkeys.” Neuropsychopharmacology, 44, 5, Pp. 982–993. Publisher’s Version Abstract Alcohol use disorder is a significant global burden. Stress has been identified as an etiological factor in the initiation and continuation of ethanol consumption. Understanding adaptations within stress circuitry is an important step toward novel treatment strategies. The effects of protracted abstinence following long-term ethanol self-administration on the central nucleus of the amygdala (CeA) and the hypothalamic paraventricular nucleus (PVN) were evaluated in male rhesus monkeys. Using whole-cell patch-clamp electrophysiology, inhibitory GABAergic transmission in the CeA and excitatory glutamatergic transmission in the PVN were measured. CeA neurons from abstinent drinkers displayed an elevated baseline spontaneous inhibitory postsynaptic current (sIPSC) frequency compared with controls, indicating increased presynaptic GABA release. Application of acute ethanol significantly increased the frequency of sIPSCs in controls, but not in abstinent drinkers, suggesting a tolerance to ethanol-enhanced GABA release in abstinent rhesus monkeys with a history of chronic ethanol self-administration and repeated abstinence. In the PVN, the frequency of spontaneous excitatory postsynaptic currents (sEPSC) was elevated in abstinent drinkers compared with controls, indicating increased presynaptic glutamate release. Notably, acute ethanol decreased presynaptic glutamate release onto parvocellular PVN neurons in both controls and abstinent drinkers, suggesting a lack of tolerance to acute ethanol among PVN neurons. These results are the first to demonstrate distinct synaptic adaptations and ethanol sensitivity in both the extrahypothalamic and hypothalamic stress circuits in abstinent rhesus males. Importantly, our findings describe adaptations in stress circuitry present in the brain at a state during abstinence, just prior to relapse to ethanol drinking. Jimenez VA, Herman MA, Cuzon Carlson VC, Walter NA, Grant KA, and M Roberto. “Synaptic adaptations in the central amygdala and hypothalamic paraventricular nucleus associated with protracted ethanol abstinence in male rhesus monkeys.” Neuropsychopharmacology, 44, Pp. 982-993. Abstract Alcohol use disorder is a significant global burden. Stress has been identified as an etiological factor in the initiation and continuation of ethanol consumption. Understanding adaptations within stress circuitry is an important step toward novel treatment strategies. The effects of protracted abstinence following long-term ethanol self-administration on the central nucleus of the amygdala (CeA) and the hypothalamic paraventricular nucleus (PVN) were evaluated in male rhesus monkeys. Using whole-cell patch-clamp electrophysiology, inhibitory GABAergic transmission in the CeA and excitatory glutamatergic transmission in the PVN were measured. CeA neurons from abstinent drinkers displayed an elevated baseline spontaneous inhibitory postsynaptic current (sIPSC) frequency compared with controls, indicating increased presynaptic GABA release. Application of acute ethanol significantly increased the frequency of sIPSCs in controls, but not in abstinent drinkers, suggesting a tolerance to ethanol-enhanced GABA release in abstinent rhesus monkeys with a history of chronic ethanol self-administration and repeated abstinence. In the PVN, the frequency of spontaneous excitatory postsynaptic currents (sEPSC) was elevated in abstinent drinkers compared with controls, indicating increased presynaptic glutamate release. Notably, acute ethanol decreased presynaptic glutamate release onto parvocellular PVN neurons in both controls and abstinent drinkers, suggesting a lack of tolerance to acute ethanol among PVN neurons. These results are the first to demonstrate distinct synaptic adaptations and ethanol sensitivity in both the extrahypothalamic and hypothalamic stress circuits in abstinent rhesus males. Importantly, our findings describe adaptations in stress circuitry present in the brain at a state during abstinence, just prior to relapse to ethanol drinking. AS Warden, M Azzam, A Da Costa, S Mason, YA Blednov, RO Messing, RD Mayfield, and RA Harris. “Toll-like receptor 3 activation increases voluntary alcohol intake in C57BL/6J male mice.” Brain Behavior and Immunity, 77, Pp. 55-65. Abstract Many genes differentially expressed in brain tissue from human alcoholics and animals that have consumed large amounts of alcohol are components of the innate immune toll-like receptor (TLR) pathway. TLRs initiate inflammatory responses via two branches: (1) MyD88-dependent or (2) TRIF-dependent. All TLRs signal through MyD88 except TLR3. Prior work demonstrated a direct role for MyD88-dependent signaling in regulation of alcohol consumption. However, the role of TLR3 as a potential regulator of excessive alcohol drinking has not previously been investigated. To test the possibility TLR3 activation regulates alcohol consumption, we injected mice with the TLR3 agonist polyinosinic:polycytidylic acid (poly(I:C)) and tested alcohol consumption in an every-other-day two-bottle choice test. Poly(I:C) produced a persistent increase in alcohol intake that developed over several days. Repeated poly(I:C) and ethanol exposure altered innate immune transcript abundance; increased levels of TRIF-dependent pathway components correlated with increased alcohol consumption. Administration of poly(I:C) before exposure to alcohol did not alter alcohol intake, suggesting that poly(I:C) and ethanol must be present together to change drinking behavior. To determine which branch of TLR signaling mediates poly(I:C)-induced changes in drinking behavior, we tested either mice lacking MyD88 or mice administered a TLR3/dsRNA complex inhibitor. MyD88 null mutants showed poly(I:C)-induced increases in alcohol intake. In contrast, mice pretreated with a TLR3/dsRNA complex inhibitor reduced their alcohol intake, suggesting poly(I:C)-induced escalations in alcohol intake are, at least partially, dependent on TLR3. Together, these results strongly suggest that TLR3-dependent signaling drives excessive alcohol drinking behavior. Warden AS, Azzam