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Conventional Anti-lock Braking Systems that are developed are
optimized to maintain directional stability of the vehicle while braking
under standard test conditions. The performance of such systems
degrades on adverse road conditions (loose gravel/ice/snowy conditions).
This thesis presents the idea of an Anti-lock Brake System controller,
which adapts to changes in road conditions. It uses fuzzy —rule based
algorithms to adapt to changes in surface condition. Simulation studies on
vehicle models with the modified ABS controller design were carried out
on different surface conditions and were proved to be more effective than
standard ABS designs. Experiments on a fully instrumented 1/5" scale car
were also performed on test ramp under different surface conditions to
validate the simulation results. A real time controller with associated data

acquisition devices was used as the control unit.
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Chapter 1: Introduction

Engineers in the automotive industry put a lot of effort in devising
systems which ensure safety in road vehicles. A typical passenger car has
a lot of features which ensure safety like ABS, traction control system,
airbags, energy absorbing steering columns, crumple zones, head
restraints and many other safety inventions [1]. “ABS” the acronym for
Antilock Braking System is designed to help the driver maintain steering
ability and avoid skidding while braking. ABS and Traction Control System
deal with the vehicle stability and handling. In recent years, engineers are
developing what is called as the “Intelligent Stability and Handling
System”. Intelligent stability and handling systems provide the driver with
greater control of the vehicle when loss of control is imminent. A
comparison chart showing the maijor features of these systems is shown in
Table1.1.

4 Intelligent
Traction Stability and
Wheel .
Control Handling
ABS
Systems
Prevents wheel lock-up under X X
many road conditions
Allows driver to maintain control X X
when brakes are fully applied
Sensors detect impending wheel X X
lock-up
Pumps the brakes like a driver
would, only much faster and X X

more effectively



Engages when the driver stomps
on the brake pedal

Prevents unwanted wheel spin in
low traction situations

Adjusts vehicle acceleration
when driving in low-traction
situations, such as rain or snow

Helps drivers accelerate safely

Detects a vehicle's position in
relation to steering input with use
of sensors

Monitors and compares a
vehicle's movement with the
direction a driver is steering

Automatically brakes specific
wheels, allowing a driver to
maintain steering control during a
skid

Table 1.1 Comparison Table of Vehicle Safety Systems [2]

Need for Antilock Braking System

Antilock braking capabilities in vehicles form the backbone for the

research carried out as part of this thesis. During emergency braking, the

driver wants to stop and steer the car at the same time. Antilock brake

systems help the driver to maintain vehicle stability under emergency

braking conditions.



Figure1.1 Directional Control under Heavy Braking [3]

Dynamics of Braking

When a brake torque (braking effort) is applied to a rotating wheel it
may cause the tire to deform and slide. This causes the radial component
of spin velocity of the tire to differ from its linear velocity. The ratio of the
differential velocity to the linear velocity is termed as slip ratio. It is usually
expressed as a percentage. It is used to characterize braking

performance.

Slip Ratio = (1 — ®R/V)* 100%;
® — spin velocity of the wheel
R — radius of the wheel

V — linear velocity of the wheel.



When slip ratio is 100%, then the condition is termed as “wheel lockup”.
The following figure shows how the steering ability of the vehicle is greatly

reduced when the wheel tends to lock up.

DESIRABLE RAMGE

Steering  Ability is

related to the cornering force

BRAKING EFFORT COEFFICIENT - . .
coefficient.  Braking  ability

depends upon the braking
CORMERING FORCE COEFFISIENT -
effort coefficient.

BRAKING EFFORT COEFFICIENT
CORMERING FORCE COEFFICIENT

Q 20 40 60 80 100 %
FREE SKID LOCKED
ROLLING WHEEL

Figure 1.2 Braking/ Cornering Force Coefficients Vs Slip [4]

The braking and steering ability of the vehicle is also limited by the
amount of traction the tire can generate. The traction that the tire can
generate depends upon the normal force on the tire and the friction
(braking effort coefficient) between the tire and the road surface. The
friction depends on a lot of factors like the slip ratio, the type of tire, tire
tread, tire pressure, road conditions, etc. A set of curves (shown below)
illustrates the relationship between friction, slip ratio and different road

surfaces for a given tire.
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Figure 1.3 Tire-Surface friction characteristics [5]

Antilock braking system operates in such a way so that it does not
allow the wheels to get locked and maintains the slip ratio so that friction
between tire and the road is kept at an optimal maximum by controlling the

brake torque applied to the wheels.

Modules of ABS

A typical Antilock Brake System consists of wheel sensors,
electronic control unit, brake actuator control unit and the brake actuator.
Some of the advanced system also consists of an accelerometer to
determine the deceleration of the vehicle. The following figure shows the

basic components of an antilock braking system.



A.B.S. or Anti lock Brake Layout
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Figure 1.4 Modules of Antilock Brake System [6]

The wheel sensor feeds the wheel spin velocity to the electronic
control unit, which based on some underlying control approach would give
an output signal to the brake actuator control unit. The brake actuator
control unit then controls the brake actuator based on the output from the
electronic control unit. The control logic is based on the objective to keep
the wheels from getting locked up and to maintain the traction between the
tire and road surface at an optimal maximum. The task of keeping the
wheels operating at maximum traction is complicated given that the

friction-slip curve changes with vehicle, tire and road changes. The above



figure (figure 1.3) shows the friction-slip curves due to changes in road
conditions alone. The block diagram (figure 1.5) shows the block
representation of an antilock brake system. It shows the basic functionality
of the various components in ABS systems and also shows the

data/information flow.

Friction Wheel

Meter Sensor Accelerometer
RFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESR lllllllllllllllllllllll.
E Tire-Road .
. Interaction -
. Database .
: ¢ ¢ v v :
= .| Road System o Control P Velocity .
= | Identification g Logic X Estimator | =
: Electronig Control
Unit .

A

Brake Actuator
Control Unit

A
Brake Actuators

Figure 1.5 Block Representation of an Anti-lock Brake System



Research in ABS
The research that is been carried out in anti-lock brake systems

cover a board range of issues and challenges. The following layout shows

a sampling of the anti-lock brake research.

Anti-lock
Brake System
Research
Automobile Y ) Control Tire-Road
Component Velocity Algorithm Interaction
Research Estimation Research Research
. Vo — —
Brakes, . .
Actuators, Jiang, et al. [8] Fr_lctlo_n Road_Syst_em
Sensors Estimation Identification
Heinz [7] Pacejka et. al.(1987) [9]
Kyongsu Yi et al. (1998)
1100

*

Sekine, et.al [12]

A A 4 A 4 Y
Sliding Mode Neural Nets/Fuzzy Nonlinear Hybrid
Control Logic PID Controller
l - - -
Tseng, et. al (1995) [14] Jiang, et al (2001) Johansen, et.al (2001)
Kachroo (1999) [13] Kevin. et. al (1993) [15] 161 171
N— N~— N~—

Figure 1.6 Sampling of ABS Research



ABS control is a highly nonlinear control problem due to the
complicated relationship between friction and slip (figure 1.3). Another
impediment in this control problem is that the linear velocity of the wheel is
not directly measurable and it has to be estimated. Friction between the
road and tire is also not readily measurable or might need complicated
sensors. Researchers have employed various control approaches to
tackle this problem. A sampling of the research done is shown in the
above figure (figure 1.6). One of technology that has been applied in the
various aspects of ABS control is soft computing. The following paragraph

gives a brief idea of soft computing and how it is employed in ABS control.

Soft Computing - Introduction

Physical systems described by multiple variables and multiple
parameter models having nonlinear behavior, frequently occur in the fields
of physics, engineering, technical applications and other sciences. The
conventional approaches for understanding and predicting the behavior of
such systems based on analytical techniques can prove to be very
difficult, even at the initial stages of establishing an appropriate
mathematical model. The computational environment used in such an
analytical approach is perhaps too inflexible in order to cope with the
intricacy and the complexity of the real world physical systems. It turns out
that in dealing with such systems, one has to face a high degree of
uncertainty and tolerate imprecision. Trying to increase precision can be

very costly.



Prof. Lotfi A. Zadeh created in 1965 a separate field of
computational environment when he came up with his “fuzzy set” concept
[18] to deal with uncertainty and imprecision which is common to real
world physical systems. This ushered in a new field of computing - “soft
computing”. Soft computing differs from conventional (hard) computing in
that, unlike hard computing, it is tolerant of imprecision, uncertainty, partial
truth, and approximation. In effect, the role model for soft computing is the
human mind. The guiding principle of soft computing is: Exploit the
tolerance for imprecision, uncertainty, partial truth, and approximation to

achieve tractability, robustness and low solution cost [19].

At this juncture, the principal constituents of Soft Computing are
Fuzzy Logic, Neural Computing, Evolutionary Computation and
Probabilistic Reasoning, with the latter subsuming belief networks, chaos
theory and parts of learning theory. The principal contribution of fuzzy
logic relates to its provision of a foundation for approximate reasoning,
while neural network theory provides an effective methodology for learning
from examples, evolutionary computation uses natural evolution principles
and probabilistic reasoning systems furnish computationally effective
techniques for representing and propagating probabilities and beliefs in

complex inference networks.

