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Conventional Anti-lock Braking Systems that are developed are 

optimized to maintain directional stability of the vehicle while braking 

under standard test conditions. The performance of such systems 

degrades on adverse road conditions (loose gravel/ice/snowy conditions). 

This thesis presents the idea of an Anti-lock Brake System controller, 

which adapts to changes in road conditions. It uses fuzzy –rule based 

algorithms to adapt to changes in surface condition. Simulation studies on 

vehicle models with the modified ABS controller design were carried out 

on different surface conditions and were proved to be more effective than 

standard ABS designs. Experiments on a fully instrumented 1/5th scale car 

were also performed on test ramp under different surface conditions to 

validate the simulation results. A real time controller with associated data 

acquisition devices was used as the control unit. 
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Chapter 1: Introduction 

 

Engineers in the automotive industry put a lot of effort in devising 

systems which ensure safety in road vehicles. A typical passenger car has 

a lot of features which ensure safety like ABS, traction control system, 

airbags, energy absorbing steering columns, crumple zones, head 

restraints and many other safety inventions [1]. “ABS” the acronym for 

Antilock Braking System is designed to help the driver maintain steering 

ability and avoid skidding while braking. ABS and Traction Control System 

deal with the vehicle stability and handling. In recent years, engineers are 

developing what is called as the “Intelligent Stability and Handling 

System”. Intelligent stability and handling systems provide the driver with 

greater control of the vehicle when loss of control is imminent. A 

comparison chart showing the major features of these systems is shown in 

Table1.1.  

 

 

  4 
Wheel 
ABS 

Traction 
Control 

Intelligent 
Stability and 

Handling 
Systems 

Prevents wheel lock-up under 
many road conditions X   X 

Allows driver to maintain control 
when brakes are fully applied X   X 

Sensors detect impending wheel 
lock-up X   X 

Pumps the brakes like a driver 
would, only much faster and 
more effectively 

X   X 
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Engages when the driver stomps 
on the brake pedal X   X 

Prevents unwanted wheel spin in 
low traction situations   X X 

Adjusts vehicle acceleration 
when driving in low-traction 
situations, such as rain or snow 

  X X 

Helps drivers accelerate safely   X X 
Detects a vehicle's position in 
relation to steering input with use 
of sensors 

    X 

Monitors and compares a 
vehicle's movement with the 
direction a driver is steering 

    X 

Automatically brakes specific 
wheels, allowing a driver to 
maintain steering control during a 
skid 

    X 

 

Table 1.1 Comparison Table of Vehicle Safety Systems [2] 

 
Need for Antilock Braking System 

Antilock braking capabilities in vehicles form the backbone for the 

research carried out as part of this thesis. During emergency braking, the 

driver wants to stop and steer the car at the same time. Antilock brake 

systems help the driver to maintain vehicle stability under emergency 

braking conditions.  
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Figure1.1 Directional Control under Heavy Braking [3] 

 

 
Dynamics of Braking 

When a brake torque (braking effort) is applied to a rotating wheel it 

may cause the tire to deform and slide. This causes the radial component 

of spin velocity of the tire to differ from its linear velocity. The ratio of the 

differential velocity to the linear velocity is termed as slip ratio. It is usually 

expressed as a percentage. It is used to characterize braking 

performance. 

 

  Slip Ratio = (1 – ωR/V)* 100%;   

      ω – spin velocity of the wheel 

      R – radius of the wheel 

      V – linear velocity of the wheel. 
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When slip ratio is 100%, then the condition is termed as “wheel lockup”. 

The following figure shows how the steering ability of the vehicle is greatly 

reduced when the wheel tends to lock up.  

 

 
 Steering Ability is 

related to the cornering force 

coefficient. Braking ability 

depends upon the braking 

effort coefficient.  

 

 

 

 

 

Figure 1.2  Braking/ Cornering Force Coefficients Vs Slip [4] 

 

The braking and steering ability of the vehicle is also limited by the 

amount of traction the tire can generate. The traction that the tire can 

generate depends upon the normal force on the tire and the friction 

(braking effort coefficient) between the tire and the road surface. The 

friction depends on a lot of factors like the slip ratio, the type of tire, tire 

tread, tire pressure, road conditions, etc. A set of curves (shown below) 

illustrates the relationship between friction, slip ratio and different road 

surfaces for a given tire.  
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Figure 1.3 Tire-Surface friction characteristics [5] 

 

Antilock braking system operates in such a way so that it does not 

allow the wheels to get locked and maintains the slip ratio so that friction 

between tire and the road is kept at an optimal maximum by controlling the 

brake torque applied to the wheels.  

 
Modules of ABS 

A typical Antilock Brake System consists of wheel sensors, 

electronic control unit, brake actuator control unit and the brake actuator. 

Some of the advanced system also consists of an accelerometer to 

determine the deceleration of the vehicle. The following figure shows the 

basic components of an antilock braking system.  
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Figure 1.4 Modules of Antilock Brake System [6] 

 

The wheel sensor feeds the wheel spin velocity to the electronic 

control unit, which based on some underlying control approach would give 

an output signal to the brake actuator control unit. The brake actuator 

control unit then controls the brake actuator based on the output from the 

electronic control unit. The control logic is based on the objective to keep 

the wheels from getting locked up and to maintain the traction between the 

tire and road surface at an optimal maximum. The task of keeping the 

wheels operating at maximum traction is complicated given that the 

friction-slip curve changes with vehicle, tire and road changes. The above 
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figure (figure 1.3) shows the friction-slip curves due to changes in road 

conditions alone. The block diagram (figure 1.5) shows the block 

representation of an antilock brake system. It shows the basic functionality 

of the various components in ABS systems and also shows the 

data/information flow. 

 
Figure 1.5 Block Representation of an Anti-lock Brake System 

 
 
 
 

 
 
 
 
 
 
 
 
 

Electronic Control 
Unit

Wheel 
Sensor Accelerometer 

Velocity 
Estimator 

Control  
Logic 

Tire-Road 
Interaction 
Database 

Friction 
Meter 

Brake Actuator 
Control Unit 

Brake Actuators 

Road System 
Identification 



 8

Research in ABS 
The research that is been carried out in anti-lock brake systems 

cover a board range of issues and challenges. The following layout shows 

a sampling of the anti-lock brake research. 

 
Figure 1.6 Sampling of ABS Research 
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Kevin, et. al (1993) [15]Kachroo (1999) [13] 
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ABS control is a highly nonlinear control problem due to the 

complicated relationship between friction and slip (figure 1.3). Another 

impediment in this control problem is that the linear velocity of the wheel is 

not directly measurable and it has to be estimated. Friction between the 

road and tire is also not readily measurable or might need complicated 

sensors. Researchers have employed various control approaches to 

tackle this problem. A sampling of the research done is shown in the 

above figure (figure 1.6). One of technology that has been applied in the 

various aspects of ABS control is soft computing. The following paragraph 

gives a brief idea of soft computing and how it is employed in ABS control. 

 

Soft Computing - Introduction 
Physical systems described by multiple variables and multiple 

parameter models having nonlinear behavior, frequently occur in the fields 

of physics, engineering, technical applications and other sciences. The 

conventional approaches for understanding and predicting the behavior of 

such systems based on analytical techniques can prove to be very 

difficult, even at the initial stages of establishing an appropriate 

mathematical model. The computational environment used in such an 

analytical approach is perhaps too inflexible in order to cope with the 

intricacy and the complexity of the real world physical systems. It turns out 

that in dealing with such systems, one has to face a high degree of 

uncertainty and tolerate imprecision. Trying to increase precision can be 

very costly. 
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Prof. Lotfi A. Zadeh created in 1965 a separate field of 

computational environment when he came up with his “fuzzy set” concept 

[18] to deal with uncertainty and imprecision which is common to real 

world physical systems. This ushered in a new field of computing - “soft 

computing”. Soft computing differs from conventional (hard) computing in 

that, unlike hard computing, it is tolerant of imprecision, uncertainty, partial 

truth, and approximation. In effect, the role model for soft computing is the 

human mind. The guiding principle of soft computing is: Exploit the 

tolerance for imprecision, uncertainty, partial truth, and approximation to 

achieve tractability, robustness and low solution cost [19].  

 

At this juncture, the principal constituents of Soft Computing are 

Fuzzy Logic, Neural Computing, Evolutionary Computation and 

Probabilistic Reasoning, with the latter subsuming belief networks, chaos 

theory and parts of learning theory. The principal contribution of fuzzy 

logic relates to its provision of a foundation for approximate reasoning, 

while neural network theory provides an effective methodology for learning 

from examples, evolutionary computation uses natural evolution principles 

and probabilistic reasoning systems furnish computationally effective 

techniques for representing and propagating probabilities and beliefs in 

complex inference networks. 

