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Pushing is one of the many ways to manipulate an object and it is es-

pecially useful when the object is too big to be gripped by the robot. Previous

studies analyzed the problem of pushing polygonal objects into desired poses

and proposed open loop pushing algorithms. In the absence of object pose

feedback, to avoid slip in contact between the robot and the object, primitives

for path planning were computed using conservative estimates for coefficient

of friction between the robot and the object. In this work, we experimentally

measured the coefficient of friction between the robot and object to compute

path planning primitives. We used A* search and RRT* algorithms for path

planning. We perform controlled pushing using object pose feedback obtained

from a vision system using fiduciary markers. Pushing objects with object

pose feedback enables us to confidently operate close to the frictional limits

of the system, as the robot can take paths with tighter turns (smaller turning

radius) to push the object into the goal pose.
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Chapter 1

Introduction

Humans manipulate objects of varying sizes and shapes without much

difficulty. On the other hand, robots struggle even with the basic autonomous

manipulation tasks like opening a door handle, opening a bottle cap, etc. We

want robots to have the capability to manipulate objects in cluttered environ-

ments autonomously. There are two main categories of approaches to solve the

problem. We can solve the problem using statistical or learning approaches

as can be seen in Levine et al 2018 [4], where they applied model free deep

reinforcement learning to solve a high dimensional manipulation problem from

scratch in simulation. Another interesting work is done at OpenAI [5], where

they perform vision based object reorientation with a dexterous hand.

The second approach to solve manipulation problems is to understand

the physics of the process and come up with planning and control algorithms

for manipulation, based on the physics knowledge. This is the approach to be

taken in this thesis. For simplicity, we’ll be focusing on planar pushing. Goyal

et al [6] has presented a geometric interpretation of the frictional moment

and force acting on a planar sliding object. Lynch and Mason [17] built on

Goyal et al [6] and provided the controllability analysis of the pushing process.
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They also proposed a path planning approach for planar pushing using a line

contact.

There are some approaches that fall in between the above stated cat-

egories. One example is the dataset created by Yu et al [24], where they

collected high fidelity data from pushing experiments. They then created a

probabilistic data-driven model using that data in [1].

A common approach in robotic manipulation is to equip the robot with

an end effector (gripper) and take a pick-and-place approach. In this approach,

the path planning and grasping are independent of each other because we plan

the grasp such that we won’t lose grip in the presence of highest expected

disturbance forces. The grasp and manipulate approach might not work in

cases where the object is too large to be grasped by a gripper or it is too

heavy to be lifted. In those cases, we need to use pushing to manipulate the

object, which is nonprehensile manipulation.

In this study, we expand on Lynch and Mason’s work [17] which pro-

posed open loop algorithms for pushing objects into desired poses. To avoid

slip in contact between the robot and the object in the absence of object pose

feedback, primitives for path planning were computed using conservative esti-

mates for coefficient of friction between the robot and the object. In this work,

we measured the actual coefficient of friction between the pusher and slider to

compute path planning primitives. We used A* search and RRT* algorithms

for path planning. We perform controlled pushing using object pose feedback

obtained from a vision system (Apriltags) using fiduciary markers. Pushing
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objects with object pose feedback enables us to confidently operate close to

the frictional limits of the system, as the robot can take paths with tighter

turns (smaller turning radius) to push the object into the goal pose. Open

loop manipulation schemes will require us to make conservative estimates for

friction coefficients.

There is no experimental data reported in literature to verify the anal-

ysis used to compute the path planning primitives in [17]. In this work, we

conducted experiments to push objects with a mobile robot using visual servo-

ing. We demonstrate the effectiveness of these principles and algorithms using

the pose data collected in pushing experiments.

In Chapter 2, we describe the kinematics of the mobile robot used in the

experiments, and present the state space equations used to model the robot.

In Chapter 3 the vision based localization system developed for this study is

described. We used Apriltags, where localization is done through detection of

fiduciary tags in an image. In Chapter 4, the analysis of pushing a polygonal

object on a rough surface is discussed and the minimum radius of turning used

path planning is derived. In Chapter 5, the planning and trajectory tracking

algorithms used in the study are discussed. Finally, Chapter 6 is used to

present experimental results, and we conclude the thesis in Chapter 7.
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Chapter 2

Kinematics Of The Mobile Robot

2.1 Introduction

We can perform manipulation tasks with different kinds of robots like

articulated serial-chain industrial robots, delta robots, soft robots, mobile

robots, etc. The dexterity of the manipulation depends on the end effector

design and the number of degrees of freedom of the robot.

In this study we consider a pushing task with no grasp. A mobile robot

tries to push a box to a desired pose on a 2D plane using a line contact. It is

nonprehensile manipulation, and the process has non-holonomic constraints.

This study adopts a differential drive robot with two driving wheels and one re-

dundant omni-wheel as shown in Figure 2.1. Only planar motion is considered

in this work.

2.2 Kinematics Model

The differential drive robot has been studied extensively in the liter-

ature and it has standardized models. We will be using the model shown in

[22] with slight modifications. This robot has three degrees of freedom (three

states). Two states are for the 2D translation and one for the orientation
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Figure 2.1: Differential drive robot with an omni wheel in the rear.