The soft computing tools are complimentary in nature. In many
cases a problem is solved most effectively by using the soft computing
tools in combination rather than exclusively. Soft computing techniques
have found wide acceptance in intelligent control systems and

mechatronics [20, 21]. Some of the applications include industrial process

10



control, machine vision, consumer appliances, automotive, etc. Soft
computing represents a significant paradigm shift in the objective of
computing - a shift which reflects the fact that the human mind, unlike
present day computers, possesses a remarkable ability to store and
process information which is pervasively imprecise and uncertain. (For

more information, look at references [20, 21]).

Soft computing tools like fuzzy logic and neural networks have
been used to tackle the ABS control problem. The layout (figure 1.7)

shows a sampling of the research done in this area.

Thesis Overview
Now that a brief introduction of some of the main concepts in the
research work has been made, we will take a look at the upcoming

chapters in this thesis.

Chapter 1, which is the introductory chapter briefly described the
dynamics of antilock braking, modules in the antilock brake system,
provides a brief look at the research into antilock brake system and soft
computing, and summarizes where soft computing is employed in ABS

systems.

Chapter 2 focuses on the soft computing tools used in the controller
of an antilock brake system, and sets up the objective for this thesis. It
discusses the merits and shortcomings of using such tools in controllers
for antilock brake systems. It also compares other conventional controllers

to soft computing controllers and attempts to draw an advantage for the

11



soft computing controllers. It also looks at the scalability issues when

implementing a soft computing controller on a scaled vehicle.

Chapter 3 briefly goes over the development of a model for the antilock
brake system for the test vehicle. It also explains how the fuzzy controller
is developed using built-in Simulink tools. Results from the simulation for

the model are also detailed.

Chapter 4 explains the experimental setup for testing the controller.
It also explains the architecture employed to achieve real time control.

Some of the results from the experimentation are outlined.

Chapter 5 concludes the thesis by discussing the results and
drawing meaningful conclusions from the research conducted. It presents
some suggestions for future work and discusses the merits and

shortcoming of this work.

Thesis Contribution/ Focus

The research work done as part of this thesis focuses primarily on
the controller aspect of ABS control. Given the complicated nature of ABS
control, most conventional controllers are optimized to operate under
standard test conditions. The performance degrades on adverse road
conditions [15]. An adaptive fuzzy logic based controller is developed to
adapt to changes in road conditions. It is implemented on a 1/5™ scale
model vehicle which has been instrumented for ABS control. The platform

used for implementation is a real time engine. The implementation on a

12



scaled model vehicle provides a platform for investigating scalability

issues in using soft computing tools in antilock brake systems. The thesis

also provides an overview of soft computing technology and how it finds

application in ABS control.
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Figure 1.7 Soft Computing Research in ABS
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Chapter 2: Soft Computing in ABS

Introduction

As mentioned in the introductory chapter, the antilock brake system
controllers have to cope with the complex nature of control dealing with
imprecision and uncertainty. ABS controllers are optimized for
performance on standard test conditions and due to the nonlinear
characteristics of the system’s behavior; its performance degrades on
adverse road conditions. Hence it has to adapt to the changes in road
conditions. This chapter explores the soft computing tools especially fuzzy

logic and its utility in solving this adaptability issue.

The motivation for the research stems from the fact that the
adaptability issues have been tackled in theory (simulation) using soft
computing tools, but there is little or no open literature that deals with the
actual implementation. The research is also motivated with the
development of scaled test platform which helps investigate the scalability

issues while implementing a fuzzy logic adaptive ABS controller.

Adaptability Issues — Fuzzy Logic Approach

Now as mentioned in the introductory chapter, soft computing tools
like fuzzy logic, neural networks and genetic algorithms have been
employed to tackle complexity in a broad range of real world physical
systems. The physical system of focus in the research is the antilock
brake system where soft computing tools have found use (as in figure
1.7). The components in a typical antilock brake system are shown in

figure 2.1. It shows the components or the information required by the

14



ABS controller to adapt to changes in surface conditions. As shown, it
requires information on the friction characteristics of the road surface. Now
there are theoretical and experimental methods available to measure
friction between a tire and a particular road surface. To be able provide
precise information on the frictional characteristics, the method or
algorithm requires complicated and costly sensors. Alternatively friction
could be estimated based on the wheel speed data [10]. The other
possible methods are to look at the tire models and estimate friction based

on the tire dynamics [9].

Electronic Control
Unit

Friction Wheel

Meter Sensor Accelerometer
RFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESR IIIIIIIIIIIIIIIIIIIIIII.
E Tire-Road .
. Interaction -
. Database .
: ¢ ¢ v v :
= .| Road System o Control P Velocity .
= | Identification g Logic X Estimator | =
: .

A

Brake Actuator
Control Unit

A
Brake Actuators

Figure 2.1 Components essential to tackle adaptability in an ABS system
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The other variable that is crucial for the antilock brake controller is
the vehicle speed. Now, typically there is no direct measurement of the
linear vehicle speed possible. It has to be estimated from wheel speed
data [8] or an accelerometer is used to measure the deceleration and then
the deceleration time history is numerically integrated over time to get
velocity [27]. With this data/information, the control unit with a road surface
identification system applies the appropriate brake torque to adapt to road
surface variations. Now this process as evident requires some
complicated and costly sensors to get the precise information that could
be used by the control unit to apply the appropriate brake torque. To be

precise and certain, it is expensive.

Fuzzy logic on the other hand inadvertently deals with the
imprecision and uncertainty to bring about optimal control. Before the
advent of antilock brake system in cars, humans did encounter situations
during emergency braking where they had to achieve controllability. The
manual approach there was to pump the brakes during an emergency
situation rather than flooring the brake pedal. The frequency and the
magnitude of the pumping action were determined by the human driver
based on the sensory feedback the human body received during the

emergency braking.

16
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Figure 2.2 Simplified Fuzzy Logic ABS System

Now in the fuzzy logic approach, we take this human knowledge or
rather the art by which a human controls the brake during an emergency
situation and convert them into “if —then” rules in a computational
environment. The complete knowledge of the control process can be
deciphered into “if-then” rules which form the back bone for a fuzzy logic
based controller. Now the information required by this fuzzy logic based
controller is just the wheel speed data. As shown in figure 2.2, the
complexity involving the sensors in an antilock brake system is greatly

reduced by embedding the knowledge into fuzzy “if-then” rules. This is one

17



of the prime motivations for using soft computing tools especially fuzzy

logic in a control situation like ABS.

Before we divulge into the rest of the chapter, we will take a look at the

fuzzy logic process itself. The fuzzy logic approach has three main

components to it.

1.

Receiving of one, or a large number, of measurement or other
assessment of conditions existing in some system we wish to
analyze or control in fuzzy form— Fuzzification

Processing all these inputs according to human based, fuzzy "If-
Then" rules, which can be expressed in plain language words, in
combination with traditional non-fuzzy processing — Fuzzy ”if-
then” rules

Averaging and weighting the resulting outputs from all the individual
rules into one single output decision or signal which decides what
to do or tells a controlled system what to do. The output signal
eventually arrived at is a precise appearing, defuzzified, "crisp"

value — Defuzzification [28]

The following figure describes the components in a fuzzy logic system

and also shows the interaction with the physical realm.

18
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Figure 2.3 Fuzzy Logic System — interaction with the Physical Realm

In our case, the crisp input would be the wheel speed and the crisp
output would be the brake torque. The components “fuzzification, fuzzy ‘if-
then’ rules and defuzzification” together form the fuzzy logic controller for
the antilock brake systems. Thus we see how fuzzy logic finds its use in
the antilock brake systems. The adaptability issue is tackled by employing
two fuzzy “if-then” rule sets, which will be discussed in the next chapter.
The fuzzy logic controller along with a model of the vehicle is simulated

under different road conditions to verify that the fuzzy logic controller
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indeed can be used to adapt to variations in surface conditions. The

results of such a simulation are outlined in the next chapter.

Implementation and Scalability Issues

The other motivating factor in the research was to look at the
implementation of the adaptive fuzzy logic controller on a vehicle. The
adaptive fuzzy logic controller mentioned here is an ABS fuzzy logic
controller based on fuzzy “if-then” rules which adapts to variations in
surface conditions. Though there have been theoretical studies conducted
in addressing the problem of adaptability of an ABS controller using fuzzy
logic [14, 15, 26], no implementation of the proposed theoretical studies
have appeared in open literature. It could be very well assumed that
vehicle manufacturers and ABS component manufacturers (e.g. Bosch)
might have internally used fuzzy logic to practically implement an adaptive
fuzzy logic ABS controller without publishing the details. Implementation of
a simple (non adaptive) fuzzy logic ABS controller has been attempted as
in [29].

Now the question arises “why haven’t the adaptive fuzzy logic
controllers based on the theoretical studies [14, 15 and 26] not been
implemented?” There might be quite a number of reasons for this. One
might be the non- availability of a test vehicle and test bed. The other
reason might be the difficulty in converting complicated adaptive fuzzy
logic controller models into code to be used in a microcontroller for control.
The research work as part of the thesis attempts to implement an adaptive

fuzzy logic controller on a scaled vehicle. The attempt is motivated based
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on two facts. One is the availability of a scaled test platform with a fully
instrumented test vehicle and real time controller [30]. The other fact is
the environment for developing the adaptive fuzzy controller and the ease

in converting it into code for use in a real-time controller.