 

The soft computing tools are complimentary in nature. In many 

cases a problem is solved most effectively by using the soft computing 

tools in combination rather than exclusively. Soft computing techniques 

have found wide acceptance in intelligent control systems and 

mechatronics [20, 21]. Some of the applications include industrial process 
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control, machine vision, consumer appliances, automotive, etc. Soft 

computing represents a significant paradigm shift in the objective of 

computing - a shift which reflects the fact that the human mind, unlike 

present day computers, possesses a remarkable ability to store and 

process information which is pervasively imprecise and uncertain. (For 

more information, look at references [20, 21]). 

 

Soft computing tools like fuzzy logic and neural networks have 

been used to tackle the ABS control problem. The layout (figure 1.7) 

shows a sampling of the research done in this area. 

 

Thesis Overview 
Now that a brief introduction of some of the main concepts in the 

research work has been made, we will take a look at the upcoming 

chapters in this thesis. 

 

Chapter 1, which is the introductory chapter briefly described the 

dynamics of antilock braking, modules in the antilock brake system, 

provides a brief look at the research into antilock brake system and soft 

computing, and summarizes where soft computing is employed in ABS 

systems. 

 

Chapter 2 focuses on the soft computing tools used in the controller 

of an antilock brake system, and sets up the objective for this thesis. It 

discusses the merits and shortcomings of using such tools in controllers 

for antilock brake systems. It also compares other conventional controllers 

to soft computing controllers and attempts to draw an advantage for the 
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soft computing controllers. It also looks at the scalability issues when 

implementing a soft computing controller on a scaled vehicle. 

 

Chapter 3 briefly goes over the development of a model for the antilock 

brake system for the test vehicle. It also explains how the fuzzy controller 

is developed using built-in Simulink tools.  Results from the simulation for 

the model are also detailed. 

 

Chapter 4 explains the experimental setup for testing the controller. 

It also explains the architecture employed to achieve real time control. 

Some of the results from the experimentation are outlined. 

 

Chapter 5 concludes the thesis by discussing the results and 

drawing meaningful conclusions from the research conducted. It presents 

some suggestions for future work and discusses the merits and 

shortcoming of this work. 

 

 
Thesis Contribution/ Focus 

The research work done as part of this thesis focuses primarily on 

the controller aspect of ABS control. Given the complicated nature of ABS 

control, most conventional controllers are optimized to operate under 

standard test conditions. The performance degrades on adverse road 

conditions [15]. An adaptive fuzzy logic based controller is developed to 

adapt to changes in road conditions. It is implemented on a 1/5th scale 

model vehicle which has been instrumented for ABS control. The platform 

used for implementation is a real time engine. The implementation on a 
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scaled model vehicle provides a platform for investigating scalability 

issues in using soft computing tools in antilock brake systems. The thesis 

also provides an overview of soft computing technology and how it finds 

application in ABS control.  

 

 
 

Figure 1.7 Soft Computing Research in ABS 
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Chapter 2: Soft Computing in ABS 
 

Introduction 
As mentioned in the introductory chapter, the antilock brake system 

controllers have to cope with the complex nature of control dealing with 

imprecision and uncertainty. ABS controllers are optimized for 

performance on standard test conditions and due to the nonlinear 

characteristics of the system’s behavior; its performance degrades on 

adverse road conditions. Hence it has to adapt to the changes in road 

conditions. This chapter explores the soft computing tools especially fuzzy 

logic and its utility in solving this adaptability issue.  

 

The motivation for the research stems from the fact that the 

adaptability issues have been tackled in theory (simulation) using soft 

computing tools, but there is little or no open literature that deals with the 

actual implementation. The research is also motivated with the 

development of scaled test platform which helps investigate the scalability 

issues while implementing a fuzzy logic adaptive ABS controller.  

 

Adaptability Issues – Fuzzy Logic Approach 
Now as mentioned in the introductory chapter, soft computing tools 

like fuzzy logic, neural networks and genetic algorithms have been 

employed to tackle complexity in a broad range of real world physical 

systems. The physical system of focus in the research is the antilock 

brake system where soft computing tools have found use (as in figure 

1.7). The components in a typical antilock brake system are shown in 

figure 2.1. It shows the components or the information required by the 
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ABS controller to adapt to changes in surface conditions. As shown, it 

requires information on the friction characteristics of the road surface. Now 

there are theoretical and experimental methods available to measure 

friction between a tire and a particular road surface. To be able provide 

precise information on the frictional characteristics, the method or 

algorithm requires complicated and costly sensors. Alternatively friction 

could be estimated based on the wheel speed data [10]. The other 

possible methods are to look at the tire models and estimate friction based 

on the tire dynamics [9].  

 
Figure 2.1 Components essential to tackle adaptability in an ABS system 
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The other variable that is crucial for the antilock brake controller is 

the vehicle speed. Now, typically there is no direct measurement of the 

linear vehicle speed possible. It has to be estimated from wheel speed 

data [8] or an accelerometer is used to measure the deceleration and then 

the deceleration time history is numerically integrated over time to get 

velocity [27]. With this data/information, the control unit with a road surface 

identification system applies the appropriate brake torque to adapt to road 

surface variations. Now this process as evident requires some 

complicated and costly sensors to get the precise information that could 

be used by the control unit to apply the appropriate brake torque. To be 

precise and certain, it is expensive.  

 

Fuzzy logic on the other hand inadvertently deals with the 

imprecision and uncertainty to bring about optimal control. Before the 

advent of antilock brake system in cars, humans did encounter situations 

during emergency braking where they had to achieve controllability. The 

manual approach there was to pump the brakes during an emergency 

situation rather than flooring the brake pedal. The frequency and the 

magnitude of the pumping action were determined by the human driver 

based on the sensory feedback the human body received during the 

emergency braking.  
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Figure 2.2 Simplified Fuzzy Logic ABS System 
 

Now in the fuzzy logic approach, we take this human knowledge or 

rather the art by which a human controls the brake during an emergency 

situation and convert them into “if –then” rules in a computational 

environment. The complete knowledge of the control process can be 

deciphered into “if-then” rules which form the back bone for a fuzzy logic 

based controller. Now the information required by this fuzzy logic based 

controller is just the wheel speed data.  As shown in figure 2.2, the 

complexity involving the sensors in an antilock brake system is greatly 

reduced by embedding the knowledge into fuzzy “if-then” rules. This is one 
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of the prime motivations for using soft computing tools especially fuzzy 

logic in a control situation like ABS. 

 

Before we divulge into the rest of the chapter, we will take a look at the 

fuzzy logic process itself. The fuzzy logic approach has three main 

components to it. 

1. Receiving of one, or a large number, of measurement or other 

assessment of conditions existing in some system we wish to 

analyze or control in fuzzy form– Fuzzification  
2. Processing all these inputs according to human based, fuzzy "If-

Then" rules, which can be expressed in plain language words, in 

combination with traditional non-fuzzy processing – Fuzzy ”if-
then” rules 

3. Averaging and weighting the resulting outputs from all the individual 

rules into one single output decision or signal which decides what 

to do or tells a controlled system what to do.   The output signal 

eventually arrived at is a precise appearing, defuzzified, "crisp" 

value – Defuzzification [28] 

 

The following figure describes the components in a fuzzy logic system 

and also shows the interaction with the physical realm. 
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Figure 2.3 Fuzzy Logic System – interaction with the Physical Realm 
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indeed can be used to adapt to variations in surface conditions. The 

results of such a simulation are outlined in the next chapter. 

 
 
Implementation and Scalability Issues 
 

The other motivating factor in the research was to look at the 

implementation of the adaptive fuzzy logic controller on a vehicle. The 

adaptive fuzzy logic controller mentioned here is an ABS fuzzy logic 

controller based on fuzzy “if-then” rules which adapts to variations in 

surface conditions. Though there have been theoretical studies conducted 

in addressing the problem of adaptability of an ABS controller using fuzzy 

logic [14, 15, 26], no implementation of the proposed theoretical studies 

have appeared in open literature. It could be very well assumed that 

vehicle manufacturers and ABS component manufacturers (e.g. Bosch) 

might have internally used fuzzy logic to practically implement an adaptive 

fuzzy logic ABS controller without publishing the details. Implementation of 

a simple (non adaptive) fuzzy logic ABS controller has been attempted as 

in [29].  