(along an axis perpendicular to the plane of motion). Let (xg, yg) represent

the co-ordinates of the center point of the axle of the driving wheels in the

global inertial frame, whose origin Og is fixed to the ground. The angle θ is

formed between the robot’s longitudinal axis and the global axis Xg. The axes

Xg, Yg represent the inertial frame, as shown in Figure 2.2. We will also define

another frame at (xg, yg) oriented at θ, which will be the local (or body-fixed)

frame of the robot with axes XR, YR. We will use the local frame later in

Section 5.4 to control the robot.

The robot state is defined as:

S =

xgyg
θ

 (2.1)

The control inputs to the robot are forward velocity, V , and yaw veloc-

ity, ω. Here V is the linear velocity of the center point of the axle of the driving

wheels in the ground frame in the direction of XR. We are assuming that the

wheels of the robot are not slipping, which implies velocity along YR is 0. The

5



Figure 2.2: Reference frames. Source: [22]

angular velocity of the robot in the ground frame is ω. The conventions are

shown in Figure 2.2.

Ṡ =

ẋgẏg
θ̇

 =

V cos(θ)V sin(θ)
ω

 (2.2)

To get the forward kinematics of the robot for a given trajectory of V and ω

we need to integrate equation 2.2 with time. We are assuming the wheel slip

is negligible. Under that assumption, for a given V and ω, the robot should

execute a circular motion with radius R.

R = V/ω (2.3)

Figure 2.3 shows experimental data that confirms our kinematics model, where

the robot executes a circular motion with radius 0.633m when V = 0.15 and

6



Figure 2.3: Mobile robot executing a circular motion to validate the kinematic
model. The data shown is the center point of the robot captured from the
vision system.

ω = 0.24. It is not a perfect circle as shown by the experimental data in Figure

2.3 because there are disturbances like floor not being flat, vision measurement

errors, etc. We will perform trajectory tracking in Section 5.4 and will use

equation 2.3 to more precisely achieve a desired path.
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2.3 Controlling The Wheel Speeds

As we have seen before, V and ω are the primary control inputs for

the robot. We can’t directly use those values to drive the robot. We need to

compute the right and left wheel angular velocities from V and ω, which are

ωr and ωl, respectively. These can be used to command the motor speeds.

The width of the robot is b and the radius of the wheels of the robot is Rwheel.

The following relations hold when there is no slip:

V =
Rwheel

2
(ωr + ωl)

ω =
Rwheel

b
(ωr − ωl)

(2.4)

From equations 2.4, we can determine desired wheel angular velocities ωr and

ωl as follows:
ωl = (V − ωb/2)/Rwheel

ωr = (V + ωb/2)/Rwheel

(2.5)

We need to ensure that both sides of the robot are equally powered. If we give

a command with positive V and ω = 0, then the wheel velocities are identical.

Now, if motors on both wheels don’t perform identically and if we get ωr 6= ωl

at some point, then from equation 2.4, we can see that we will end up with a

non-zero ω, which is not what was commanded.

The kinematic model of the robot can be used to more effectively control

the robot trajectory, as will be described in Chapter 5. The next step is to

localize the robot using computer vision, so we can perform visual servoing.

8



Chapter 3

Localizing The Robot

3.1 Introduction

For autonomous navigation of robots, we need to know where the robot

is in an environment. The goal of localization is to establish the robot’s loca-

tion and orientation in a world frame of reference. In general when we want a

robot to reach a goal location, we need to do three things [29]:

• Self-localization

• Path Planning

• Map Update

Localization needs to be done before path planning because we have to know

the robot’s current location and the goal location. Map update operation is

done in parallel as the robot keeps discovering new obstacles and gets fresh

sensor data about the environment. For a robot to understand its surroundings

through computer vision, it needs to understand the visual features in a scene

and have some prior knowledge about those features. In this project we will

localize a robot using (artificial) visual features in its surroundings.

9



3.2 Fiduciary Markers

In the field of machine perception, naturally occurring features in vi-

sion are used to detect objects in a scene and localize them. This is generally

cumbersome and counter productive when perception is not the central ob-

jective. It is much more simpler if we could use artificial features which are

much more easier to detect and robust to disturbances. Many different ways

to create such artificial visual features are proposed as shown in Figure 3.1.

In this project we’ll be using Apriltags, which are fiduciary markers proposed

by Edwin Olson [20]. Their example applications are seen in Figure 3.9.

3.3 Camera Calibration

Our ultimate goal is to relate a point in real world 3D space to a pixel

in the image. Also, the cheap web cameras are pinhole cameras and introduce

a lot of distortion. We also want to able to remove the distortion in the image.

There are two factors affecting that relation, Camera intrinsics and Camera

extrinsics. Intrinsic parameters deal with the camera’s internal characteristics

like focal length, skew, distortion and image center. Extrinsics deal with the

camera’s orientation and location in the real world. Once we estimate the

internals, we can start computing the extrinsics and make sense of the scene in

euclidean space. Most of the standard camera calibration libraries (OpenCV,

Matlab, etc) fundamentally depend on the algorithm in Zhang’s paper [25].
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Figure 3.1: Different types of fiduciary markers proposed in literature.
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Figure 3.2: Different camera calibration targets. From left to right: chess-
board, hexagonal circles grid and square grid

To estimate the camera parameters, we need some known relative distances

in the real world so that we could correlate those points in the image. The are

many target patterns which give us known distances between different points

in the pattern(Figure 3.2) and chessboard pattern is the one which we will be

using.