The test platform is as shown in figure 2.4. The main components
are the test track, instrumented test vehicle and the real-time controller.
The test track is made up of wooden platforms fitted together to provide a
ramp and a flat bed for testing purposes. The test vehicle is a 1/5" scale
radio control vehicle made by FG Modellsport. The instrumentation on the
radio control vehicle included rotary encoders for the front right and left
wheel and also for the rear axle. The front encoders give the wheel speed
necessary for the controller. The encoder on the rear axle gives a speed
value which is assumed to give the vehicle speed, since brakes are not
applied on rear wheels. The brakes for the vehicle on the front wheels are
cable actuated brake systems. The cables are actuated individually by
servo motors which receive brake signals from the controller. The real-
time controller is a National Instruments RT® engine with necessary data
acquisition and control boards. More details on the test platform are given

by Al-Sharif [30] and also found in the “experimentation” chapter.
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Figure 2.4 Test Platform — Test Track, Test Vehicle and Real-Time
Controller [30]

The programming environment used for developing the fuzzy logic
controller model is the MATLAB ® environment. The fuzzy logic toolbox
and Simulink are used to develop an adaptive fuzzy ABS model and to
simulate it under different road conditions. Once the fuzzy logic controller
is developed and test under the simulated environment, it is then exported
to a form where it could be implemented in real physical environment. The
platform used for the physical environment is the graphical programming
environment — LabVIEW Real Time. The Simulink Interface Toolkit is used
from National Instruments to convert the Simulink model into a virtual
instrument (VI), which is a subprogram in LabVIEW. Once the model is

converted into a VI, it is used with other data acquisition and control Vis to
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run ABS tests. The following figure (figure 2.5) shows the interaction

between the simulation environment and the physical environment.

Simulation Results

| @/~

Simulation Environment Physical Environment -
— Development Platform Development Platform

=L

Test Platform

]

Test Results

Figure 2.5 Block Representation — Interaction between the Simulation and

Physical Environment

A more detailed block representation of the development platforms

are shown below (Figure 2.6)
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Thus we see that an adaptive fuzzy logic ABS controller model
developed in a virtual environment can be ported with minor modifications
into a physical environment where it is tested and evaluated. This
implementation strategy provides the basis for the virtual prototyping of an

adaptive fuzzy logic controller.

The scaled test environment provides an ideal platform in the
design of the fuzzy logic algorithms. During the design process, fuzzy logic
algorithms are tuned to get the optimal rules and parameters. The
implementation provides a platform to tune the rules and parameters in
the physical environment on a scaled vehicle. Once these rules and
parameters are tuned, they can be ported back into the simulation
environment where the fuzzy logic controller can be tested on full scale
vehicle models. This underscores the importance of using a scaled vehicle

platform in design and testing of fuzzy logic controllers.

On the other hand, the fuzzy logic controllers can be tuned in the
simulation environment with a scaled model or a full scale model and then
ported back to the implementation platform where they are tested on the
scaled vehicle. The consistency of the results would indicate that this
method of using a scaled test platform in the design process of the fuzzy
logic controller is robust. The following figure shows the two approaches in
the design of the fuzzy logic controller and how the scaled test platform

helps in the design process.
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In this research work, the first approach is taken up ideally because

in the simulation environment it is more convenient to change the vehicle
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models from full scale to 1/5" scale model and also convenient to change
the road surface profile these vehicles encounter. The design of the fuzzy
logic controller is done with the 1/5™ scale model in the simulation
environment. The model and simulation results are discussed in the next
chapter. Once the fuzzy logic controller is tuned, it is implemented on the
1/5" scale vehicle and experiments are conducted. The details of the
experiments and corresponding results are discussed in the
“‘experimentation” chapter. The correlation between the experiment results

and the simulation results are also discussed.

Summary

Thus this chapter briefly explained the motivation for the research
work undertaken as part of this thesis. It drew the reason for using fuzzy
logic for the adaptive ABS control and also explained the implementation

strategy using a scaled test platform.
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Chapter 3: Fuzzy Model and Simulation

Introduction

The “Fuzzy Model and Simulation” chapter briefly explains the
steps involved in the construction of the fuzzy logic ABS controller. The
process is usually referred to as fuzzy modeling. Once the fuzzy logic ABS
controller is constructed, it is then verified with a vehicle model. In the
research work, the fuzzy logic ABS controller was first simulated using a
longitudinal model, later it was simulated with vehicle model of 1/5™ scale
vehicle. The process of verification with the vehicle model involves tuning
the fuzzy logic controller to find the optimal parameters and rules. The
simulation results from the simulation runs with the two vehicle models are
also discussed. Different road surfaces were used to verify the adaptability
nature of the fuzzy logic ABS controller. The vehicle (brake system in
particular) simulation is also done with some standard controllers to

compare the results with the fuzzy logic ABS controller.

Fuzzy Modeling

The fuzzy logic process was explained in brief in the previous
chapter. Here we will try to go a little further to help us understand the
construction of a fuzzy logic ABS controller. In the literature different
names like fuzzy rule based system, fuzzy inference system, fuzzy expert
system, fuzzy model, fuzzy associative memory, fuzzy logic controller or
simply fuzzy systems are given to systems where concepts of fuzzy logic

are applied.
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As described in the previous chapter, there are three main
components (fuzzifier, “if-then rules” and defuzzifier) in a fuzzy logic
system. These three components together are sometime referred to as the
fuzzy inference system (FIS). It is a computing framework based on the
concepts of fuzzy sets theory, fuzzy “if-then” rules and fuzzy reasoning.
The fuzzy inference system attempts to implement a nonlinear mapping of
the inputs and outputs. This mapping is accomplished by a number of

fuzzy “if-then” rules, each of which describes the local behavior of the

mapping.

Fuzzy Sets and Membership Functions [21]
If X is a collection of objects denoted generically by x, then a fuzzy

set A in X is defined as a set of ordered pairs:

A ={(x, pa(x)) [ x in X}
ua(x) is called the membership function (MF) of x in A. The membership

function maps each element of X to a value in the continuous range (0,1).

The definition of the fuzzy set is an extension of the classical set in
which the characteristics function is permitted to have continuous values
between 0 and 1. If the value of the membership function pa(x) is
restricted to either 0 or 1, then A would be reduced to a classical set and
ua(x) would be the characteristic function of A. As in classical set, the
fuzzy set also has operations (like Union, Intersection, Complement) and

the operators are referred to as fuzzy operators.
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There are various classes of the membership functions
(parameterized functions), which play an important role in fuzzy systems.
Some of them are triangular MF, trapezoidal MF, gaussian MF, bell MF,
sigmoidal MF, etc. Membership functions can be either one-dimensional
or two-dimensional depending upon the application. The membership

functions are shown in figure 3.1.
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Figure 3.1 Different Membership Functions from MathWorks
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Fuzzy “if-then” rules
A fuzzy “if-then” rule (or fuzzy rule, fuzzy implication, fuzzy

conditional statement) assumes the form

If x is Atheny is B;

where A and B are linguistic values defined by fuzzy sets on the universes
of discourse X and Y, respectively. The “x is A” is referred to as
antecedent or premise, while “y is B” is referred to as the consequence or
conclusion.

Ex: if pressure is high then volume is small

Fuzzy Reasoning

Fuzzy reasoning also called as approximate reasoning is an
inference procedure used to derive conclusions from a set of fuzzy “if-
then” rules and one or more conditions. There two approaches in fuzzy
reasoning are the “max-min composition” and the “max-product
composition”. Let us take a look at some example fuzzy “if-then” rules to

understand the two approaches.

Ex: If ‘service’ is poor AND ‘food’ is rancid THEN ‘tip’ = cheap.

If ‘service’ is poor OR ‘food’ is moderate THEN ‘tip’ = moderate

31



Implication
Method (min)

‘tip’ = cheap

I
!
!
1
1
1
1
I
I
J
!
1

‘service’ is OR ‘food’is moderate THEN ‘tip’ = moderate
- Aggregation
When there are two antecedent in the fuzzy rule Method
and the operator is an AND, then “min or product” max)

method is used.

When the operator is an OR, then “max or probor”
method is used.

Figure 3.2 Example for fuzzy reasoning approaches

When the implication method is ‘min’ and the aggregation method
is ‘max’, the fuzzy reasoning approach is called ‘max-min approach’. On
the other hand if the implication method is ‘prod’, then the approach is
called ‘max-prod approach’. When the “min” (minimum) function is used
for the implication method, it truncates the output fuzzy set and when the

‘prod” (product) function is used, it scales the output fuzzy set. The
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following reference [21] gives more information on these fundamental
concepts (fuzzy sets, membership functions, fuzzy rules, fuzzy reasoning,

etc).

Fuzzy Inference System
The fuzzy inference system utilizes the above mentioned fuzzy
logic concepts while implementing a nonlinear mapping of the inputs and
outputs. The construction of the fuzzy inference system is referred to as
fuzzy modeling. Conceptually, fuzzy modeling can be pursued in two
stages [21]. The two stages being
- identification of surface structure; loosely trying to structure the
knowledge available on the target system (process to control),
taking advantage of the domain knowledge
- identification of a deep structure; refining the surface structure
with help of numerical data or tuning process to get to the

optimal parameters

The first stage includes the following tasks:
1. Selecting relevant input and output variables
2. Choose a specific type of fuzzy inference system model
3. Determine the number of linguistic terms associated with each input
and output variables.