 

Now the question arises “why haven’t the adaptive fuzzy logic 

controllers based on the theoretical studies [14, 15 and 26] not been 

implemented?” There might be quite a number of reasons for this. One 

might be the non- availability of a test vehicle and test bed. The other 

reason might be the difficulty in converting complicated adaptive fuzzy 

logic controller models into code to be used in a microcontroller for control. 

The research work as part of the thesis attempts to implement an adaptive 

fuzzy logic controller on a scaled vehicle. The attempt is motivated based 
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on two facts. One is the availability of a scaled test platform with a fully 

instrumented test vehicle and real time controller [30].  The other fact is 

the environment for developing the adaptive fuzzy controller and the ease 

in converting it into code for use in a real-time controller.  

 
The test platform is as shown in figure 2.4. The main components 

are the test track, instrumented test vehicle and the real-time controller. 

The test track is made up of wooden platforms fitted together to provide a 

ramp and a flat bed for testing purposes. The test vehicle is a 1/5th scale 

radio control vehicle made by FG Modellsport. The instrumentation on the 

radio control vehicle included rotary encoders for the front right and left 

wheel and also for the rear axle. The front encoders give the wheel speed 

necessary for the controller. The encoder on the rear axle gives a speed 

value which is assumed to give the vehicle speed, since brakes are not 

applied on rear wheels. The brakes for the vehicle on the front wheels are 

cable actuated brake systems. The cables are actuated individually by 

servo motors which receive brake signals from the controller. The real-

time controller is a National Instruments RT® engine with necessary data 

acquisition and control boards. More details on the test platform are given 

by Al-Sharif [30] and also found in the “experimentation” chapter. 
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Figure 2.4 Test Platform – Test Track, Test Vehicle and Real-Time 
Controller [30] 
 
 

The programming environment used for developing the fuzzy logic 

controller model is the MATLAB ® environment.  The fuzzy logic toolbox 

and Simulink are used to develop an adaptive fuzzy ABS model and to 

simulate it under different road conditions. Once the fuzzy logic controller 

is developed and test under the simulated environment, it is then exported 

to a form where it could be implemented in real physical environment. The 

platform used for the physical environment is the graphical programming 

environment – LabVIEW Real Time. The Simulink Interface Toolkit is used 

from National Instruments to convert the Simulink model into a virtual 

instrument (VI), which is a subprogram in LabVIEW. Once the model is 

converted into a VI, it is used with other data acquisition and control VIs to 
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run ABS tests.  The following figure (figure 2.5) shows the interaction 

between the simulation environment and the physical environment. 

 

 

 

 
Figure 2.5 Block Representation – Interaction between the Simulation and 

Physical Environment 

 

A more detailed block representation of the development platforms 

are shown below (Figure 2.6) 
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Figure 2.6 Detailed Block Representation – Interaction between 
Simulation and Physical Environment 
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Thus we see that an adaptive fuzzy logic ABS controller model 

developed in a virtual environment can be ported with minor modifications 

into a physical environment where it is tested and evaluated. This 

implementation strategy provides the basis for the virtual prototyping of an 

adaptive fuzzy logic controller.  

 

The scaled test environment provides an ideal platform in the 

design of the fuzzy logic algorithms. During the design process, fuzzy logic 

algorithms are tuned to get the optimal rules and parameters. The 

implementation provides a platform to tune the rules and parameters in 

the physical environment on a scaled vehicle. Once these rules and 

parameters are tuned, they can be ported back into the simulation 

environment where the fuzzy logic controller can be tested on full scale 

vehicle models. This underscores the importance of using a scaled vehicle 

platform in design and testing of fuzzy logic controllers.  

 

On the other hand, the fuzzy logic controllers can be tuned in the 

simulation environment with a scaled model or a full scale model and then 

ported back to the implementation platform where they are tested on the 

scaled vehicle. The consistency of the results would indicate that this 

method of using a scaled test platform in the design process of the fuzzy 

logic controller is robust. The following figure shows the two approaches in 

the design of the fuzzy logic controller and how the scaled test platform 

helps in the design process.  
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Figure 2.7 Design Approaches for Fuzzy Logic Controller 
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models from full scale to 1/5th scale model and also convenient to change 

the road surface profile these vehicles encounter. The design of the fuzzy 

logic controller is done with the 1/5th scale model in the simulation 

environment. The model and simulation results are discussed in the next 

chapter. Once the fuzzy logic controller is tuned, it is implemented on the 

1/5th scale vehicle and experiments are conducted. The details of the 

experiments and corresponding results are discussed in the 

“experimentation” chapter. The correlation between the experiment results 

and the simulation results are also discussed. 

 

Summary 
Thus this chapter briefly explained the motivation for the research 

work undertaken as part of this thesis. It drew the reason for using fuzzy 

logic for the adaptive ABS control and also explained the implementation 

strategy using a scaled test platform.  
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Chapter 3: Fuzzy Model and Simulation 

 
Introduction 

The “Fuzzy Model and Simulation” chapter briefly explains the 

steps involved in the construction of the fuzzy logic ABS controller. The 

process is usually referred to as fuzzy modeling. Once the fuzzy logic ABS 

controller is constructed, it is then verified with a vehicle model. In the 

research work, the fuzzy logic ABS controller was first simulated using a 

longitudinal model, later it was simulated with vehicle model of 1/5th scale 

vehicle. The process of verification with the vehicle model involves tuning 

the fuzzy logic controller to find the optimal parameters and rules. The 

simulation results from the simulation runs with the two vehicle models are 

also discussed. Different road surfaces were used to verify the adaptability 

nature of the fuzzy logic ABS controller. The vehicle (brake system in 

particular) simulation is also done with some standard controllers to 

compare the results with the fuzzy logic ABS controller.  

 

Fuzzy Modeling 
The fuzzy logic process was explained in brief in the previous 

chapter. Here we will try to go a little further to help us understand the 

construction of a fuzzy logic ABS controller. In the literature different 

names like fuzzy rule based system, fuzzy inference system, fuzzy expert 

system, fuzzy model, fuzzy associative memory, fuzzy logic controller or 

simply fuzzy systems are given to systems where concepts of fuzzy logic 

are applied.  
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As described in the previous chapter, there are three main 

components (fuzzifier, “if-then rules” and defuzzifier) in a fuzzy logic 

system. These three components together are sometime referred to as the 

fuzzy inference system (FIS). It is a computing framework based on the 

concepts of fuzzy sets theory, fuzzy “if-then” rules and fuzzy reasoning. 

The fuzzy inference system attempts to implement a nonlinear mapping of 

the inputs and outputs. This mapping is accomplished by a number of 

fuzzy “if-then” rules, each of which describes the local behavior of the 

mapping. 

 

Fuzzy Sets and Membership Functions [21] 

If X is a collection of objects denoted generically by x, then a fuzzy 

set A in X is defined as a set of ordered pairs: 

 

 A = {(x, µA(x)) | x in X} 

µA(x) is called the membership function (MF) of x in A. The membership 

function maps each element of X to a value in the continuous range (0,1). 

 

The definition of the fuzzy set is an extension of the classical set in 

which the characteristics function is permitted to have continuous values 

between 0 and 1. If the value of the membership function µA(x) is 

restricted to either 0 or 1, then A would be reduced to a classical set and 

µA(x) would be the characteristic function of A. As in classical set, the 

fuzzy set also has operations (like Union, Intersection, Complement) and 

the operators are referred to as fuzzy operators.  
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There are various classes of the membership functions 

(parameterized functions), which play an important role in fuzzy systems. 

Some of them are triangular MF, trapezoidal MF, gaussian MF, bell MF, 

sigmoidal MF, etc. Membership functions can be either one-dimensional 

or two-dimensional depending upon the application. The membership 

functions are shown in figure 3.1. 

 

 
Figure 3.1 Different Membership Functions from MathWorks 
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Fuzzy “if-then” rules 

A fuzzy “if-then” rule (or fuzzy rule, fuzzy implication, fuzzy 

conditional statement) assumes the form  

 

 If x is A then y is B; 

 

where A and B are linguistic values defined by fuzzy sets on the universes 

of discourse X and Y, respectively. The “x is A” is referred to as 

antecedent or premise, while “y is B” is referred to as the consequence or 

conclusion.  

Ex: if pressure is high then volume is small 

 

Fuzzy Reasoning 

Fuzzy reasoning also called as approximate reasoning is an 

inference procedure used to derive conclusions from a set of fuzzy “if-

then” rules and one or more conditions. There two approaches in fuzzy 

reasoning are the “max-min composition” and the “max-product 

composition”. Let us take a look at some example fuzzy “if-then” rules to 

understand the two approaches. 