3.3.1 Image Distortion

In general all pin hole cameras introduce some distortion in the image

and the cheap webcams do it much more. An example of barrel distortion in

an image is shown in Figure 3.3 (left). The board and the ceiling lines are

straight in reality but they appear curve in the image. Notice that the same

lines appear straight in the rectified image.
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Figure 3.3: Example of barrel image distortion. Notice that the curved lines
in the left image and straight lines in the rectified image. Source: [33]

The cameras that we used in this project don’t perform as badly as shown

in Figure 3.3 but since we need high precision tracking (˜1cm accuracy at

2m distance) we have to rectify our images even for small distortions. There

are different types of distortions (Figure 3.4) and We’ll be observing barrel

distortion in most of the cases.

Figure 3.4: Different types of distortion. Source: [28]
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3.3.2 Parameters

If we represent the pixel co-ordinates in an image with (x,y) (see Figure

3.4) and r is the radial distance from the center, then we can model radial

distortion as follows.

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (3.1)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (3.2)

There is also tangential distortion due to the fact that image taking lens is not

aligned perfectly parallel to the imaging plane. So some areas in image may

look nearer than expected. This distortion can be modeled as follows.

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)] (3.3)

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy] (3.4)

From the above equations, we can see that we need 5 parameters to model

distortion and rectify it later

Distortion coefficients = [k1 k2 p1 p2 p3]

In addition to this, we need to find the intrinsics of the camera, which include

the focal lengths (fx, fy) and optical centers (cx, cy). They are represented in

the camera matrix.

camera matrix : C =

fx 0 cx
0 fy cy
0 0 1

 (3.5)
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The camera matrix is very important as we can compute the Projection matrix

P using it. If x is a 3D point (real world) in heterogeneous co-ordinates and y

be a representation of the image of this point in the pinhole camera, then the

following holds.

y ∼ Px (3.6)

Now we can normalize y in the image plane and compute the actual pixel

co-ordinates corresponding to the point x.

3.3.3 Matlab Camera Calibration

There are many libraries and tools available to estimate to estimate the

parameters discussed in previous section. Matlab camera calibrator app is an

easy user-friendly way to get the parameters.

First we need to get a good calibration target. In this project we used a 6X8

chessboard shown in Figure 3.5. We need to collect pictures using our camera

at different positions and orientations. We have to maintain the same focus in

the camera (turn off auto focus). If the focus changes, we have to recalibrate

again. Some cameras change the field of view depending on the frame rate, so

it’s a good idea to recalibrate for different frame rates. Once we acquire all the

images, we can load them into the Matlab Camera Calibrator app. We’ll first

detect the chessboard patterns in the images. The detected pattern is shown

in Figure 3.6.
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Figure 3.5: Calibration target used in this project

Figure 3.6: Detected the chessboard pattern and identified all the grid points.
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Figure 3.7: Reprojected the grid points (in red) after computing the camera
matrix. If the calibration is good, they align perfectly with detected grid
points.

We can also see that the origin is set at one of the corners in the board.

Now we have two datasets. First, since we know the size of each square in the

chessboard (25.4mm), we can compute the real-world co-ordinates of all the

grid points identified in Figure 3.6 in the frame of the origin shown in Figure

3.6. Second, We can calculate the co-ordinates of all the grid points in the

image (pixel co-ordinates). Using these two datasets and the projection matrix

equation shown in section 3.3.2, the app computes the camera parameters. The

algorithm used is very similar to OpenCV solvePnP [27].

Once we know the camera parameters, we can re-project the real world

calibration target grid points onto the image and see if the points overlap with

17



Figure 3.8: Orientations and positions of all the calibration images(shown as
colored planes) with respect to the camera (shown in blue at the right end)

the detected grid points, shown in Figure 3.7. For our camera, we observed an

average re-projection error of 0.23 pixels. This corresponds to a localization

error of 2cm at 2m viewing distance. This calibration is done with 18 images.

In Figure 3.8 we can see the orientations and positions of all the images(shown

as colored planes) with respect to the camera (shown in blue).

3.4 Apriltags

Apriltags provides us an easy way to localize objects using tags, which

are artificial features (visual fiduciaries). Instead of dealing with the cumber-

some real-world features we just add a tag to object we need to track. The

applications for this method are very diverse as shown in Figure 3.9 Using this

we have estimated the camera parameters needed to relate real-world points

18



Figure 3.9: Different applications for Apriltags. Top left: mobile robot lo-
calization. Top right: Boston Dynamics humanoid localization. Bottom left:
Tracking ants with Apriltags. Bottom right: VR applcations. Source: [23]

to points on an image. As discussed in section 3.2, we create 2D barcodes

as a visual fiduciary tag. This is described in great detail in [20] and [23].

We are using a fast C++ implementation of apriltags algorithm developed by

Swatbotics [26].

The pupose of using Apriltags is to localize our robot. We can add a tag

to the robot as shown in Figure 3.10. the algorithm first extracts the image

points of the 2D bar code, it has two datasets now. First, Since we know the

size of each tag, we can compute the real world co-ordinates of the 2D barcode

corners in a frame with origin as one of the corners of the code. Two, the

19



Figure 3.10: The mobile robot Dani with an Apriltag (left). Added ground
calibration tag (right)

corner points of the tag on the image. As we saw in section 3.3.3, we can use

OpenCV solvePnP algorithm [27] to extract the pose from these two datasets.

This process uses the camera matrix data estimated using Matlab in section

3.3.3

Before we start detecting the tags in the image, we have to rectify the image

to remove distortions. We can use the camera parameters which we estimated

using Matlab. We’ll use a ROS node [30] which takes camera parameters and

uses equation described in section 3.3.2 to remove the distortion in the image.