4. Design a collection of fuzzy “if-then” rules.

There are three most common types of fuzzy inference systems. The

main difference between the three approaches is the way in which a crisp
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values is defuzzified from the given set of fuzzy rules and weights for each
rule. The three types are

1. Mamdani fuzzy inference model

2. Sugeno fuzzy inference model

3. Tsukamoto fuzzy inference model

More details on these three fuzzy inference models and its characteristics
are given in reference [21]. For the construction of the fuzzy logic ABS

controller we will use the mamdani fuzzy inference model.

The identification of the deep structure, which is the second stage in
the fuzzy modeling process outlined in [21] has the following tasks.
1. Choose an appropriate family of parameterized membership
functions
2. Determine the parameters of the membership functions used in the
rule base
3. Refine the parameters of the membership function using

optimization techniques.

The second stage in the fuzzy modeling process explains the process
of selection of the membership functions and its parameters. The
parameters are refined by tuning the fuzzy model. The tuning is done with
the help of simulations with the vehicle models. Though the two stages
outline what is involved in the fuzzy modeling process, each development
environments have their unique steps in constructing the fuzzy model. The
following paragraphs explain the steps in constructing the fuzzy inference

system in the MATLAB environment.
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The above figure shows the steps involved in the construction of the

fuzzy inference system in the MATLAB environment. The five steps

involved are

1.

Fuzzify Inputs:

The first step involved in the processes is to convert the crisp inputs
into fuzzy inputs by determining the degree to which they belong to
each of the appropriate fuzzy sets via membership functions. The
output of this process is the fuzzy degree of membership in the

qualifying linguistic set (value between 0 and 1).

. Apply Fuzzy Operator:

Once the inputs are fuzzified, we know the degree to which each
part of the antecedent of a fuzzy rule has been satisfied. If a given
fuzzy rule has more than one antecedent, then the fuzzy operator
(generally AND, OR) is applied to the membership values of the
fuzzified input variables. At the end of this process we get a
cumulative number which indicates the fuzzy degree of

membership for that particular rule.

Apply Implication Method:

Before applying the implication method of each of the fuzzy rule,
the output from the previous step is scaled based on the weight of
that particular rule. Typically the weights of the rules are 1, but at
times to indicate the importance of one rule of the other, each rule
might be given a different weight. A consequent in a fuzzy rule is a

fuzzy set represented by a membership function. The consequent
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is reshaped using a function (usually a single number) associated
with the antecedent in the implication process. The input for the
implication process is the single number given by the antecedent,
and the output is a fuzzy set. The two methods “min” and “prod” are
supported for the implication process. The “min” (minimum)
truncates the output fuzzy set, and the “prod” (product) scales the
output fuzzy set.
4. Aggregate all outputs:

Now we have output fuzzy sets (truncated or scaled) for each of the
fuzzy rule in the fuzzy inference system. To make a decision we
need to combines these fuzzy sets. This is process is referred to as
aggregation. The input to the aggregation process is the individual
output fuzzy sets, the output being a one fuzzy output set for each
output variable. Since the aggregation process is cumulative, any of
the following methods [max (maximum), sum and probor
(probabilistic OR)] could be used.

5. Defuzzify:
The input to this process is aggregate fuzzy set and the output is a
single number for each output variable. The centroid, bisector,
middle of maximum, largest of maximum and smallest of maximum

could be used as defuzzification method.
The above figure gives an overall picture in the construction of

fuzzy inference system. For more information the appropriate MATLAB

functions and GUIs involved in the construction of the fuzzy inference

37



system (FIS), please refer to the MATLAB Fuzzy Logic Toolkit Help Guide
[31].

One Degree of Freedom (Longitudinal) Model

Now that we have sufficiently looked at the fuzzy logic concepts
and steps involved in the construction of a fuzzy inference system in the
MATLAB environment, let us focus on the vehicle models used to tune
and verify the FIS. The first model taken up in the research work was the
‘longitudinal model’. The reason being the longitudinal model in essences
captures the dynamics of braking and is a good model to test the
controller. Also as part of their example programs, MathWorks had
included a simulation of a “bang-bang” ABS controller that works with the

longitudinal model.

The bond graph methodology was used to model the physical
system involved. The bond graph tool, an energy-based technique for
modeling physical systems, was invented by Henry Paynter [32]. The
modeling process is intuitive and the state equations can be deduced by
looking at the bond graph [33]. The bond graph representation of the
longitudinal model showing the dynamics of the brake system is shown in

figure 3.4.

The longitudinal model is presented here to explain the dynamics of
the tire during braking. The ‘controller’, which supplies the braking torque
‘Tb’, is modeled as a ‘modulated resistor’, which is being controlled, by the

slip velocity and the type of tire-surface interaction so as to achieve the
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prime function of an anti-lock brake system. The ‘tire-surface interaction’ is
also modeled as a ‘modulated resistor, modulated based on surface

friction (as function of slip velocity) shown in figure 3.5.

Bond Graph Representation of the Dynamics of Brake Systems

I m

pdot
1 J
< 1v
hdot Fb =mu*Fn;
r Fn=m"g/4
To Modulated based on surface friction
MR . pdot = Fb;
Modulated by vdot = pdot/m;
slip velocity Tb — Braking Torque
hdot=r*Fb - Tb Fb — Tire torque
wdot = hdot/J; Fn — Normal Force
v —vebhicle velocity
20-5im3.2 Vi apP 2001 .
sim3.2 Viewer (c) W - Wheel Velocity
r - radius of the wheel

Figure 3.4 Bond Graph — Longitudinal Model (Dynamics of Braking)
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Figure 3.5 Representative graphs showing the friction- slip characteristics

[34]

The following figure (figure 3.6) shows the block representation of
the anti-lock brake system. The figure shows the interaction between the
vehicle dynamics, wheel dynamics, tire-road surface dynamics and the
controller. The controller would take in a slip value and the output of the

controller is the braking torque which is applied to the wheel to bring the

vehicle to a halt.
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Figure 3.6 Block Representation showing the dynamics of an anti-lock

brake system

Bang- Bang Controller

Before constructing the fuzzy logic controller to work with the
longitudinal model, simulation runs were carried out with a bang-bang
controller. The bang-bang controller is devised around the fact that the tire
friction is high around the 20% slip value. The bang- bang controller is
basically an “on/off” type controller, where the brake torque is applied
when the slip value is off the target and vice versa. The simulation is
performed in Simulink, a simulation toolbox in MATLAB. The following
figure (figure 3.7) shows the Simulink block diagram for a bang-bang
controller with the longitudinal model (developed by the MathWorks as a

demo).
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Figure 3.7 ABS Braking Model with bang-bang controller from MathWorks.

The simulation results for simulation run with dry concrete as the

road surface profile (figure 3.8) are shown in figure 3.9.
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Figure 3.9 Simulation Results for bang-bang controller

Fuzzy Logic Controller

One of the major objectives in the research work was to construct
an adaptive fuzzy logic controller which could be implemented on a 1/5"
scale model vehicle. The logical step towards that objective was to

construct a fuzzy logic controller to work with a longitudinal model and run
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some simulations. The crisp input would be the slip value and the output
from the fuzzy logic controller would be the brake torque. The following
figure (figure 3.10) shows a Simulink block diagram for the ABS braking
model with the fuzzy logic controller. The membership functions of the
input and output variables, the fuzzy “if-then” rules, and the methods
employed and the fuzzy surface associated with the fuzzy logic controller

is shown in Appendix A [Fuzzy Logic Controller — Longitudinal Vehicle
Model].
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Figure 3.10 ABS Braking Model with fuzzy logic controller

The simulation results for simulation run with dry concrete as the
road surface profile (figure 3.8) are shown in figure 3.11.
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Figure 3.11 Simulation Results for fuzzy logic controller

Comparison of the Controllers

There are two significant points to note from the simulation results.
One is that the stopping distance is lower with a fuzzy logic controller than
the bang-bang controller. The other being the wheel velocity is better
controlled with the fuzzy logic controller. The variation in slip during the
control process is minimal in the case of the fuzzy controller. This shows
the fuzzy logic controller is ideally suited for the ABS systems, where

better stopping distance and better controllability are its main aspects.

One of the other desirable features is that the fuzzy logic controller
constructed adapt to different surface conditions. Now when the simulation
was run with different road surfaces (like wet and ice), the fuzzy logic
controller would not adapt directly, one had to manually tweak the
parameters to make it work. The next step was to construct a nonlinear

fuzzy logic controller with gain-scheduling which would work with different
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road surfaces. Now instead of making it work with the longitudinal model,
it was decided to make it work with the 1/5" scale model vehicle (available
for implementation), so once the fuzzy logic controller is constructed it

could be ported to the real physical system.

1/5" Scale Vehicle Model

The base of the physical system for the 1/5™ scale vehicle model
and the longitudinal model is the same. Both the models deal with vehicle
dynamics, wheel dynamics, tire-road surface dynamics and the controller
dynamics. The physical components in each of these subsystems vary
from one vehicle model to another. Modeling of the 1/5™ scale vehicle with
the vehicle dynamics, wheel dynamics, tire-road surface dynamics, the
controller and the brake system dynamics was developed by Al-Sharif
[30]. The model was verified to work with a bang-bang controller in that
earlier research work. Hence the model was adapted here with a slight
modification for testing the adaptive fuzzy logic controller. The Simulink

block diagram for the complete model is as follows (figure 3.12).