 

Ex:  If ‘service’ is poor AND ‘food’ is rancid THEN ‘tip’ = cheap. 

If ‘service’ is poor OR ‘food’ is moderate THEN ‘tip’ = moderate 



 32

`  

Figure 3.2 Example for fuzzy reasoning approaches 

 

When the implication method is ‘min’ and the aggregation method 
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following reference [21] gives more information on these fundamental 

concepts (fuzzy sets, membership functions, fuzzy rules, fuzzy reasoning, 

etc). 

 

Fuzzy Inference System 
The fuzzy inference system utilizes the above mentioned fuzzy 

logic concepts while implementing a nonlinear mapping of the inputs and 

outputs. The construction of the fuzzy inference system is referred to as 

fuzzy modeling. Conceptually, fuzzy modeling can be pursued in two 

stages [21]. The two stages being 

- identification of surface structure; loosely trying to structure the 

knowledge available on the target system (process to control), 

taking advantage of the domain knowledge 

- identification of a deep structure; refining the surface structure 

with help of numerical data or tuning process to get to the 

optimal parameters 

 

The first stage includes the following tasks: 

1. Selecting relevant input and output variables 

2. Choose a specific type of fuzzy inference system model  

3. Determine the number of linguistic terms associated with each input 

and output variables. 

4. Design a collection of fuzzy “if-then” rules. 

 

 

There are three most common types of fuzzy inference systems. The 

main difference between the three approaches is the way in which a crisp 
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values is defuzzified from the given set of fuzzy rules and weights for each 

rule. The three types are  

1. Mamdani fuzzy inference model 

2. Sugeno fuzzy inference model 

3. Tsukamoto fuzzy inference model 

 

More details on these three fuzzy inference models and its characteristics 

are given in reference [21]. For the construction of the fuzzy logic ABS 

controller we will use the mamdani fuzzy inference model.  

 

The identification of the deep structure, which is the second stage in 

the fuzzy modeling process outlined in [21] has the following tasks. 

1. Choose an appropriate family of parameterized membership 

functions 

2. Determine the parameters of the membership functions used in the 

rule base 

3. Refine the parameters of the membership function using 

optimization techniques. 

 

The second stage in the fuzzy modeling process explains the process 

of selection of the membership functions and its parameters. The 

parameters are refined by tuning the fuzzy model. The tuning is done with 

the help of simulations with the vehicle models. Though the two stages 

outline what is involved in the fuzzy modeling process, each development 

environments have their unique steps in constructing the fuzzy model. The 

following paragraphs explain the steps in constructing the fuzzy inference 

system in the MATLAB environment. 



 35

 

 
Figure 3.3 Block Representation – steps in construction of fuzzy inference 

system [31] 
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The above figure shows the steps involved in the construction of the 

fuzzy inference system in the MATLAB environment. The five steps 

involved are 

 

1. Fuzzify Inputs:  

The first step involved in the processes is to convert the crisp inputs 

into fuzzy inputs by determining the degree to which they belong to 

each of the appropriate fuzzy sets via membership functions. The 

output of this process is the fuzzy degree of membership in the 

qualifying linguistic set (value between 0 and 1). 

 

2. Apply Fuzzy Operator: 

Once the inputs are fuzzified, we know the degree to which each 

part of the antecedent of a fuzzy rule has been satisfied. If a given 

fuzzy rule has more than one antecedent, then the fuzzy operator 

(generally AND, OR) is applied to the membership values of the 

fuzzified input variables. At the end of this process we get a 

cumulative number which indicates the fuzzy degree of 

membership for that particular rule. 

 

3. Apply Implication Method: 

Before applying the implication method of each of the fuzzy rule, 

the output from the previous step is scaled based on the weight of 

that particular rule. Typically the weights of the rules are 1, but at 

times to indicate the importance of one rule of the other, each rule 

might be given a different weight. A consequent in a fuzzy rule is a 

fuzzy set represented by a membership function. The consequent 
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is reshaped using a function (usually a single number) associated 

with the antecedent in the implication process. The input for the 

implication process is the single number given by the antecedent, 

and the output is a fuzzy set. The two methods “min” and “prod” are 

supported for the implication process. The “min” (minimum) 

truncates the output fuzzy set, and the “prod” (product) scales the 

output fuzzy set. 

4. Aggregate all outputs: 

Now we have output fuzzy sets (truncated or scaled) for each of the 

fuzzy rule in the fuzzy inference system. To make a decision we 

need to combines these fuzzy sets. This is process is referred to as 

aggregation. The input to the aggregation process is the individual 

output fuzzy sets, the output being a one fuzzy output set for each 

output variable. Since the aggregation process is cumulative, any of 

the following methods [max (maximum), sum and probor 

(probabilistic OR)] could be used. 

 

5. Defuzzify: 

The input to this process is aggregate fuzzy set and the output is a 

single number for each output variable. The centroid, bisector, 

middle of maximum, largest of maximum and smallest of maximum 

could be used as defuzzification method. 

 

  The above figure gives an overall picture in the construction of 

fuzzy inference system. For more information the appropriate MATLAB 

functions and GUIs involved in the construction of the fuzzy inference 
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system (FIS), please refer to the MATLAB Fuzzy Logic Toolkit Help Guide 

[31]. 

 

 

One Degree of Freedom (Longitudinal) Model 
Now that we have sufficiently looked at the fuzzy logic concepts 

and steps involved in the construction of a fuzzy inference system in the 

MATLAB environment, let us focus on the vehicle models used to tune 

and verify the FIS. The first model taken up in the research work was the 

‘longitudinal model’. The reason being the longitudinal model in essences 

captures the dynamics of braking and is a good model to test the 

controller. Also as part of their example programs, MathWorks had 

included a simulation of a “bang-bang” ABS controller that works with the 

longitudinal model.   

 

The bond graph methodology was used to model the physical 

system involved. The bond graph tool, an energy-based technique for 

modeling physical systems, was invented by Henry Paynter [32]. The 

modeling process is intuitive and the state equations can be deduced by 

looking at the bond graph [33].  The bond graph representation of the 

longitudinal model showing the dynamics of the brake system is shown in 

figure 3.4.  

 

The longitudinal model is presented here to explain the dynamics of 

the tire during braking. The ‘controller’, which supplies the braking torque 

‘Tb’, is modeled as a ‘modulated resistor’, which is being controlled, by the 

slip velocity and the type of tire-surface interaction so as to achieve the 
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prime function of an anti-lock brake system. The ‘tire-surface interaction’ is 

also modeled as a ‘modulated resistor’, modulated based on surface 

friction (as function of slip velocity) shown in figure 3.5. 
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Figure 3.4 Bond Graph – Longitudinal Model (Dynamics of Braking) 

 

Tb – Braking Torque 
Fb – Tire torque 
Fn – Normal Force 
v   – vehicle velocity 
W - Wheel Velocity 
r - radius of the wheel
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Figure 3.5 Representative graphs showing the friction- slip characteristics 

[34] 

 

The following figure (figure 3.6) shows the block representation of 

the anti-lock brake system. The figure shows the interaction between the 

vehicle dynamics, wheel dynamics, tire-road surface dynamics and the 

controller.  The controller would take in a slip value and the output of the 

controller is the braking torque which is applied to the wheel to bring the 

vehicle to a halt. 
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Figure 3.6 Block Representation showing the dynamics of an anti-lock 

brake system 

 

Bang- Bang Controller 

Before constructing the fuzzy logic controller to work with the 

longitudinal model, simulation runs were carried out with a bang-bang 

controller. The bang-bang controller is devised around the fact that the tire 

friction is high around the 20% slip value. The bang- bang controller is 

basically an “on/off” type controller, where the brake torque is applied 

when the slip value is off the target and vice versa. The simulation is 

performed in Simulink, a simulation toolbox in MATLAB. The following 

figure (figure 3.7) shows the Simulink block diagram for a bang-bang 

controller with the longitudinal model (developed by the MathWorks as a 

demo). 
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Figure 3.7 ABS Braking Model with bang-bang controller from MathWorks. 