It gives us a rectified image.

3.4.1 Ground Calibration

Using the OpenCV solvePnP algorithm we get the pose of the tag

relative to the camera. The goal of robot localization is to get the position

20



and orientation of the robot in a world frame. The camera is very inconvenient

world frame. Since we are working with a 2D robot, it makes sense to have

the world frame origin on the ground. We can add another tag to the ground

and first get its orientation with respect to the camera (see Figure 3.10). Then

we’ll make a transformation from the tag frame to the ground frame via the

camera frame. This process is made extremely convenient using ROS tf library

[31].

3.4.2 Tracking with Apriltags

Now we have a tag on the mobile robot, whose pose we can compute

with respect to a ground location (using the ground calibration tag). We

can run the detection continuously using a ROS wrapper for apriltags [32].

Experiments showed that we can achieve a detection frequency of 20Hz at a

delay of 0.05 seconds. This is suitable for feedback control.

3.5 Localization Trial Data

For a proof of concept, we drove the mobile robot in a perfect circle of

radius 0.577m. The position tracking data is shown in Figure 3.11, compared

to a perfect circle. After we got the position data, we can differentiate the x,y

co-ordinates to get the linear velocity estimate shown in Figure 3.12. We can

see that it matches with the velocity commanded. Similarly an estimate for

the angular velocity can be obtained by differentiating the orientation data.

The control commands given for this trial are
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Figure 3.11: Position tracking trial data. The robot is driven in a circle of
radius 0.577m.
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Figure 3.12: Linear velocity data obtained by differentiating the pose data
from vision compared to actual velocity.
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Figure 3.13: Angular velocity data obtained by differentiating the pose data
from vision compared to actual angular velocity.
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We now have the pose of the robot and the object available in real-time

using Apriltags. Next, we analyze the planar pushing problem to compute the

primitives for path planning.
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Chapter 4

Pushing with a Mobile Robot

4.1 Introduction

In pushing, the grasp planning (to avoid contact loss) and path planning

are not independent. We need to continuously ensure that the next steps taken

do not lead to contact loss. In most practical cases, we are not aware of the

support distribution of the object. This results in the object having multiple

solutions for possible motions when pushed with a point contact. If we have

multiple contacts (a line contact for example), then we can determine the

motion of the object with a unique solution. In Lynch 1992 [18], a stable

push is defined by pushing an object following a set of the constraints such

that there will be no loss of contact with the pushing interface. This means

we can consider the object to be rigidly attached to the pushing robot and

use constrained path planing for the robot with the object rigidly attached.

In [17], the controllability of the stable push is analyzed and a procedure for

path planning is described.
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4.2 Main Assumptions

The same assumptions made by Lynch and Mason [17] were adopted

in this study.

• We are assuming that the Coulomb’s Law holds for friction. At a sticking

contact, the magnitude of the friction force is less than or equal to µfn

where µ is the static coefficient of friction.

• All pushing forces are in the plane of motion and gravity acts perpen-

dicular to this plane.

• Friction properties are uniform over the plane of pushing

• Process is quasi-static and inertial forces are negligible. The pushing

forces are balanced by the frictional force between the object and the

ground.

4.3 Pushing Control System

The slider S (box in our case) is in the world frame W = R2 and its

configuration space is C = R2XS1. The slider is pushed by pusher P(mobile

robot in our case) at set of points on the perimeter of S. The world frame FW

(origin OW) is fixed in the ground plane and the slider frame FS (origin OS)

is fixed to the center of S as shown in Figure 4.1.

Configurations measured in FS have the co-ordinates (x, y, θ)T and con-

figuration q = (xw, yw, θw)T represents the pose of the slider in FW . Wrenches
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Figure 4.1: The world frame and the slider frame. Source: [17]

f acting on the slider, represented by (fx, fy,m) and twist v of the slider are

defined in FS . We are assuming the robot has just enough traction/force ca-

pacity to push the box and that all the input energy is lost to friction. For

this reason we only need to consider the directions of forces and velocities

and not magnitudes. We are making the assumption of a quasi-static system

and not considering the dynamics of the system. The force direction f̂ can be

represented on a point on the unit circle (̂f ∈ S2). Similarly, velocity direction

can also be represented by v̂ ∈ S2. We can represent the velocity direction

using a Center of Rotation (COR) in FS . In figure 4.2, we can see that velocity

directions can be directly mapped to a point onto the plane of FS about which

the velocity direction v̂ is a pure rotation. This representation will be useful in
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Figure 4.2: The mapping from velocity directions on the unit sphere to rotation
centers in the slider frame FS . Source: [17]

further analysis. The set of force directions that can be applied onto the slider

are limited. For example, we can push the slider, but cannot pull it. This

leads to non-holonomic constraints on the velocity directions, which means

we can’t integrate the velocity constraints to get constraints on configuration.

The non-linear control system Σ is represented as:

Σ : q̇ = F (q, cu) = Xu(q)

q ∈ C = R2XS1, u ∈ (0, ...n)

Xu =


0 if u = 0cosθw −sinθw 0

sinθw cosθw 0

0 0 1


v̂ux

v̂uy

ω̂ux

 otherwise.