ABS Caontroller

Mommal force on brake pad  Wheel Slip —j Slip Brake Torque —p@—. “iltage  Mommnal Force

Woltage/Force
Car Road System Canstant BrakeSystam

Figure 3.12 Complete Simulink Representation of 1/5" Vehicle Model
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The modeling approach of the entire system was to divide it into
three subsystems, the vehicle-road system, brake system and the
controller. The vehicle-road system model, which deals with the vehicle
dynamics, wheel dynamics and tire-road surface dynamics, is similar to
the longitudinal model discussed earlier. The brake system models the
caliper brake system found on the 1/5™ scale vehicle. The controller model
is basically a set of logic statements (bang-bang controller) or fuzzy “if-
then” rules (fuzzy logic controller) that gives the required brake torque for
an input slip value. As the focus is on the construction of the fuzzy logic
controller, the individual subsystem bond graphs are not detailed here.
More information on the individual subsystem bond graphs and the
Simulink representations are described by Al-Sharif [30]. The complete
bond graph of the ABS system is shown below (figure 3.13). The dotted
line (information signals) which connects the vehicle-road system and the

brake system represents the ABS controller.
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Bang-Bang Controller Design

The bang-bang controller for the 1/5™ scale vehicle model follows

the logic statements
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If the wheel slip falls below a certain predetermined value, Ajow, the
control system sends a signal to the brake system to apply the
maximum brake force.

If the wheel slip goes above a predetermined value, Anigh, @ signal
to implement the minimum brake force is sent.

If the wheel slip is in the sweet spot region, the current signal is

maintained to hold the current brake force setting.

The sweet spot region is the region between the A and the Anign
values in the friction-slip characteristics curve. Ideally the bang-bang
controller tries to control brake torque so that the slip value stays in the
sweet spot region. The following figure (figure 3.14) shows the Simulink

representation of the controller.
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Figure 3.14 Simulink Model of Logic Used by Bang-Bang Controller [30]
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Earlier we have looked at the simulation where only one road-
surface profile was used in longitudinal model simulation. To verify the
adaptability of the controller, we have to vary the road-surface profile
during the simulation run. The bang-bang controller was tested with two
different road surfaces in a single simulation run. For the first 3 sec of the
simulation (t =< 3 sec), a representative mu-slip curve for ice was used
and for the rest of the simulation (t > 3sec) the representative curve for dry
concrete was used. A variable step stiff type solver (ode15s) was used for
integration purposes in the simulation. The following figure (figure 3.15)
shows the representative curves of the road-surface characteristics used

for the simulation. The simulation results are also shown in figure 3.16.
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Figure 3.15 Representative mu-slip characteristic curves.
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Figure 3.16 Simulation Results —Bang-Bang controller

Nonlinear Fuzzy Logic Controller — 1/5" scale vehicle model

The earlier fuzzy logic controller used in the longitudinal model was
not able to adapt to the different surfaces and the parameters were
tweaked manually to make it work. In the construction of the nonlinear
fuzzy logic controller for the 1/5™ scale vehicle model, a new approach
was used. In the earlier approach, the fuzzy logic controller looked only at
the slip values and the output was the gain constant which would be
multiplied by a weight term (constant) and a bias (constant) would be
added to that output. This approach would shift the brake torque based on
the weight and the bias terms. In the new approach, it was decided to look

at not just the current slip value but also at the previous slip value. The
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information on the previous states would in essence convey what is

happening when a certain brake torque is applied.

The approach was to look at two different fuzzy logic controllers or
rather two different fuzzy inference systems with different “if-then” rules
and input/ output variables so that the manual tweaking of the bias and
weight terms (of the previous fuzzy controller) can be replaced by a FIS.
The two FIS devised are the “gain fuzzy controller” and the “proportional
derivative (PD) fuzzy controller”. The gain fuzzy controller is similar to the
one used with the longitudinal model. It looks at the current slip values to
give an output which will essentially tell the system whether or not to
increase or decrease the output brake torque. The proportional derivative
fuzzy controller looks at two inputs; one is the current slip value and the
other is the difference in the current and previous slip values. The output
of the PD fuzzy controller is a constant which proportionate the gain
constant based on the fuzzy “if-then” rules. Both these fuzzy controller in
tandem provide the nonlinear nature required for the ABS controller to
adapt to the different road surfaces. The membership functions of the
input and output variables, the fuzzy “if-then” rules, and the methods
employed and the fuzzy surface associated with these fuzzy logic
controllers are shown in Appendix B [Fuzzy Logic Controller — 1/5" scale
vehicle model]. The following figure shows the Simulink representation of

the nonlinear fuzzy controller.
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Figure 3.17 Simulink representation of nonlinear fuzzy controller.
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Simulation runs were carried out to validate the adaptive nature of
the fuzzy logic controller. The road profile (two different road surfaces) as
described in the previous section (figure 3.15) was used in the simulation

runs. The results of the simulation are shown in the figure 3.18.
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Figure 3.18 Simulation Results — Nonlinear Fuzzy Logic Controller

Comparison and discussion of results

Looking at the results, it can be said that the fuzzy logic controller is
able to adapt to changes in road surfaces, while bang-bang controller
does not. Various road surface profiles were taken up in different
simulation runs and it proves that the constructed fuzzy logic controller is
adaptive to changes in the road surface conditions. It is interesting to note
that the stopping distance with the bang-bang controller is lower than the
fuzzy logic controller. The reason is because during the control process
with bang-bang controller, the wheel is locked for a good 2 seconds, which
typically slows the vehicle down significantly and hence lower the stopping
distance. However, a prime objective of the antilock brake system is to
maintain controllability at all times. As explained earlier, when the wheel is

locked, the control over the vehicle can be lost. Thus, we see that
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although the fuzzy logic controller takes a longer time to stop, it certainly
satisfies the prime objective of the antilock brake system. The other
interesting point is the variation of slip over time in the control process.
With the fuzzy logic controller, the variation of slip over time is very

minimal.

Overall, the simulation data validates the hypothesis — can a fuzzy
logic controller be able to adapt to changes in road-surface conditions?
Though the road-surface characteristic curves used in the simulation were
representative curves, it can be stated that fuzzy logic controller is
adaptive to changes in road-surface conditions in the simulation
environment. The next stage would be to implement this nonlinear fuzzy
logic controller in a real physical environment and further validate. The
following chapter explains experiments and results from implementing on
a 1/5" scale vehicle. These results would throw light on the validity of the
ABS model (vehicle-road system, brake system and controller model) and
also provide insights into the issues encountered while implementing a

fuzzy logic controller.
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Chapter 4: Experimentation

As described in the previous chapters, the implementation of the
fuzzy logic ABS controller is done on a scaled test platform. The test
platform consists of a test track, test vehicle and a real-time controller with
associated signal conditioning and data acquisition hardware. The test
platform is the hardware component of the test setup. The software
component is LabVIEW Real Time ® (RT), a graphical programming
language as mentioned in the previous chapters. The data acquisition and
control software is programmed using National Instruments' (NI) LabVIEW
RT and the software is run on the real-time controller to be able to achieve
deterministic real-time ABS control. The real-time control issues are

discussed in more detail in [30].

Hardware

The test track has a ramp to accelerate the vehicle and a flat bed
where the vehicle decelerates due to the application of brake according to
the control algorithm. The unique feature with this arrangement is that the
flat bed could be replaced with different surfaces.

The test vehicle is a 1/5™ scale Porsche GT2 made by FG
Modellsport [35]. The test vehicle was instrumented with encoders,
accelerometer and brake servos. The encoders provide wheel speed data.
The encoders are found on the left and right wheels and another encoder
is located on the differential. Since the brakes are not applied on the rear
wheels, the differential should approximately give the vehicle speed as
required for the control algorithm. The test vehicle also has brake servos

for right and left wheels. The brake system, as explained earlier, is a cable
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brake system actuated by brake servos. An accelerometer is also
mounted on the rear end of the vehicle to provide the acceleration data
during the run.

The real time controller is a National Instruments’ RT Engine (NI
PXI — 8156B) running LabVIEW RT. The data acquisition and control
hardware comprises of NI 6070E (Multifunction 1/0 DAQ card) and NI
6602 (Timing 1/O card). All of these three modules are plugged into the
PXI chassis (NI PXI 1000B). The software module resides in the NI RT
Engine. The timing I/O card is used to acquire the speed data from the
three encoders. The Multifunction 1/O DAQ card is used for controlling the
brake servo voltage and also for acquiring the acceleration data from the
accelerometer.