 

 

The simulation results for simulation run with dry concrete as the 

road surface profile (figure 3.8) are shown in figure 3.9. 
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Figure 3.8 Representative Mu-Slip curve for dry concrete 
 
 

 
(a) 
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(b) 

 

 
(c) 

Figure 3.9 Simulation Results for bang-bang controller 
 

 
Fuzzy Logic Controller 

One of the major objectives in the research work was to construct 

an adaptive fuzzy logic controller which could be implemented on a 1/5th 

scale model vehicle. The logical step towards that objective was to 

construct a fuzzy logic controller to work with a longitudinal model and run 



 45

some simulations. The crisp input would be the slip value and the output 

from the fuzzy logic controller would be the brake torque. The following 

figure (figure 3.10) shows a Simulink block diagram for the ABS braking 

model with the fuzzy logic controller. The membership functions of the 

input and output variables, the fuzzy “if-then” rules, and the methods 

employed and the fuzzy surface associated with the fuzzy logic controller 

is shown in Appendix A [Fuzzy Logic Controller – Longitudinal Vehicle 

Model]. 

 

 
Figure 3.10 ABS Braking Model with fuzzy logic controller 

 

 

The simulation results for simulation run with dry concrete as the 

road surface profile (figure 3.8) are shown in figure 3.11. 
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(a) 

 
(b) 
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(c) 

Figure 3.11 Simulation Results for fuzzy logic controller 
 
 
Comparison of the Controllers 

There are two significant points to note from the simulation results. 

One is that the stopping distance is lower with a fuzzy logic controller than 

the bang-bang controller. The other being the wheel velocity is better 

controlled with the fuzzy logic controller. The variation in slip during the 

control process is minimal in the case of the fuzzy controller. This shows 

the fuzzy logic controller is ideally suited for the ABS systems, where 

better stopping distance and better controllability are its main aspects. 

 

One of the other desirable features is that the fuzzy logic controller 

constructed adapt to different surface conditions. Now when the simulation 

was run with different road surfaces (like wet and ice), the fuzzy logic 

controller would not adapt directly, one had to manually tweak the 

parameters to make it work. The next step was to construct a nonlinear 

fuzzy logic controller with gain-scheduling which would work with different 
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road surfaces. Now instead of making it work with the longitudinal model, 

it was decided to make it work with the 1/5th scale model vehicle (available 

for implementation), so once the fuzzy logic controller is constructed it 

could be ported to the real physical system. 

 

1/5th Scale Vehicle Model 
The base of the physical system for the 1/5th scale vehicle model 

and the longitudinal model is the same. Both the models deal with vehicle 

dynamics, wheel dynamics, tire-road surface dynamics and the controller 

dynamics. The physical components in each of these subsystems vary 

from one vehicle model to another. Modeling of the 1/5th scale vehicle with 

the vehicle dynamics, wheel dynamics, tire-road surface dynamics, the 

controller and the brake system dynamics was developed by Al-Sharif 

[30]. The model was verified to work with a bang-bang controller in that 

earlier research work.  Hence the model was adapted here with a slight 

modification for testing the adaptive fuzzy logic controller. The Simulink 

block diagram for the complete model is as follows (figure 3.12). 

 
Figure 3.12 Complete Simulink Representation of 1/5th Vehicle Model 
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The modeling approach of the entire system was to divide it into 

three subsystems, the vehicle-road system, brake system and the 

controller. The vehicle-road system model, which deals with the vehicle 

dynamics, wheel dynamics and tire-road surface dynamics, is similar to 

the longitudinal model discussed earlier. The brake system models the 

caliper brake system found on the 1/5th scale vehicle. The controller model 

is basically a set of logic statements (bang-bang controller) or fuzzy “if-

then” rules (fuzzy logic controller) that gives the required brake torque for 

an input slip value. As the focus is on the construction of the fuzzy logic 

controller, the individual subsystem bond graphs are not detailed here. 

More information on the individual subsystem bond graphs and the 

Simulink representations are described by Al-Sharif [30]. The complete 

bond graph of the ABS system is shown below (figure 3.13). The dotted 

line (information signals) which connects the vehicle-road system and the 

brake system represents the ABS controller.  
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Figure 3.13 Bond graph representation - ABS braking system model for 

1/5th scale vehicle 

 

 

Bang-Bang Controller Design 

The bang-bang controller for the 1/5th scale vehicle model follows 

the logic statements 

Brake 
System 

Vehicle-Road 
System 



 51

If the wheel slip falls below a certain predetermined value, λlow, the 

control system sends a signal to the brake system to apply the 

maximum brake force. 

 If the wheel slip goes above a predetermined value, λhigh, a signal 

to implement the minimum brake force is sent. 

If the wheel slip is in the sweet spot region, the current signal is 

maintained to hold the current brake force setting.  

 
The sweet spot region is the region between the λlow and the λhigh 

values in the friction-slip characteristics curve. Ideally the bang-bang 

controller tries to control brake torque so that the slip value stays in the 

sweet spot region. The following figure (figure 3.14) shows the Simulink 

representation of the controller. 

 
Figure 3.14 Simulink Model of Logic Used by Bang-Bang Controller [30] 
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Earlier we have looked at the simulation where only one road-

surface profile was used in longitudinal model simulation. To verify the 

adaptability of the controller, we have to vary the road-surface profile 

during the simulation run. The bang-bang controller was tested with two 

different road surfaces in a single simulation run. For the first 3 sec of the 

simulation (t =< 3 sec), a representative mu-slip curve for ice was used 

and for the rest of the simulation (t > 3sec) the representative curve for dry 

concrete was used. A variable step stiff type solver (ode15s) was used for 

integration purposes in the simulation. The following figure (figure 3.15) 

shows the representative curves of the road-surface characteristics used 

for the simulation.  The simulation results are also shown in figure 3.16. 

 

 
Figure 3.15 Representative mu-slip characteristic curves. 
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(a) 
 

 
 
 

(b) 
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(c) 

 
Figure 3.16 Simulation Results –Bang-Bang controller 

 

Nonlinear Fuzzy Logic Controller – 1/5th scale vehicle model 

The earlier fuzzy logic controller used in the longitudinal model was 

not able to adapt to the different surfaces and the parameters were 

tweaked manually to make it work. In the construction of the nonlinear 

fuzzy logic controller for the 1/5th scale vehicle model, a new approach 

was used. In the earlier approach, the fuzzy logic controller looked only at 

the slip values and the output was the gain constant which would be 

multiplied by a weight term (constant) and a bias (constant) would be 

added to that output. This approach would shift the brake torque based on 

the weight and the bias terms. In the new approach, it was decided to look 

at not just the current slip value but also at the previous slip value. The 
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information on the previous states would in essence convey what is 

happening when a certain brake torque is applied. 

 

The approach was to look at two different fuzzy logic controllers or 

rather two different fuzzy inference systems with different “if-then” rules 

and input/ output variables so that the manual tweaking of the bias and 

weight terms (of the previous fuzzy controller) can be replaced by a FIS. 

The two FIS devised are the “gain fuzzy controller” and the “proportional 

derivative (PD) fuzzy controller”. The gain fuzzy controller is similar to the 

one used with the longitudinal model. It looks at the current slip values to 

give an output which will essentially tell the system whether or not to 

increase or decrease the output brake torque. The proportional derivative 

fuzzy controller looks at two inputs; one is the current slip value and the 

other is the difference in the current and previous slip values. The output 

of the PD fuzzy controller is a constant which proportionate the gain 

constant based on the fuzzy “if-then” rules. Both these fuzzy controller in 

tandem provide the nonlinear nature required for the ABS controller to 

adapt to the different road surfaces. The membership functions of the 

input and output variables, the fuzzy “if-then” rules, and the methods 

employed and the fuzzy surface associated with these fuzzy logic 

controllers are shown in Appendix B [Fuzzy Logic Controller – 1/5th scale 

vehicle model]. The following figure shows the Simulink representation of 

the nonlinear fuzzy controller. 
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Figure 3.17 Simulink representation of nonlinear fuzzy controller. 
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Simulation runs were carried out to validate the adaptive nature of 

the fuzzy logic controller. The road profile (two different road surfaces) as 

described in the previous section (figure 3.15) was used in the simulation 

runs. The results of the simulation are shown in the figure 3.18. 

 
(a) 

 
(b) 
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(c) 

Figure 3.18 Simulation Results – Nonlinear Fuzzy Logic Controller 

 

Comparison and discussion of results 

Looking at the results, it can be said that the fuzzy logic controller is 

able to adapt to changes in road surfaces, while bang-bang controller 

does not. Various road surface profiles were taken up in different 

simulation runs and it proves that the constructed fuzzy logic controller is 

adaptive to changes in the road surface conditions. It is interesting to note 

that the stopping distance with the bang-bang controller is lower than the 

fuzzy logic controller. The reason is because during the control process 

with bang-bang controller, the wheel is locked for a good 2 seconds, which 

typically slows the vehicle down significantly and hence lower the stopping 

distance. However, a prime objective of the antilock brake system is to 

maintain controllability at all times. As explained earlier, when the wheel is 

locked, the control over the vehicle can be lost. Thus, we see that 
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although the fuzzy logic controller takes a longer time to stop, it certainly 

satisfies the prime objective of the antilock brake system. The other 

interesting point is the variation of slip over time in the control process. 