(4.1)

Here u us chosen from n possibilities of contact configurations (which side of

the object do we choose to push on?) and pushing velocities (in which direction

are we pushing the slider?) in FS . For each control input cu we have a vector
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field Xu in FW . v̂u is the velocity direction of slider in FS corresponding to

velocity of the slider Xu(q) in FW . X is the set of non-zero vector fields Xu

and V̂ is the set of velocity directions v̂u in the slider frame FS .

Since we have a quasi-static assumption, the path generated in chapter

5 should be considered as a pushing path and not a trajectory. If this is

implemented on a robot, the velocities should be small to not deviate far from

the quasi-static assumption.

4.3.1 Controllability of the Pushing Control System

To prove the controllability of the pushing control system Σ, we again

follow the work of [17]. If the possibilities for velocity directions in FS , cu is

n = 2, then the Lie algebra L(X ) is spanned by X1, X2, and X3 = [X1, X2].

Here [X,Y] is the lie bracket operation on vector fields X,Y, thus,

X1 = (v̂1xcosθw − v̂1ysinθw, v̂1xsinθw + v̂1ycosθw, ω̂1)
T

X2 = (v̂2xcosθw − v̂2ysinθw, v̂2xsinθw + v̂2ycosθw, ω̂2)
T

X3 = [X1, X2] = (ω̂1(−v̂2xsinθw − v̂2ycosθw) + ω̂2(v̂1xsinθw + v̂1ycosθw),

ω̂1(v̂2xcosθw − v̂2ysinθw) + ω̂2(−̂v1xcosθw + v̂1ysinθw), 0)T

The dimension of L(X ) = rank(X1 X2 X3). If the determinant of the matrix

is non-zero, then the rank is 3.

det(X1 X2 X3) = (ω̂2
ˆ(v)1x − ω̂1

ˆ(v)2x)2 + (ω̂2
ˆ(v)1y − ω̂1

ˆ(v)2y)
2

The determinant is zero only if: (1) ω̂1 = ω̂2 = 0, whereby the object cannot

rotate, or (2) v̂1 and v̂2 are multiples of each other, which means the object
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Figure 4.3: The set of velocity directions which can span a great circle repre-
sented in rotation center space and velocity sphere. Source: [17]

can move only in one direction. Otherwise, the determinant is non-zero. Now,

we have created a new control action using the Lie bracket operation. Since

the rank of the Lie algebra is the same as the configuration space, the system

is small-time accessible. For Σ, small-time accessibility implies controllability

(see [17]).

It can be shown that, the system Σ is small-time locally controllable

if and only if the set of velocity directions spans a great circle of the velocity

sphere that does not lie in the ω = 0 plane. One example of such a velocity

direction set is shown in Figure 4.3.
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4.4 Mechanics of Pushing

The force f applied by the pusher is balanced by friction (due to quasi-

static assumption). We’ll use the following definitions (from [19]):

x = point of contact (x, y, 0)T between the slider and the support plane

dx = differential element of support area

p(x) = support pressure at x

µs(x) = support friction coefficient at x

s(x) = µs(x) ∗ p(x) = support friction distribution

v(x) = linear velocity of x, given by (vx − ωy, vy − ωx, 0)T

fxy = linear components (fx, fy, 0)T of f

The origin of the slider frame OS is set at the center of friction (
∫
S xs(x)dx =

0). The force and moment are given by:

fxy =

∫
S

v(x)

|v(x)|
s(x)dx

mk̂ =

∫
S
x× v(x)

|v(x)|
s(x)dx

The friction force always acts in the direction opposite of relative motion. The

velocity directions move along the unit sphere shown in figure 4.2, the force

f moves along a 2D surface called limit surface (see [6]). At each instant, it

can be shown that the velocity direction v̂ is normal to limit surface at force f

(shown in figure 4.4). If s(x) is finite, the limit surface is smooth and strictly

convex.
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Figure 4.4: Mapping force f to a velocity direction v̂, which is normal to limit
surface. Source: [17]

The motion of the slider depends on the nature of contact between the

pusher and the slider. The contact could be sticking or breaking free or sliding

left or right. For each contact mode i, there exists a set of velocities Vk,i that

satisfy the contact mode constraints (see [18]). For each contact mode, we

can specify composite friction cone containing the feasible forces that can be

applied by the pusher (obeying the coulomb friction law) shown in Figure 4.5

a,b. The composite friction cone is mapped onto the limit surface as shown

in figure 4.5 c. we know that when the slider is sliding on the ground the

velocity direction is normal to the limit surface (as shown in Figure 4.4). We

get a set of velocities normal to the composite friction cone on the limit surface

(shown in Figure 4.5 c). This set of velocities is Vf,i, which follows the force

constraints.

The velocity directions in the set Vk,i ∩ Vf,i are the feasible directions

which follow both kinematic and force constraints. If Vk,i ∩ Vf,i = φ, then the
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Figure 4.5: (a) Limiting forces that can be applied by the pusher. (b) Convex
hull of the limiting forces, called composite friction cone. (c) Composite fric-
tion cone on the limit surface and the limiting velocity directions (d) Limiting
velocity directions on the unit velocity sphere. Source: [17]

contact mode i is not feasible.

4.4.1 Pushing with Point Contact

When we push the slider with a point contact, three modes are possible:

sticking, left sliding and right sliding. The actual motion is given by the

contact mode that is consistent with the kinematic and force constraints. The

support distribution s(x) is generally unknown. Weaker models for support

distributions have been used to study the sliding motion (see [21]). Without,
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the knowledge of accurate s(x), it is impossible to find exact motion of the

slider under point contact pushing. Nevertheless, it has been shown in [17]

that a 2-DOF robot (point moving in a plane) can push any object (except a

friction less disk) to follow any planar path arbitrarily closely.