In addition to the data acquisition and control hardware, there is
some signal conditioning hardware to condition the signals. The raw
signals from the encoders are noisy and hence signal conditioning is used
to filter the noise. The signal conditioning hardware essentially consists of
a buffer for the encoder signal and a transconductance amplifier for the
output voltage signals. The encoder signal is passed through a buffer (op-
amp inverter) to provide a clean signal to the control algorithm. The output
voltage for the brake servos from the multifunction 1/O card is passed
through a transconductance amplifier (voltage to current converter) to get
a proportional current to drive the brake servo. From the bond graph
model for the servo, which is essentially a gyrator, it can be seen that if we
supply a voltage, then it basically controls the speed of the servo arm
motion. If we supply a current, it basically controls the torque of the servo
arm. Now to control the brake pad force, it would be ideal to supply the

current to the brake servos instead of the voltage, hence a
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transconductance amplifier to provide a proportional current. The figure

4.1 shows the hardware components in the experimental setup.
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Figure 4.1 Block Representation of the Hardware Components in

Experimental Setup
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Software

The software is the brain of the ABS control system. The software

in the experimental setup is implemented in LabVIEW RT. The typical

components found in the software are a data acquisition module, control

algorithm module, control application module and data log module. The

figure 4.2 shows the various software modules.

Right Wheel
Encoder
Acauisition | Right Brake
| Servo
Control
LeftWheel | | L___‘t—————______.
Encoder - o - - o o o o o o o o o o o I o o oM
Acauisition YV Il
Control : : :
Algorithm i
i
Differential Module i
Encoder T I
Acauisition Left Brake : : :
I Servo T
I > Control 1Y
1 | LLl
Accelerometer : :
data 1 | Data Log
Acauisition : L I Module
L
MAIN LOOP

Figure 4.2 Block Representation of Software Modules
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The encoder data and acceleration data acquisition modules are
together referred as data acquisition module. The data acquisition module
has routines for acquiring data from the sensors. The control algorithm
module has the fuzzy logic controller, which takes the speed data and
gives a voltage output for each of the brake servos. The control
application module (left and right brake servo control) has routines which
apply the appropriate voltage output to the brake servos. The data log
module logs the data during the experiment run.

The control algorithm module is similar to one built in Simulink.
Using the Simulink Interface Toolkit (from National Instruments), it is
possible to convert a Simulink block diagram into a *.dll (dynamic link
library) that can be used by LabVIEW RT. The control algorithm module in
LabVIEW RT is a dll call to a function which has the fuzzy logic embedded
in it. Figure 4.3 shows the process of converting the simulink block into a

labview subroutine (VI — virtual instrument).
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Figure 4.3 Conversion of a fuzzy logic Simulink block into a VI.

MathWorks RTW (Real Time Workshop) is used to convert
Simulink blocks into code that can be used on different target platforms.
The National Instruments’ Simulink Interface toolkit provides the tools to
use the RTW to convert Simulink blocks into LabVIEW subroutines. The
LabVIEW subroutine created through the conversion process needs to be
modified slightly to be used in the control algorithm module. The run time

user interface for the software module is shown in figure 4.4.
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Figure 4.4 Run Time User Interface — Software Module

Experiment Procedure

Experimental runs are performed to look at the performance of the
fuzzy logic ABS controller. The fuzzy logic ABS controller which was tuned
during the simulation process is used here in the implementation. The
main focus is to compare the fuzzy ABS controller with a bang-bang ABS
controller and look at the differences in performance. The experiments

performed are straight line ABS braking.

The vehicle is pulled back onto the ramp of the test bed by means
of a steel cable. Once the vehicle has reached a sufficient height on the
ramp, it is allowed to stabilize. The software is downloaded on to the RT
Engine target. The user interface queries the user for the run time, brake
delay time and whether to it is timed or remote braking and also whether
we are simulating the run or doing actual experiments. Once the
appropriate inputs are set, the “run” button is clicked. This starts the outer
loop of the software which dis-engages the steel cable. Once the steel
cable is released, the vehicle accelerates down the ramp and after the

brake delay time, the control loop (main loop) is activated. The main loop
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is shown in figure 4.2. For every iteration of the main loop, data from the
encoders and the accelerometer is acquired and send to the control
algorithm module. The control algorithm module then sends a control
output (based on the logic used) to the brake servo control modules. This
continues until the “run time” has elapsed. Once the run is completed,

data is saved on to the hard disk for post processing.

The experiments were repeated with different initial heights
(release points), different brake delay times for both bang-bang controller
and fuzzy logic controller. Two different surfaces were used. One was a
smooth plastic surface and the other was a smooth wooden surface.
Though the surfaces do not resemble any real world condition
encountered by vehicles, it was used here to compare the two controllers

(bang-bang and fuzzy logic) under different environments.

A second set of experiments were performed by Longoria, et. al
[36] as part of an ongoing research to determine steady state friction and
cornering coefficients. In the steady state experiments for determining the
friction coefficient, the vehicle is held stationery and one of the wheels is
placed on top of an aluminum drum. The aluminum drum is driven by a
motor. Optical encoders are used to get the speed data for the drum and
the wheel. A known brake torque is applied by means of a prony brake
apparatus. At steady state, the brake torque would be balanced by the
torque generated due to the friction between the wheel and the drum.
Friction coefficient is deduced from the brake torque and the normal load
on the tire. To determine the cornering coefficient, the wheel is steered at

a known angle and clamped in that position. The drum is driven by the
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motor and the brake torque is applied with the help of the prony brake.
The lateral tire force that is developed is countered by holding the vehicle
the steady at the initial steer position using a spring scale. At steady state,
the steer angle would be the side slip angle. Cornering coefficient is
deduced from the lateral tire force and the normal force on the tire. The

block representation of the setup is shown in figure 4.5.
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Figure 4.5 Block Representation of the setup for determining friction and

cornering coefficient [36].
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Results

The data from steady state experiments outlined in the previous
section shows the general trend of a mu-slip curve and also shows that
the cornering coefficient decreases as slip value increases. From the
figure 4.6, it is seen that the vehicle is stable (moderately high friction and
high cornering coefficient) when the slip value is maintained between 0.1
and 0.25.
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Figure 4.6 Mu-Slip Curve from steady state experiments by Longoria, et.
al [36].
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The following sections describe the results from experimental runs
performed using the bang-bang controller and the fuzzy logic controller
where the brake time delay was 500 ms and the run time was 4000 ms.
The release point was kept the same for the experiments. The release
point and the brake time delay determine the maximum velocity that the
vehicle would reach before the control logic kicks-in. As the test bed was
not long enough, slow speed runs were carried out. When the release
point was higher, the vehicle would not stop within the test bed and would

crash into the safety zone.

Bang-Bang Controller

The bang-bang control logic as used in the simulation was used in
the experiments. Data from the experiments were logged and plotted. The
brake servo voltage applied is either -1V or 5V. A brake control voltage of
-1V would release the brake servo and a voltage of 5V would engage the
brakes completely. The left brake servo did not respond to -1V or rather
did not release. But the right brake servo worked fine. The data from the
right wheel can be used to illustrate the difference between the bang-bang
and the fuzzy logic controller. The surface used was the smooth wooden
surface. The figure 4.7 shows the right wheel encoder and the differential
encoder data for both bang-bang and fuzzy controller. During the first 500
ms (iterations), the vehicle comes down the ramp picking up speed, and
after that ABS kicks in. The difference between the bang-bang and fuzzy
is clearly seen in the right wheel encoder data. It can also be seen that at
certain points during the run with the bang-bang controller, the wheel locks

up. Figure 4.8 shows the acceleration data (raw data) for the run.
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Comparison of Fuzzy ABS and Bang-Bang ABS
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Figure 4.7 Comparison of Encoder data for Bang-Bang and Fuzzy

Controller.
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Figure 4.8 Acceleration data —-Bang-Bang ABS Controller
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Fuzzy Logic ABS Controller

The fuzzy ABS control logic simulation block is converted into
LabVIEW subroutines as explained earlier. The fuzzy control logic takes in
the slip data and provides a voltage that is applied to the brake servos.
While applying the brakes based on the voltage output from the fuzzy
controller, it is seen that it gradually increases from 0V to a positive value
and when the fuzzy controller detects an impeding wheel lock condition, it
sends an output to release the brakes. Now the voltage to release the
brakes is -1V. Then again, the voltage is increased based on the fuzzy
controller output to apply the brakes and again to release the brakes a -1V
is applied. This cycle continues until the vehicle comes to a stop.

The experiment data plots from the runs for fuzzy logic controller
with the wooden surface are shown in figure 4.7. The plot shows the right
wheel encoder data and the differential encoder data. It can be seen that
with the fuzzy logic controller, the wheel does not lock up, thereby
maintain controllability during braking. The figure 4.9 shows the
acceleration data (raw data) for the run. Figure 4.10 shows the
comparative stopping distance plots for the fuzzy and the bang-bang
controller.

Similar runs with the fuzzy logic controller were performed using the
plastic surface. It was seen it took longer for the vehicle to stop on the
plastic surface. The variables (run time, brake delay time and release
position) were kept the same for these runs. The only difference from the
earlier runs is the surface. Figures 4.11, 4.12, 4.13 and 4.14 show the
data from two runs under similar conditions. The loop rate for each

iteration was around 1.5 ms.
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Acceleration Data for Fuzzy Controller
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Figure 4.9 Acceleration Data - Fuzzy Logic ABS Controller
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Figure 4.10 Comparison of Stopping Distances
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Comparison of Differential Speeds for two
different runs
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Figure 4.11 Comparison of differential encoder data for two runs with

fuzzy ABS under similar conditions

Comparison of Right Encoder Data

350
300
250
200
150
100

50

[ [ [
+ Right Encoder Run 6 | |
s = Right Encoder Run 11

Speed (rpm)

1 301 601 901 1201 1501 1801

No. of Iteration

Figure 4.12 Comparison of right wheel encoder data for two runs with

fuzzy ABS under similar conditions
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Comparison of Right Slip Value
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Figure 4.14 Comparison of right brake servo voltages for two runs with

fuzzy ABS under similar conditions
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Figure 4.13 shows the slip data from the experimental runs with the
fuzzy controller. It can be seen that the slip value is maintained under 0.2
during the entire run. As seen from the steady state experiment results
(figure 4.6), this ensures that vehicle maintains controllability during the

run, which is one of the prime objectives of an antilock brake system.