With the fuzzy logic controller, the variation of slip over time is very 

minimal. 

 

Overall, the simulation data validates the hypothesis – can a fuzzy 

logic controller be able to adapt to changes in road-surface conditions? 

Though the road-surface characteristic curves used in the simulation were 

representative curves, it can be stated that fuzzy logic controller is 

adaptive to changes in road-surface conditions in the simulation 

environment. The next stage would be to implement this nonlinear fuzzy 

logic controller in a real physical environment and further validate. The 

following chapter explains experiments and results from implementing on 

a 1/5th scale vehicle.  These results would throw light on the validity of the 

ABS model (vehicle-road system, brake system and controller model) and 

also provide insights into the issues encountered while implementing a 

fuzzy logic controller.  
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Chapter 4: Experimentation 
 

As described in the previous chapters, the implementation of the 

fuzzy logic ABS controller is done on a scaled test platform. The test 

platform consists of a test track, test vehicle and a real-time controller with 

associated signal conditioning and data acquisition hardware. The test 

platform is the hardware component of the test setup. The software 

component is LabVIEW Real Time ® (RT), a graphical programming 

language as mentioned in the previous chapters. The data acquisition and 

control software is programmed using National Instruments' (NI) LabVIEW 

RT and the software is run on the real-time controller to be able to achieve 

deterministic real-time ABS control. The real-time control issues are 

discussed in more detail in [30]. 

 

Hardware 
The test track has a ramp to accelerate the vehicle and a flat bed 

where the vehicle decelerates due to the application of brake according to 

the control algorithm. The unique feature with this arrangement is that the 

flat bed could be replaced with different surfaces.  

The test vehicle is a 1/5th scale Porsche GT2 made by FG 

Modellsport [35]. The test vehicle was instrumented with encoders, 

accelerometer and brake servos. The encoders provide wheel speed data. 

The encoders are found on the left and right wheels and another encoder 

is located on the differential. Since the brakes are not applied on the rear 

wheels, the differential should approximately give the vehicle speed as 

required for the control algorithm. The test vehicle also has brake servos 

for right and left wheels. The brake system, as explained earlier, is a cable 
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brake system actuated by brake servos. An accelerometer is also 

mounted on the rear end of the vehicle to provide the acceleration data 

during the run.  

The real time controller is a National Instruments’ RT Engine (NI 

PXI – 8156B) running LabVIEW RT. The data acquisition and control 

hardware comprises of NI 6070E (Multifunction I/O DAQ card) and NI 

6602 (Timing I/O card). All of these three modules are plugged into the 

PXI chassis (NI PXI 1000B). The software module resides in the NI RT 

Engine. The timing I/O card is used to acquire the speed data from the 

three encoders. The Multifunction I/O DAQ card is used for controlling the 

brake servo voltage and also for acquiring the acceleration data from the 

accelerometer.  

In addition to the data acquisition and control hardware, there is 

some signal conditioning hardware to condition the signals. The raw 

signals from the encoders are noisy and hence signal conditioning is used 

to filter the noise. The signal conditioning hardware essentially consists of 

a buffer for the encoder signal and a transconductance amplifier for the 

output voltage signals. The encoder signal is passed through a buffer (op-

amp inverter) to provide a clean signal to the control algorithm. The output 

voltage for the brake servos from the multifunction I/O card is passed 

through a transconductance amplifier (voltage to current converter) to get 

a proportional current to drive the brake servo. From the bond graph 

model for the servo, which is essentially a gyrator, it can be seen that if we 

supply a voltage, then it basically controls the speed of the servo arm 

motion. If we supply a current, it basically controls the torque of the servo 

arm. Now to control the brake pad force, it would be ideal to supply the 

current to the brake servos instead of the voltage, hence a 



 62

transconductance amplifier to provide a proportional current. The figure 

4.1 shows the hardware components in the experimental setup. 

 
Figure 4.1 Block Representation of the Hardware Components in 

Experimental Setup 
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Software 
 The software is the brain of the ABS control system. The software 

in the experimental setup is implemented in LabVIEW RT. The typical 

components found in the software are a data acquisition module, control 

algorithm module, control application module and data log module. The 

figure 4.2 shows the various software modules. 

 
Figure 4.2 Block Representation of Software Modules  
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The encoder data and acceleration data acquisition modules are 

together referred as data acquisition module. The data acquisition module 

has routines for acquiring data from the sensors. The control algorithm 

module has the fuzzy logic controller, which takes the speed data and 

gives a voltage output for each of the brake servos. The control 

application module (left and right brake servo control) has routines which 

apply the appropriate voltage output to the brake servos.  The data log 

module logs the data during the experiment run.  

 The control algorithm module is similar to one built in Simulink. 

Using the Simulink Interface Toolkit (from National Instruments), it is 

possible to convert a Simulink block diagram into a *.dll (dynamic link 

library) that can be used by LabVIEW RT. The control algorithm module in 

LabVIEW RT is a dll call to a function which has the fuzzy logic embedded 

in it. Figure 4.3 shows the process of converting the simulink block into a 

labview subroutine (VI – virtual instrument). 
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Figure 4.3 Conversion of a fuzzy logic Simulink block into a VI. 

 

 MathWorks RTW (Real Time Workshop) is used to convert 

Simulink blocks into code that can be used on different target platforms. 

The National Instruments’ Simulink Interface toolkit provides the tools to 

use the RTW to convert Simulink blocks into LabVIEW subroutines. The 

LabVIEW subroutine created through the conversion process needs to be 

modified slightly to be used in the control algorithm module. The run time 

user interface for the software module is shown in figure 4.4.  

 

Simulink Block Diagram 
(.mdl file)  
(fuzzy logic component) 

MathWorks RTW &
Simulink Interface 

Toolkit 

MathWorks RTW and 
the  Simulation Interface 
Toolkit convert the 
Simulink block into a 
form that can be utilized 
by a target platform –
LabVIEW (creates a 
DLL)

LabVIEW subroutine 
consists of a DLL call. The 
DLL is created using 
MathWorks RTW and 
Simulink Interface toolkit.  

LabVIEW 
Subroutine 
(.vi file) 



 66

 
 

Figure 4.4 Run Time User Interface – Software Module 

 

Experiment Procedure 
 Experimental runs are performed to look at the performance of the 

fuzzy logic ABS controller. The fuzzy logic ABS controller which was tuned 

during the simulation process is used here in the implementation. The 

main focus is to compare the fuzzy ABS controller with a bang-bang ABS 

controller and look at the differences in performance. The experiments 

performed are straight line ABS braking. 

 

 The vehicle is pulled back onto the ramp of the test bed by means 

of a steel cable. Once the vehicle has reached a sufficient height on the 

ramp, it is allowed to stabilize. The software is downloaded on to the RT 

Engine target. The user interface queries the user for the run time, brake 

delay time and whether to it is timed or remote braking and also whether 

we are simulating the run or doing actual experiments. Once the 

appropriate inputs are set, the “run” button is clicked. This starts the outer 

loop of the software which dis-engages the steel cable. Once the steel 

cable is released, the vehicle accelerates down the ramp and after the 

brake delay time, the control loop (main loop) is activated. The main loop 
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is shown in figure 4.2. For every iteration of the main loop, data from the 

encoders and the accelerometer is acquired and send to the control 

algorithm module. The control algorithm module then sends a control 

output (based on the logic used) to the brake servo control modules. This 

continues until the “run time” has elapsed. Once the run is completed, 

data is saved on to the hard disk for post processing.   

 

The experiments were repeated with different initial heights 

(release points), different brake delay times for both bang-bang controller 

and fuzzy logic controller. Two different surfaces were used. One was a 

smooth plastic surface and the other was a smooth wooden surface. 

Though the surfaces do not resemble any real world condition 

encountered by vehicles, it was used here to compare the two controllers 

(bang-bang and fuzzy logic) under different environments.  

 

 A second set of experiments were performed by Longoria, et. al 

[36] as part of an ongoing research to determine steady state friction and 

cornering coefficients. In the steady state experiments for determining the 

friction coefficient, the vehicle is held stationery and one of the wheels is 

placed on top of an aluminum drum. The aluminum drum is driven by a 

motor. Optical encoders are used to get the speed data for the drum and 

the wheel. A known brake torque is applied by means of a prony brake 

apparatus. At steady state, the brake torque would be balanced by the 

torque generated due to the friction between the wheel and the drum. 