4.4.2 Stable Pushing With a Line Contact

Although the controllability for pushing with a point contact has been

demonstrated in [17], the motion is very unpredictable because the support

distribution is unknown (floor is not flat). So we cannot synthesize controllers

for point pushing. If we have two pushing contacts, there will be set of veloc-

ities which guarantee sticking condition at all contacts. This is called a stable

push. We will use the stable push directions to get the primitives for path

planning.

Let V̂stable be the set of velocity directions which result in a stable push.

Let V̂F be the set of directions such that one solution of the motion of the

slider is to remain fixed to the slider.This set of velocity directions is found by

intersecting the composite friction cone F from the line contact with the limit

surface as shown in Figure 4.5 c. In [18], a method is proposed to identify a

subset (or an approximation) of V̂F for a slider with a known center of friction.

It can be shown that this set also belongs to V̂stable.

We follow a procedure STABLE as described in [17] to identify a subset

of V̂F . This is a refinement of the procedure shown in [18]. In STABLE we

identify regions surrounding the object, in which we can place a center of
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rotation for the object without losing contact with the pushing interface.

Procedure STABLE:

1. We have two friction cones at the edges of the contact interface as shown

in Figure 4.6a (green arrows) with angle tan−1µ with the contact normal.

For each edge of the two friction cones, draw lines perpendicular to the

edge, such that the entire object is contained within the 4 lines. We’ll

have a region on each side of the object. See Figure 4.6a These regions

contain the rotation centers which can be achieved by applying forces

within the angle limits of the friction cone.

2. We have two end points for the contact interface (line). For each end

point, draw two lines (yellow) perpendicular to the line (red) joining the

end point and the center of friction. One line is a perpendicular bisector

of the line joining the end point and center of friction and the other line

is at a distance of r2/p on the other side of the center of friction. r is

the distance from center of friction to the most distant support point on

the object and p is the distance from end point to the center of friction.

This step will also give us two regions on either side of the object, which

contains the possible centers of rotation for forces that pass between the

two end points. This region is shown in figure 4.6b.

3. The intersection of the regions found in steps (1) and (2) gives us a region

of possible centers of rotation, which guarantees no loss of contact with
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the pushing interface in a quasi-static process. This region is shown in

Figure 4.6c.

The procedure STABLE is not exhaustive, it misses some points with low ra-

dius of curvatures. We have a conservative estimate of the possible center of

rotations for the object using a line contact for pushing. Theorem 4 in [17]

proves that the subset of V̂F identified in STABLE is also a subset of V̂stable.

Controllability analysis for pushing with a line contact using the velocity di-

rections found in procedure STABLE is shown in [17]. In order to move an

object from an initial pose to a final pose, at each point we need to perform the

procedure STABLE, identify feasible centers of rotation and use the primitives

for path planning. The path planning procedure is discussed in Chapter 5.

4.5 Pushing with a Mobile Robot

Pushing with a mobile robot simplifies the planar pushing problem, by

constraining the region of feasible center of rotations (CoRs) found in pro-

cedure STABLE. This will reduce the maneuverability compared to a planar

manipulation by a pusher/bumper attached to robotic arm. Since we are using

a differential drive robot, the possible centers of rotation lie on a line passing

through the center of the driving wheels as shown in figure 4.7. We need to find

the intersection of the line (of possible centers of rotation for the differential

drive robot) and the region found in procedure STABLE.

In order to push and object with a mobile robot, we need to select
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(a)

(b)

(c)

Figure 4.6: Procedure STABLE. The shaded region in 4.6c is where we can
select a center of rotation for the robot for stable pushing.
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Figure 4.7: Computing the minimum turning radius which guarantees stable
pushing with a mobile robot.

points on the section of the straight line identified in Figure 4.7. This is

interpreted as having a minimum turning radius for the robot. For

the dimensions of the robot and the box used in this study, the minimum radius

depends only on the coefficient of friction µ between the box and the robot’s

pushing surface. The trend is shown in Figure 4.8. The only dimension that

affects this trend line is the distance between the box center and the robot’s

center. The coefficient of friction µ is measured experimentally to be in the

range of 1.5-2. From Figure 4.8, we can see that the minimum turning radius

predicted is ∼0.35m. This claim is tested in Section 6.1.

Now we have the minimum turning radius feasible for a given contact

configuration. Using this information, we will plan paths around obstacles in

the next chapter.
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Figure 4.8: Minimum turning radius for the robot vs Coefficient of friction
between the box surface and the robot’s pushing surface.
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Chapter 5

Path Planning for Controlled Box Pushing

5.1 Introduction

As seen in Chapter 2, the robot is controlled through velocity, V , and

yaw velocity, ω, commands, with an admissible velocity space R2. The state

vector of the robot is [x, y, θ], with configuration space C = R2 × S1. The

dimension of configuration space (3) is greater than admissible velocity space

(2). This means that we have a non-holonomic system. There are many

algorithms available in the literature for path planning for a non-holonomic

system [12],[13]. In this study we considered two algorithms, A* search and

Rapidly exploring Random Trees (RRT). We also have a minimum turning

radius constraint as discussed in Section 4.5.