In figure 4.14, only the right brake servo voltage profiles are shown
as the response of the left brake servo to the applied voltage was not as
expected. As explained earlier, the left brake servo would not release
even when applied a negative voltage. The solution to this issue is to
replace the left brake servo, but this was not done in time for these
experiments because the data from the right wheel was sufficient to
explain the implied results. From the plots for the different runs, it is seen
that there is variability when repeating the experiments under similar
conditions. These variations are normal and are within acceptable limits.

The conclusions drawn from these experiments are reasonably proven.

Conclusion

A main result from the experiments conducted, is demonstrating the
ability to model a fuzzy controller in a simulation environment and to
implement it on a real time controller (National Instruments’ RT Engine)
using a systematic set of software and hardware tools. This method
provides for a rapid prototyping environment, where the ABS controller
can be developed and tested in a simulation environment with various
vehicle models (longitudinal model and 1/5™ scale vehicle model) and
easily ported to a real-time controller for actual experiments on a scaled

test platform. The experiments proved that the approach can be
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successful and can be used in the future to model and test more complex
controllers.

The experimental data shows expected trends when compared with
the simulation results. The experimental run with the bang-bang controller
shows the wheel tending to lock up more often while braking. Generally
when the slip value increases, the cornering coefficient decreases (figure
4.6) and thereby the vehicle loses controllability. With the fuzzy logic
controller, it can be seen that the slip values tend to fluctuate between
0.10 and 0.20, where the friction and cornering coefficient is high. During
the entire run, the fuzzy logic controller ensures that the wheel does not
lock up and thereby achieves controllability throughout the run. Even
though steer is not introduced in the experiments, it can be assumed that
should a steer be introduced, the fuzzy logic controller would still control
the slip value so that the cornering coefficient is high. The variation of slip

value is also minimal with the fuzzy logic controller.

One other fact from the experimental data is the longer stopping
distance with the fuzzy logic controller. As explained by the simulation, the
primary reason is that with the bang-bang controller, the wheel locks up a
couple of times thereby slowing the vehicle very quickly. Another reason is
the loop rate. With the fuzzy logic controller each loop takes an additional
1 to 2ms, hence the frequency of the control output is lower in the case of
the fuzzy logic controller. With better optimization, the loop rates can be
reduced. The application of the brake control voltage is also another factor
in reducing the stopping distance. The limitation with the brake servo is
that to release the brake, a negative voltage is required and to reapply the

brakes, the voltage has to be increased from -1V. It would be ideal to have
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a brake system where a decrease in the applied voltage would tend to
proportionally release the brake rather having to go all the way to -1V.

So it is seen from the experiments that the results match up with
the simulation data. Since the brake servos are controlled individually, it is
anticipated that adaptability can be demonstrated on split mu surfaces. In
a split mu surface, each wheel encounters different surface conditions. For
example a vehicle with right wheels on snowy shoulder and the left wheels
on dry or wet road surface. These and other tangible experiments (like

experiments with steer) are considered future work.
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Chapter 5: Conclusion and Recommendations

Conclusion

It is seen from the simulation and experiment results that fuzzy
logic can be used as a controller in an antilock brake system. Also when
compared with a bang-bang controller, it performs better on smooth
surfaces (low mu surfaces). It has better controllability; the slip values are
controlled in the region where the cornering coefficient and the friction
coefficient are high. The scaled test platform is quite ideal for slow to
medium speed runs. For high speed runs, the flat portion of the test bed
may not be sufficiently long to bring the vehicle to a complete halt. Also
different surfaces might be used in future tests to evaluate the control
algorithms. The rapid prototyping environment as explained earlier is a
very flexible approach for modeling and testing and tuning complex control
algorithms. Antilock brake system as seen is a nonlinear system and the
use of fuzzy logic for better controllability shows that the soft-computing
tools may be used in other control problems where uncertainty and non-

linearity exists.

Future Work

In the explorations made during this research, there were quite a
few areas that were identified where future research may be taken up.
The brake system used in the test platform is a cable-actuated one

powered by brake servos. As was indicated in the Experimentation
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chapter, an ideal brake system is one which would respond to the applied
voltage in both directions (release and actuation in a similar fashion, not
necessarily linear). A hydraulic actuated brake system should be
considered as an improvement over the cable-actuated one. On the other
hand, a comparative study of the different brake actuations could be taken
up as part of future research to determine an optimal brake system for the
1/5" scale vehicle.

The approach taken to determine the fuzzy rules and parameters to
be used in the fuzzy logic controller were by a process of manual tuning.
ANFIS or Adaptive Neuro Fuzzy Inference System is a soft computing
approach where neural networks are used to determine the fuzzy logic
parameters (membership functions). To start with, the basic membership
functions are used and as the neural network trains on the data, the
membership functions are tuned to better represent the control process.

One other question that needs to be answered is whether the fuzzy
logic controller developed for the scaled vehicle would hold well for a full
scale vehicle. To be able to compare the scaled implementation and a full
scale implementation, it would be necessary to extract dimensionless
variables. The Buckingham’s Pi theorem looks into the dimensional
analysis of these variables. The Buckingham’s pi theorem is one such
approach to look at the scaling issues. Work has to be done in this

direction to ascertain the scalability issue.
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Split mu surface conditions occur when the left and the right wheels
encounter different surfaces. This affects the performance of the antilock
brake system and the stability of the vehicle. Since the fuzzy logic
controller implementation looks at each wheel individually, it should work
for split mu conditions. Split mu experiments and other tangible
experiments could be conducted to look at the performance of antilock

brake systems, with preliminary testing on the scaled vehicle.

Another factor that has some scope of improvement is the “control”
loop rate. The controller can be optimized to lower the loop rate, thereby
increasing the frequency of control output. The flat test bed used for the
implementation is not long enough for high speed runs. The only other
solution is to have a longer test track. The experiments conducted were
straight brake runs with no steer. It would be interesting to look at the
performance of the antilock brake system controllers on runs where the
steer is introduced. The cornering coefficient kicks in during a steer.
Indeed, it might be said that the controllability of the vehicle during braking

and steering is a much more critical issue to examine in ABS experiments.
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Appendix A. Fuzzy Logic Controller
— Longitudinal Model
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Figure A.1 Fuzzy Inference System - FIS

The figure shows the Fuzzy Inference System (FIS) used in the
longitudinal model. The figures in the following pages show the input
membership functions, output membership functions, fuzzy if-then rules
and the controller surface.
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Figure A.2 Input Membership Functions — Current Slip

The figure shows the membership functions for the input variable
“currslip”. It shows four different membership functions (low, normal, high
and very high) spread over a range [0 1].The “low” and “normal’
membership functions (mf) are of the type “gaussian mf’. The “high”
membership is a “triangular mf’. The “very high” is a “pimf’ type
membership function.
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Membership Function Editor: fuzabs3 E]@
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Figure A.3 Output Membership Functions — Torque Change

The figure shows the membership functions for the output variable
“torchange”. It shows four different membership functions (decrease,
low_decrease, no_change and increase) spread over a range [-1 1].The
‘low_decrease” and “no_change” membership functions are “gaussian
mf’. The “increase” membership is a “triangular mf’. The “decrease” is
“zmf” type membership function.
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Figure A.4 Rule Viewer

For the “currslip” input shown by the red vertical line on the left, of
the four rules shown only two are "activated" by a membership value
greater than zero. Each rule is weighted on the right (blue areas) and a
compounded average is computed (thick red line in the bottom-right to
generate a "crisp" (analog) signal as the controller action.
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Figure A.5 Surface Viewer

The figure shows the control surface generated as a result of the
fuzzy rules. It shows the relationship between the input and the output for
the controller.
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Appendix B. Fuzzy Logic Controller
-1/5™ Scale Vehicle Model
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Figure B.1 Gain Fuzzy Logic Controller - FIS

The Gain Fuzzy Logic Controller is similar to FIS used for the
longitudinal model with slight modifications.
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Figure B.2 Input Membership Functions — Current Slip

The figure shows the membership functions for the input variable
“currslip”. It shows four different membership functions (low, normal, high
and very high) spread over a range [0 1].The “low” ,“normal” and “high”
membership functions are of the type “gaussian mf’. The “very high” is a
“pimf” type membership function.
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Figure B.3 Output Membership Functions — Gain Constant

The figure shows the membership functions for the output variable
“torchange”. It shows four different membership functions (decrease,
low_decrease, no_change and increase) spread over a range [-1 1]. The
‘low_decrease” and “no_change” membership functions are “gaussian
mf’. The “increase” membership is of the type “smf’. The “decrease” is a
“zmf” type membership function.
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Figure B.4 Rule Viewer