Friction coefficient is deduced from the brake torque and the normal load 

on the tire. To determine the cornering coefficient, the wheel is steered at 

a known angle and clamped in that position. The drum is driven by the 
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motor and the brake torque is applied with the help of the prony brake. 

The lateral tire force that is developed is countered by holding the vehicle 

the steady at the initial steer position using a spring scale. At steady state, 

the steer angle would be the side slip angle. Cornering coefficient is 

deduced from the lateral tire force and the normal force on the tire. The 

block representation of the setup is shown in figure 4.5. 

 

 
 

 
Figure 4.5 Block Representation of the setup for determining friction and 

cornering coefficient [36]. 
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Results 
The data from steady state experiments outlined in the previous 

section shows the general trend of a mu-slip curve and also shows that 

the cornering coefficient decreases as slip value increases. From the 

figure 4.6, it is seen that the vehicle is stable (moderately high friction and 

high cornering coefficient) when the slip value is maintained between 0.1 

and 0.25.  

 
Figure 4.6 Mu-Slip Curve from steady state experiments by Longoria, et. 

al [36]. 
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The following sections describe the results from experimental runs 

performed using the bang-bang controller and the fuzzy logic controller 

where the brake time delay was 500 ms and the run time was 4000 ms. 

The release point was kept the same for the experiments. The release 

point and the brake time delay determine the maximum velocity that the 

vehicle would reach before the control logic kicks-in. As the test bed was 

not long enough, slow speed runs were carried out. When the release 

point was higher, the vehicle would not stop within the test bed and would 

crash into the safety zone. 

 

Bang-Bang Controller 

 The bang-bang control logic as used in the simulation was used in 

the experiments. Data from the experiments were logged and plotted. The 

brake servo voltage applied is either -1V or 5V. A brake control voltage of 

-1V would release the brake servo and a voltage of 5V would engage the 

brakes completely. The left brake servo did not respond to -1V or rather 

did not release. But the right brake servo worked fine. The data from the 

right wheel can be used to illustrate the difference between the bang-bang 

and the fuzzy logic controller.  The surface used was the smooth wooden 

surface. The figure 4.7 shows the right wheel encoder and the differential 

encoder data for both bang-bang and fuzzy controller. During the first 500 

ms (iterations), the vehicle comes down the ramp picking up speed, and 

after that ABS kicks in. The difference between the bang-bang and fuzzy 

is clearly seen in the right wheel encoder data. It can also be seen that at 

certain points during the run with the bang-bang controller, the wheel locks 

up. Figure 4.8 shows the acceleration data (raw data) for the run.  
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Comparison of Fuzzy ABS and Bang-Bang ABS
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Figure 4.7 Comparison of Encoder data for Bang-Bang and Fuzzy 

Controller. 
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Figure 4.8 Acceleration data –Bang-Bang ABS Controller 
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Fuzzy Logic ABS Controller 

 The fuzzy ABS control logic simulation block is converted into 

LabVIEW subroutines as explained earlier. The fuzzy control logic takes in 

the slip data and provides a voltage that is applied to the brake servos. 

While applying the brakes based on the voltage output from the fuzzy 

controller, it is seen that it gradually increases from 0V to a positive value 

and when the fuzzy controller detects an impeding wheel lock condition, it 

sends an output to release the brakes. Now the voltage to release the 

brakes is -1V. Then again, the voltage is increased based on the fuzzy 

controller output to apply the brakes and again to release the brakes a -1V 

is applied. This cycle continues until the vehicle comes to a stop.  

The experiment data plots from the runs for fuzzy logic controller 

with the wooden surface are shown in figure 4.7. The plot shows the right 

wheel encoder data and the differential encoder data. It can be seen that 

with the fuzzy logic controller, the wheel does not lock up, thereby 

maintain controllability during braking. The figure 4.9 shows the 

acceleration data (raw data) for the run. Figure 4.10 shows the 

comparative stopping distance plots for the fuzzy and the bang-bang 

controller. 

Similar runs with the fuzzy logic controller were performed using the 

plastic surface. It was seen it took longer for the vehicle to stop on the 

plastic surface. The variables (run time, brake delay time and release 

position) were kept the same for these runs. The only difference from the 

earlier runs is the surface. Figures 4.11, 4.12, 4.13 and 4.14 show the 

data from two runs under similar conditions. The loop rate for each 

iteration was around 1.5 ms. 
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Acceleration Data for Fuzzy Controller
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Figure 4.9 Acceleration Data - Fuzzy Logic ABS Controller 

 
Figure 4.10 Comparison of Stopping Distances 
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Comparison of Differential Speeds for two 
different runs
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Figure 4.11 Comparison of differential encoder data for two runs with 

fuzzy ABS under similar conditions 

 

Comparison of Right Encoder Data
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Figure 4.12 Comparison of right wheel encoder data for two runs with 

fuzzy ABS under similar conditions 
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Comparison of Right Slip Value
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Figure 4.13 Comparison of right slip data for two runs with fuzzy ABS 

under similar conditions 
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Figure 4.14 Comparison of right brake servo voltages for two runs with 

fuzzy ABS under similar conditions 
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Figure 4.13 shows the slip data from the experimental runs with the 

fuzzy controller. It can be seen that the slip value is maintained under 0.2 

during the entire run. As seen from the steady state experiment results 

(figure 4.6), this ensures that vehicle maintains controllability during the 

run, which is one of the prime objectives of an antilock brake system.  

 

In figure 4.14, only the right brake servo voltage profiles are shown 

as the response of the left brake servo to the applied voltage was not as 

expected. As explained earlier, the left brake servo would not release 

even when applied a negative voltage. The solution to this issue is to 

replace the left brake servo, but this was not done in time for these 

experiments because the data from the right wheel was sufficient to 

explain the implied results. From the plots for the different runs, it is seen 

that there is variability when repeating the experiments under similar 

conditions. These variations are normal and are within acceptable limits. 

The conclusions drawn from these experiments are reasonably proven. 

 
Conclusion 
 A main result from the experiments conducted, is demonstrating the 

ability to model a fuzzy controller in a simulation environment and to 

implement it on a real time controller (National Instruments’ RT Engine) 

using a systematic set of software and hardware tools. This method 

provides for a rapid prototyping environment, where the ABS controller 

can be developed and tested in a simulation environment with various 

vehicle models (longitudinal model and 1/5th scale vehicle model) and 

easily ported to a real-time controller for actual experiments on a scaled 

test platform. The experiments proved that the approach can be 
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successful and can be used in the future to model and test more complex 

controllers. 

 The experimental data shows expected trends when compared with 

the simulation results. The experimental run with the bang-bang controller 

shows the wheel tending to lock up more often while braking. Generally 

when the slip value increases, the cornering coefficient decreases (figure 

4.6) and thereby the vehicle loses controllability. With the fuzzy logic 

controller, it can be seen that the slip values tend to fluctuate between 

0.10 and 0.20, where the friction and cornering coefficient is high. During 

the entire run, the fuzzy logic controller ensures that the wheel does not 

lock up and thereby achieves controllability throughout the run. Even 

though steer is not introduced in the experiments, it can be assumed that 

should a steer be introduced, the fuzzy logic controller would still control 

the slip value so that the cornering coefficient is high. The variation of slip 

value is also minimal with the fuzzy logic controller.  

  

One other fact from the experimental data is the longer stopping 

distance with the fuzzy logic controller. As explained by the simulation, the 

primary reason is that with the bang-bang controller, the wheel locks up a 

couple of times thereby slowing the vehicle very quickly. Another reason is 

the loop rate. With the fuzzy logic controller each loop takes an additional 

1 to 2ms, hence the frequency of the control output is lower in the case of 

the fuzzy logic controller. With better optimization, the loop rates can be 

reduced. The application of the brake control voltage is also another factor 

in reducing the stopping distance. The limitation with the brake servo is 

that to release the brake, a negative voltage is required and to reapply the 

brakes, the voltage has to be increased from -1V. It would be ideal to have 
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a brake system where a decrease in the applied voltage would tend to 

proportionally release the brake rather having to go all the way to  -1V.  