5.2 A* Search

A* search was proposed by Hart, Nilsson and Raphael [7]. It is con-

sidered an extension to Dijkstra’s shortest path search algorithm, but with a

performance improvement using heuristics. A detailed treatment can be found

in Latombe [12], for planning with non-holonomic constraints using A* search.

For application to this study, the workspace area was divided into cells
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of size 1 inch X 1 inch ( 25mmX25mm). The configuration space C = R2×S1

is discretized with an angle (robot’s orientation) resolution of 2 degrees. Now,

we have a 3D grid (representing x,y, θ) with a starting node and a goal node

corresponding to starting and goal poses of the robot respectively. The goal

is to find a feasible path from the starting node to goal node, avoiding all the

obstacles. We represent the obstacles in the physical world using an occupancy

grid (refer to [3]). A sample map with obstacles, starting and goal poses is

shown in 5.2. A* search is guaranteed to produce the shortest path between

two nodes if it exists.

We maintain two lists of nodes: OPEN and CLOSED. The list OPEN

contains the nodes whose children haven’t been explored yet. The list CLOSED

contains the nodes whose children are explored. The list OPEN is maintained

in a sorted order using the heuristic cost f(n),

f(n) = g(n) + h(n), (5.1)

where n is the node under consideration. The term g(n) represents the cost of

taking the shortest path from the starting node to n, and h(n) is the heuris-

tic cost from the node n to the goal node. A* search can be implemented

more efficiently if the heuristic is admissible. It has to satisfy the following

constraint:

h(x) ≤ d(x, y) + h(y), (5.2)

where d(x, y) is the length of the edge connecting (x, y). The list OPEN is

implemented as a priority queue. In each iteration, we take the node at the

42



top of the list OPEN (it will have the least heuristic cost) and generate a list

of nodes the robot can reach subject to the planar pushing constraints. The

reachability set of the robot is constructed by computing the robot’s motion for

all the permissible control actions for a fixed time step. In our case, the radius

of curvature for the path of the robot is the control variable. The different

locations reached by the robot for different radius’s is shown in Figure 5.1.

Now, for each new node reached, we compute the heuristic cost and

add it to the list OPEN. If the node was already visited, the heuristic cost is

updated if changed. If the node was already visited and is in list CLOSED, the

node is ignored. After this step, the node at the top of list OPEN is erased and

added to list CLOSED. This process is repeated until the goal node appears

at the top of list OPEN.

It is important to note that we are trying to reach a goal neighborhood

and not the exact goal (which takes a lot of compute resources). The step

size should be such that it is not too big it will skip the goal neighborhood

and not too small such that the search tree is too large. We will design the

data structure such that, we store the parent node for each of the node visited.

Once we finish the iterative process above, we can simply trace back the parents

starting from the goal node and reaching the starting node. We will get the

shortest path in this process. A sample A* path is shown in figure 5.2 (with

safety margins from obstacles).

The A* star search algorithm has a time complexity ofO(bd) (depending

on the heuristic cost) where b is the branching factor and d is the depth of
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Figure 5.1: The reachability set of the robot (x,y co-ordinates) with the con-
straint of stable pushing. (Path step size is 0.1m)
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Figure 5.2: A* path from starting pose (green) to a goal pose (red) around
obstacles (black).
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the solution. The memory requirements are also very large depending on the

grid size and dimension of the configuration space. These space and time

requirements might make some planning problems computationally expensive

and not suitable for real time planning. One alternative is to use ARA* [16].

In the next section, we describe sampling based planning.

5.3 Rapidly Exploring Random Trees

In A* search we explored new nodes deterministically; i.e., we explored

the neighbors of the current node. In sampling based planning exploration is

probablistic. One such planning algorithm is Rapidly exploring Random Tree

(RRT), first proposed by LaValle and Kuffner [14]. Their approach converges

to a non-optimal solution with probability of 1. RRT* is an improvement [9]

and is globally asymptotically optimal for holonomic systems. Our problem

has non-holonomic constraints (e.g., we can’t move sideways). The RRT*

method was extended to non-holonomic systems by Karaman 2010 [10]. For

the implementation steps, we refer the reader to [10]. A sample path generated

using RRT to push a box into a C-shaped receptacle using a mobile robot is

shown in Figure 5.3.

5.4 Trajectory Tracking

We obtained a desired path from the planning process in the previous

sections and we want the robot to follow this path minimum deviation. There

are a lot of sophisticated algorithms proposed in the literature, see [8], [2],
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Figure 5.3: Path planned using RRT with a “C” shaped obstacle into which
we want to push the box.
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Figure 5.4: Robot’s current pose Pc and the reference pose Pr in trajectory
tracking. Source: [8]

[11]. The control proposed in [8] is Lyapunov stable. We can also estimate

the system parameters b (width of the robot) and Rwheel, as shown in [2]. In

this study, we are assuming that the measured values for b and Rwheel are

accurate. We will use a control scheme similar to the approach in [11]. We’ll

assume that the ideal pose of the robot is moving with a constant velocity

along the planned path. We have V = 0.15m/s and ω is computed using the

θ trajectory of the planned path. In the figure 5.4, we can see the robot’s

current pose Pc(t) and the desired pose Pr(t) at time t. It is advantageous to

compute the relative pose of Pr w.r.t. Pc; i.e., compute Pr(t) relative to the
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robot’s frame (XR, YR) centered at Pc, as shown in Figure 2.2. The relative

pose becomes the error that we need to minimize for the robot to follow the

path.
xe = (xr − xc)cosθc + (yr − yc)sinθc

ye = −(xr − xc)sinθc + (yr − yc)cosθc

θe = θr − θc

(5.3)

Now our goal is to have (xe, ye) and θe as close to 0 as possible. For that

purpose we use the following control law:

V = k1xe

ω = k2ye + k3θe
(5.4)

Here V and ω are the linear velocity and angular velocity inputs for the mobile

robot. k1 and k2 are positive. It can be demonstrated that the control law

results in having (0, 0) as a local attractor for the error dynamics (See appendix

of [11]). Experimental data demonstrating the trajectory tracking control law

described above is seen in Figures 6.3 and 6.4.
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Chapter 6

Pushing Experiments

The approach in [17] is mainly designed for open loop pushing and

it is the reason why we want to avoid slip between the slider and pusher.