For the “currslip” input shown by the red vertical line on the left, of
the four rules shown only two are "activated" by a membership value
greater than zero. Each rule is weighted on the right (blue areas) and a
compounded average is computed (thick red line in the bottom-right to
generate a "crisp" (analog) signal as the controller action.
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Figure B.5 Surface Viewer

The figure shows the control surface generated as a result of the
fuzzy rules. It shows the relationship between the input and the output for
the controller.
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Figure B.6 Proportional Derivative Fuzzy Logic Controller - FIS

The figure shows the Proportional Derivative Fuzzy Inference
System (FIS) used in the 1/5™ scale vehicle model. The figures in the
following pages show the input membership functions, output membership
functions, fuzzy if-then rules and the controller surface.
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Figure B.7 Input Membership function — Slip Difference

The figure shows the membership functions for the input variable
“slipdiff”. It shows three different membership functions (low, medium and
high) spread over a range [0 1]. The “low” is “zmf’ type membership
function. The “medium” is a “gaussian mf’ type membership function. The
“high” membership is a sigmodial membership function “smf”.
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Figure B.8 Input Membership Function — Current Slip

The figure shows the membership functions for the input variable
“currslip”. It shows two different membership functions (low and high)
spread over a range [0 1]. The “low” is “zmf’ type membership function.
The “high” membership is a sigmodial membership function “smf”.
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Figure B.9 Output Membership Function — PD Constant

The figure shows the membership functions for the output variable
“propderi”. It shows three different membership functions (low, medium
and high) spread over a range [0 1]. The “low” is “zmf’ type membership
function. The “medium” is of type “gaussian mf’. The “high” membership is
a sigmodial membership function “smf”.
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Figure B.10 Rule Viewer

For the “currslip” and “slipdiff’ input shown by the red vertical lines
on the left, of the five rules shown only three are "activated" by a
membership value greater than zero. Each rule is weighted on the right
(blue areas) and a compounded average is computed (thick red line in the
bottom-right to generate a "crisp" (analog) signal as the controller action.
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Figure B.11 Surface Viewer
The figure shows the control surface generated as a result of the

fuzzy rules. It shows the relationship between the inputs and the output for
the controller. The surface is a 3-D one with two inputs and one output.

97



10.

11.

12.

References

Web Reference - http://www.cvma.ca/lssues/Safety.html

Web Reference - http://www.abs-
education.org/ishs/newtechca.html

Web Reference -
http://www.tc.gc.ca/roadsafety/tp/tp13082/abs1_e.htm

Wong, J. Y., Theory of Ground Vehicles. New York, NY: John Wiley
& Sons, Inc. 1993

Web Reference - www.vti.se/nordic/2-00mapp/ noart1.html
Web Reference - http://www.fam.aust.com/keller/cit1/pic12.gif

Leffler, H., The Brake System of the New 7 Series BMW with
electronic brakes and wheel slip control, SAE SP -1075, 1995.

Jiang, F., Gao, Z., An adaptive nonlinear filter approach to vehicle
velocity estimation for ABS, Proceeding of 2000 IEEE International
Conference on Control Applications, pp 490-495, Anchorage, 2000.

Bakker, E., Nyborg, L., Pacejka, H.B., Tyre Modelling for Use in
Vehicle Dynamics Studies, SAE Paper No. 870421, Society of
Automotive Engineers, Inc. 1987.

Yi, K., Hedrick, K., Lee, S., Estimation of Tire-Road Friction using
Observer Based Identifiers, Vehicle System Dynamics, Vol.31,
No.4, pp. 233-261, 1999.

Rudd, Ill., Antiskid control of multi-wheel vehicles using coupled
and decoupled Kalman filtering incorporating pitch weight transfer,
U S Patent # 6,220,676, 2001.

Sekine, et al., Road Surface condition-detecting system and anti-
lock brake system employing the same, U S Patent # 5,586,028,
1996.

98



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Unsal, C., Kachroo, P., Sliding Mode Measurement Feedback
Control for Antilock Brake Systems, |IEEE Transactions on Control
Systems Technology, Vol. 7, No. 2, 1999.

Tseng, C.H., Chi, C.W., Aircraft Antilock Brake System with Neural
Networks and Fuzzy Logic, Journal of Guidance, Control and
Dynamics, Vol. 18, No. 5, 1995.

Layne, J.R., Passino, K.M., Yurkovich, S., Fuzzy Learning Control
for Antiskid Braking Systems, IEEE Transactions on Control
Systems Technology, Vol. 1, No. 2, 1993.

Jiang, F., Gao, Z., An application of Nonlinear PID Control to a
Class of Truck ABS problems, Proceedings of the 40" IEEE
Conference on Decision and Control, Orlando, Florida, 2001.

Johansen, T. A. et al, Hybrid Control Strategies in ABS, Proceeding
of the American Control Conference, Arlington, VA, 2001.

Zadeh, L.A, Fuzzy Sets, Information and Control 8(3): 338-353,
1965.

Web Reference -
http://www.cs.berkeley.edu/projects/Bisc/bisc.memo.html

Ross, T.J., Fuzzy Logic with Engineering Applications, McGraw Hill
Publication, 1995.

Jang, J.S.R, Sun, C.T., Mizutani, E., Neuro-Fuzzy and Soft
Computing, Prentice Hall Publication, Upper Saddle River, NJ,
1997.

Semmler, S. et al, Estimation of Vehicle Velocity using Brake by
Wire Actuators, 15" Triennial World IFAC Congress, 2002.

Borner, A., Neuro-Fuzzy Approach in Measurement: Road Vehicle

Velocity Estimation, IEEE International Workshop on Intelligent
Signal Processing, 1999.

99



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Laurence, P. et al., Identification of steady-state vehicle behaviour
using a bezier curve optimized with genetic algorithms, IFAC-IEEE:
AVCS’98, pp 253-258, 1998.

Jun, et al, An Investigation into Fuzzy Control for Antilock Braking
System based on Road Autonomous Identification, SAE 2001-01-
0599, 2001.

Will, A.B., Zak, S.H., Antilock brake system modeling and fuzzy
control, Int. J. of Vehicle Design, Vol. 24, No. 1, 2000.

Kachroo, P., Smith, K., Experimental setup and testing for
verification of similarity between road tire interaction characteristics
of scaled models and full scale vehicles, SPIE Vol. 3207, 1998.

Web Reference - http://www.fuzzy-logic.com/Ch1.htm

Nelson, D.E, et al., Implementation of Fuzzy Logic for an Antilock
Braking System, |EEE International Conference on Computational
Cybernetics and Simulation, Vol. 4 , pp 3680 -3685, 1997.

Al-Sharif, A., Design and Development of a Scaled Test Laboratory
for the study of ABS and other Active Vehicle System, Thesis, The
University of Texas at Austin, August 2002.

MATLAB Reference Files - MATLAB Fuzzy Logic Toolkit Help
Guide

Paynter, H.M., Analysis and Design of Engineering System, MIT
Press, 1961.

Karnopp, D. et al., System dynamics : modeling and simulation of
mechatronic systems, 3" ed. New York, 2000.

Athan, T. W., Papalambros, P. Y., Multicriteria Optimization of Anti-
Lock Braking System Control Algorithms, Engineering Optimization,
v 27, n 3, Gordon & Breach Science Publ Inc, Newark, NJ, USA, p
199-227, 1996.

100



35.

36.

FGModellsport, “FGModellsport Catalog 2000”, RC World and RC
Publishers, July 2000.

Longoria, R.G., Al-Sharif, A. and Patil, C., Modeling and Laboratory
Testing of Scaled Vehicle System Dynamics and Controls,
International Journal of Vehicle Autonomous Systems, Special
Issue on Autonomous Road Vehicles, to appear.

101



Vita

Anish George Mathews was born in Thiruvella, India on January
31, 1978 to K Mathews Varughese and Rachel Mathews. He was the
second child in the family with his sister Anila Mathews being the elder
one. He completed his high school education in 1995, at Carmel Garden
Matriculation Higher Secondary School in Coimbatore, India. In June
1995, he started attending the undergraduate program in mechanical
engineering at P S G College of Technology in Coimbatore, India, one of
the top schools for engineering in India. During his years at P S G Tech,
he was among the top 2% of his class. He was awarded the Jawaharlal
Nehru Summer Research Fellowship during the year 1998 for his research
work at the National Aerospace Laboratories, India. In December 1999, he
received the degree of Bachelor of Engineering in Mechanical Engineering
with distinction from the Bharathiar University through P S G Tech. After
his undergraduate education, he took up work as a Project Engineer at
Soliton Automation, Coimbatore, India. In August 2000, he joined the
Masters program in Mechanical Engineering at the University of Texas at
Austin. He was awarded a research assistantship from his thesis
supervisor. Later on, he was also awarded teaching assistantships. He
conducted Dynamic Systems and Controls Laboratory for groups of 10-14
students as part of this teaching assistantship award. He was also
awarded the N K Wright Memorial Presidential Scholarship, one of the

University’s most prestigious student awards, for the year 2002-2003. In

102



Sept 2002, he joined Soliton Automation again as a Project Leader and

began developing Soliton business’s presence in the US market.

Permanent Address:
4/B Jayanthi Nagar,
K. P Colony,
Coimbatore - 641030,

India

This thesis was typed by the author.

103