 So it is seen from the experiments that the results match up with 

the simulation data. Since the brake servos are controlled individually, it is 

anticipated that adaptability can be demonstrated on split mu surfaces. In 

a split mu surface, each wheel encounters different surface conditions. For 

example a vehicle with right wheels on snowy shoulder and the left wheels 

on dry or wet road surface. These and other tangible experiments (like 

experiments with steer) are considered future work. 
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Chapter 5: Conclusion and Recommendations 

Conclusion 

It is seen from the simulation and experiment results that fuzzy 

logic can be used as a controller in an antilock brake system. Also when 

compared with a bang-bang controller, it performs better on smooth 

surfaces (low mu surfaces). It has better controllability; the slip values are 

controlled in the region where the cornering coefficient and the friction 

coefficient are high. The scaled test platform is quite ideal for slow to 

medium speed runs. For high speed runs, the flat portion of the test bed 

may not be sufficiently long to bring the vehicle to a complete halt. Also 

different surfaces might be used in future tests to evaluate the control 

algorithms. The rapid prototyping environment as explained earlier is a 

very flexible approach for modeling and testing and tuning complex control 

algorithms. Antilock brake system as seen is a nonlinear system and the 

use of fuzzy logic for better controllability shows that the soft-computing 

tools may be used in other control problems where uncertainty and non-

linearity exists.  

 

Future Work 

 In the explorations made during this research, there were quite a 

few areas that were identified where future research may be taken up.  

The brake system used in the test platform is a cable-actuated one 

powered by brake servos. As was indicated in the Experimentation 
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chapter, an ideal brake system is one which would respond to the applied 

voltage in both directions (release and actuation in a similar fashion, not 

necessarily linear). A hydraulic actuated brake system should be 

considered as an improvement over the cable-actuated one. On the other 

hand, a comparative study of the different brake actuations could be taken 

up as part of future research to determine an optimal brake system for the 

1/5th scale vehicle. 

 The approach taken to determine the fuzzy rules and parameters to 

be used in the fuzzy logic controller were by a process of manual tuning. 

ANFIS or Adaptive Neuro Fuzzy Inference System is a soft computing 

approach where neural networks are used to determine the fuzzy logic 

parameters (membership functions). To start with, the basic membership 

functions are used and as the neural network trains on the data, the 

membership functions are tuned to better represent the control process. 

 One other question that needs to be answered is whether the fuzzy 

logic controller developed for the scaled vehicle would hold well for a full 

scale vehicle. To be able to compare the scaled implementation and a full 

scale implementation, it would be necessary to extract dimensionless 

variables. The Buckingham’s Pi theorem looks into the dimensional 

analysis of these variables. The Buckingham’s pi theorem is one such 

approach to look at the scaling issues. Work has to be done in this 

direction to ascertain the scalability issue. 



 81

 Split mu surface conditions occur when the left and the right wheels 

encounter different surfaces. This affects the performance of the antilock 

brake system and the stability of the vehicle. Since the fuzzy logic 

controller implementation looks at each wheel individually, it should work 

for split mu conditions. Split mu experiments and other tangible 

experiments could be conducted to look at the performance of antilock 

brake systems, with preliminary testing on the scaled vehicle. 

 

 Another factor that has some scope of improvement is the “control” 

loop rate. The controller can be optimized to lower the loop rate, thereby 

increasing the frequency of control output. The flat test bed used for the 

implementation is not long enough for high speed runs. The only other 

solution is to have a longer test track. The experiments conducted were 

straight brake runs with no steer. It would be interesting to look at the 

performance of the antilock brake system controllers on runs where the 

steer is introduced. The cornering coefficient kicks in during a steer. 

Indeed, it might be said that the controllability of the vehicle during braking 

and steering is a much more critical issue to examine in ABS experiments. 
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Appendix A. Fuzzy Logic Controller  
– Longitudinal Model 

 
 

 
 

Figure A.1 Fuzzy Inference System - FIS 
 

 
 The figure shows the Fuzzy Inference System (FIS) used in the 
longitudinal model. The figures in the following pages show the input 
membership functions, output membership functions, fuzzy if-then rules 
and the controller surface. 

 
 
 
 



 83

 
 
Figure A.2 Input Membership Functions – Current Slip 
 

The figure shows the membership functions for the input variable 
“currslip”. It shows four different membership functions (low, normal, high 
and very high) spread over a range [0 1].The “low” and “normal” 
membership functions (mf) are of the type “gaussian mf”. The “high” 
membership is a “triangular mf”. The “very high” is a “pimf” type 
membership function. 
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Figure A.3 Output Membership Functions – Torque Change 
 
 The figure shows the membership functions for the output variable 
“torchange”. It shows four different membership functions (decrease, 
low_decrease, no_change and increase) spread over a range [-1 1].The 
“low_decrease” and “no_change” membership functions are “gaussian 
mf”. The “increase” membership is a “triangular mf”. The “decrease” is 
“zmf” type membership function. 



 85

 
 

Figure A.4 Rule Viewer 
 

 
For the “currslip” input shown by the red vertical line on the left, of 

the four rules shown only two are "activated" by a membership value 
greater than zero. Each rule is weighted on the right (blue areas) and a 
compounded average is computed (thick red line in the bottom-right to 
generate a "crisp" (analog) signal as the controller action. 
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Figure A.5 Surface Viewer 
 
 

The figure shows the control surface generated as a result of the 
fuzzy rules. It shows the relationship between the input and the output for 
the controller. 
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Appendix B. Fuzzy Logic Controller  

-1/5th Scale Vehicle Model 
 

 
 
Figure B.1 Gain Fuzzy Logic Controller - FIS 
 
 
 The Gain Fuzzy Logic Controller is similar to FIS used for the 
longitudinal model with slight modifications. 
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Figure B.2 Input Membership Functions – Current Slip 
 
 

The figure shows the membership functions for the input variable 
“currslip”. It shows four different membership functions (low, normal, high 
and very high) spread over a range [0 1].The “low” ,“normal” and “high” 
membership functions are of the type “gaussian mf”. The “very high” is a 
“pimf” type membership function. 
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Figure B.3 Output Membership Functions – Gain Constant 
 
 

The figure shows the membership functions for the output variable 
“torchange”. It shows four different membership functions (decrease, 
low_decrease, no_change and increase) spread over a range [-1 1]. The 
“low_decrease” and “no_change” membership functions are “gaussian 
mf”. The “increase” membership is of the type “smf”. The “decrease” is a 
“zmf” type membership function. 
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Figure B.4 Rule Viewer 
 
 

For the “currslip” input shown by the red vertical line on the left, of 
the four rules shown only two are "activated" by a membership value 
greater than zero. Each rule is weighted on the right (blue areas) and a 
compounded average is computed (thick red line in the bottom-right to 
generate a "crisp" (analog) signal as the controller action. 
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Figure B.5 Surface Viewer 
 
 

The figure shows the control surface generated as a result of the 
fuzzy rules. It shows the relationship between the input and the output for 
the controller.  
 
 
 
 
 
 
 
 
 



 92

 
 
Figure B.6 Proportional Derivative Fuzzy Logic Controller - FIS 
 
 The figure shows the Proportional Derivative Fuzzy Inference 
System (FIS) used in the 1/5th scale vehicle model. The figures in the 
following pages show the input membership functions, output membership 
functions, fuzzy if-then rules and the controller surface. 
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Figure B.7 Input Membership function – Slip Difference 
 
 

The figure shows the membership functions for the input variable 
“slipdiff”. It shows three different membership functions (low, medium and 
high) spread over a range [0 1]. The “low” is “zmf” type membership 
function. The “medium” is a “gaussian mf” type membership function. The 
“high” membership is a sigmodial membership function “smf”.  
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Figure B.8 Input Membership Function – Current Slip 
 
 

The figure shows the membership functions for the input variable 
“currslip”. It shows two different membership functions (low and high) 
spread over a range [0 1]. The “low” is “zmf” type membership function. 
The “high” membership is a sigmodial membership function “smf”.  
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Figure B.9 Output Membership Function – PD Constant 
 
 
 

The figure shows the membership functions for the output variable 
“propderi”. It shows three different membership functions (low, medium 
and high) spread over a range [0 1]. The “low” is “zmf” type membership 
function. The “medium” is of type “gaussian mf”. The “high” membership is 
a sigmodial membership function “smf”.  
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Figure B.10 Rule Viewer 
 
 

For the “currslip” and “slipdiff” input shown by the red vertical lines 
on the left, of the five rules shown only three are "activated" by a 
membership value greater than zero. Each rule is weighted on the right 
(blue areas) and a compounded average is computed (thick red line in the 
bottom-right to generate a "crisp" (analog) signal as the controller action. 
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Figure B.11 Surface Viewer 
 
 The figure shows the control surface generated as a result of the 
fuzzy rules. It shows the relationship between the inputs and the output for 
the controller. The surface is a 3-D one with two inputs and one output. 
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