M, Da Costa A, Mason S, Blednov YA, Messing RO, Mayfield RD, and Harris RA. “Toll-like receptor 3 activation increases voluntary alcohol intake in C57BL/6J male mice.” Brain Behavior and Immunity, 77, Pp. 55-65. Publisher’s Version Abstract Many genes differentially expressed in brain tissue from human alcoholics and animals that have consumed large amounts of alcohol are components of the innate immune toll-like receptor (TLR) pathway. TLRs initiate inflammatory responses via two branches: (1) MyD88-dependent or (2) TRIF-dependent. All TLRs signal through MyD88 except TLR3. Prior work demonstrated a direct role for MyD88-dependent signaling in regulation of alcohol consumption. However, the role of TLR3 as a potential regulator of excessive alcohol drinking has not previously been investigated. To test the possibility TLR3 activation regulates alcohol consumption, we injected mice with the TLR3 agonist polyinosinic:polycytidylic acid (poly(I:C)) and tested alcohol consumption in an every-other-day two-bottle choice test. Poly(I:C) produced a persistent increase in alcohol intake that developed over several days. Repeated poly(I:C) and ethanol exposure altered innate immune transcript abundance; increased levels of TRIF-dependent pathway components correlated with increased alcohol consumption. Administration of poly(I:C) before exposure to alcohol did not alter alcohol intake, suggesting that poly(I:C) and ethanol must be present together to change drinking behavior. To determine which branch of TLR signaling mediates poly(I:C)-induced changes in drinking behavior, we tested either mice lacking MyD88 or mice administered a TLR3/dsRNA complex inhibitor. MyD88 null mutants showed poly(I:C)-induced increases in alcohol intake. In contrast, mice pretreated with a TLR3/dsRNA complex inhibitor reduced their alcohol intake, suggesting poly(I:C)-induced escalations in alcohol intake are, at least partially, dependent on TLR3. Together, these results strongly suggest that TLR3-dependent signaling drives excessive alcohol drinking behavior. AS Warden, M Azzam, A Da Costa, S Mason, YA Blednov, RO Messing, RD Mayfield, and RA Harris. “Toll-like receptor 3 dynamics in female C57BL/6J mice: regulation of alcohol intake.” Brain Behavior and Immunity, 77, Pp. 66-76. Abstract Warden AS, Azzam M, Da Costa A, Mason S, Blednov YA, Messing RO, Mayfield RD, and Harris RA. “Toll-like receptor 3 dynamics in female C57BL/6J mice: Regulation of alcohol intake.” Brain Behavior and Immunity, 77, Pp. 66-76. Publisher’s Version Abstract Although there are sex differences in the effects of alcohol on immune responses, it is unclear if sex differences in immune response can influence drinking behavior. Activation of toll-like receptor 3 (TLR3) by polyinosinic:polycytidylic acid (poly(I:C)) produced a rapid proinflammatory response in males that increased alcohol intake over time (Warden et al., 2019). Poly(I:C) produced a delayed and prolonged innate immune response in females. We hypothesized that the timecourse of innate immune activation could regulate drinking behavior in females. Therefore, we chose to test the effect of two time points in the innate immune activation timecourse on every-other-day two-bottle-choice drinking: (1) peak activation; (2) descending limb of activation. Poly(I:C) reduced ethanol consumption when alcohol access occurred during peak activation. Poly(I:C) did not change ethanol consumption when alcohol access occurred on the descending limb of activation. Decreased levels of MyD88-dependent pathway correlated with decreased alcohol intake and increased levels of TRIF-dependent pathway correlated with increased alcohol intake in females. To validate the effects of poly(I:C) were mediated through MyD88, we tested female mice lacking Myd88. Poly(I:C) did not change alcohol intake in Myd88 knockouts, indicating that poly(I:C)-induced changes in alcohol intake are dependent on MyD88 in females. We next determined if the innate immune timecourse also regulated drinking behavior in males. Poly(I:C) reduced ethanol consumption in males when alcohol was presented at peak activation. Therefore, the timecourse of innate immune activation regulates drinking behavior and sex-specific dynamics of innate immune response must be considered when designing therapeutics to treat excessive drinking WK Bickel, JC Crabbe, and KJ. Sher. “What Is addiction? How can animal and human research be used to advance research, diagnosis, and treatment of alcohol and other substance use disorders?.” Alcoholism: Clinical and Experimental Research, 43, Pp. 6-21. Publisher’s Version Abstract Bickel WK, Crabbe JC, and Sher KJ. “What Is Addiction? How Can Animal and Human Research Be Used to Advance Research, Diagnosis, and Treatment of Alcohol and Other Substance Use Disorders?.” Alcoholism: Clinical and Experimental Research, 43, 1, Pp. 6-21. Publisher’s Version Abstract The current article highlights key issues in defining, studying, and treating addiction, a concept related to but distinct from substance use disorders. The discussion is based upon a roundtable discussion at the 2017 annual meeting of the Research Society on Alcoholism where Warren K. Bickel and John C. Crabbe were charged with answering a range of questions posed by Kenneth J. Sher. All the presenters highlighted a number of central concerns for those interested in assessing and treating addiction as well as those seeking to conduct basic preclinical research that is amenable to meaningful translation to the human condition. In addition, the discussion illustrated both the power and limitations of using any single theory to explain multiple phenomena subsumed under the rubric of addiction. Among the major issues examined were the important differences between traditional diagnostic approaches and current concepts of addiction, the difficulty of modeling key aspects of human addiction in nonhuman animals, key aspects of addiction that have, to date, received little empirical attention, and the importance of thinking of recovery as a phenomenon that possibly involves processes distinct from those undergirding the development and maintenance of addiction.