This open loop approach although successfully implemented, has not been

tested at the limits (turns with low turning radius). Previous studies used

conservative estimates of friction coefficients and ensured a no slip condition

between the slider and pusher by having a huge factor of safety. Now, we have

computer vision systems which can be easily setup and they are capable of

providing high fidelity pose data [23], which can be used to test the system.

A computer vision system based on Apriltags was used to get high quality

feedback, which was used for trajectory tracking and visualizing pose data in

the pushing experiments. An overview of the full system is given in Figure.

6.1.

6.1 Validation of Minimum Turning Radius

We want to validate the minimum turning radius suggested by the

analysis in [17], shown in Figure 4.8.We measured the coefficient of friction

between the robot’s pushing interface and the box to be in the range of 1.5-2.
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Figure 6.2: Relative distance between the robot center and the object center
while pushing in circular path.

From figure 4.8, we can see that the minimum turning radius is 0.38m. This

is a conservative estimate (see [17]), which means that if we push the box in

a circular path, there will be slip at the pushing interface if the path radius

is less than 0.39m. To validate this, we pushed the box in circular paths of

varying diameters. In the figure 6.2, we can see that the relative distance

remains constant for all the path radii except for R=0.3m (ignoring the noise

from vision and ground roughness). This means contact slip starts occurring at

some R < 0.35m. Since the estimate of 0.39m as minimum turning radius (see
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Section 4.4.2) is conservative, the result shown in Figure 4.8 is experimentally

valid.

6.2 Box Pushing Task

Once we have validated the minimum turning radius result, we can plan

more complex paths for the box pushing task. Once we plan a path, we can

use the control law proposed in section 5.4 to follow the path. Since the path

planning is done with a minimum turning radius as 0.39m, we can be sure

that the object doesn’t slip at the pushing interface. Experimental data for a

pushing box along a planned path can be seen in figure 6.3.

In Figure 6.3, we can see that although there is initial disturbance, the

robot returns to the nominal path since we have a stabilizing control action.

This is more clearly illustrated in figure 6.4, the orientation of the box returns

to the nominal trajectory after an initial disturbance. This control scheme

for pushing is robust and in this study, we are only limited by the spatial

constraints imposed by the limited field of vision of the cameras. The data

from multiple pushing trial is shown in Figure 6.5 and the errors in trajectory

tracking are reported in Table 6.1.
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Figure 6.3: Path of the center point of the box while being pushed by the
robot along a planned path.
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Figure 6.4: Orientation of the box, while being pushed along the planned path
in figure 6.3.

Trial Maximum Spatial
Error

1 8.5cm
2 6cm
3 8.4cm
4 7.5cm
5 9.2cm

Table 6.1: Maximum errors in trajectory tracking in different trials.
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Figure 6.5: Paths of the center point of the box while being pushed by the
robot along a planned path during multiple trials.
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Chapter 7

Conclusion

In this study, we have successfully validated the stable pushing anal-

ysis in Lynch and Mason 1996 [17] by designing and conducting experiments

using a small mobile robot platform. We have used the analysis in [17] and

implemented path planning and control algorithms that run in real-time. In

[17], Dijkstra’s algorithm has been used for path planning, while we used A*

search and RRT* for planning which are more efficient in memory and time.

This system is able to successfully plan paths for a box pushing task

with arbitrary starting and ending poses (as long as a feasible path exists),

as demonstrated with results where trajectories of the mobile robot pushing a

box through planned paths are shown. Having object pose feedback helped us

to use the minimum turning radius possible for the system (frictional limit)

for path planning and perform successful trajectory tracking. Previous studies

[17] had safety margins for the minimum turning radius (which is a result of a

conservative estimate of coefficient of friction) so that they can ensure no slip

between robot and object in open loop trajectory tracking schemes.

The control policy in section 5.4 could be improved by applying Model

Predictive Control (MPC), which could potentially handle turns better than
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the simple proportional control implemented in this study. The proportional

control is “reactive” in nature; i.e., if there is a turn coming up in the path,

the yaw commands are given only after the robot actually enters the turn.

An MPC approach would use a look ahead horizon and would give control

inputs considering the future trajectory, leading to better trajectory tracking

performance.

Pushing with a mobile robot simplified the planar pushing problem

by constraining the feasible region of center of rotations. If we are instead

pushing with a bumper attached to a robotic arm, the planning becomes more

complex. Machine Learning algorithms might be more successful in those

problems. Reinforcement Learning algorithms [15] could be applied to learn

the box pushing task. Initially we can have the goal position fixed relative to

the starting position and develop a controller that handles disturbances better

than the control we have demonstrated in Section 5.4. The next step would be

to change the goal position relative to the initial position with a static obstacle

map.
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