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Abstract

A semianalytical method of lines is presented for solving elliptic partial di$erential equations, which are often used to describe
steady-state mass and energy transport in solids. The method provides a semianalytical solution for linear equations and can be used to
obtain explicit symbolic series solutions in one of the independent variables for non-linear equations.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Steady-state heat transfer in solids is governed by
Laplace’s equation and has been solved directly by various
numerical methods such as the successive over-relaxation
method and the implicit alternative direction method (see,
e.g., Carnahan et al., 1969). Another method that has been
used to solve Laplace’s equation is the method of false
transients (Schiesser, 1991, 1994). In this method, one adds
a time derivative of the dependent variable to Laplace’s
equation, uses :nite di$erences to approximate the spatial
derivatives, and then solves the resulting system of equa-
tions by the method of lines (Davis, 1984; Schiesser, 1991,
1994; Rice and Do, 1995; Schiesser and Silebi, 1997; Cutlip
and Shacham, 1998; Constantinides and Mostou:, 1999;
Taylor, 1999; Subramanian andWhite, 2000a). In this paper,
we present a method for solving Laplace’s equation using a
semianalytical method of lines. This method consists of us-
ing a central di$erence approximation for the second-order
derivative in one of the spatial directions followed by solv-
ing analytically the resulting system of second-order di$er-
ential equations by an analytical method. That is, the system
of second-order, two-point boundary value problems are
solved analytically by casting them in :rst-order form and
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solving the resulting set of :rst-order equations by using the
matrix exponential. Subramanian and White (2000b) used
this method previously to solve Laplace’s equation to an-
alyze current distribution problems in electrochemical sys-
tems. An important aspect of our technique is that the so-
lution obtained is semianalytical (e.g., analytical in y, :nite
di$erences in x). A useful aspect of our technique is that
the solution obtained is valid for both linear and non-linear
boundary conditions at y = 0 and 1. For non-linear elliptic
PDEs, our semianalytical method combined with iteration
for the non-linear term is used to obtain explicit symbolic
series solutions in y.

2. Semianalytical method of lines for linear elliptic PDEs

Example 1. Consider heat transfer in a rectangle of length
L and height H . The governing equation for the dimension-
less temperature distribution can be written as (Carslaw and
Jaeger, 1973, p. 166; Schiesser, 1991)

�2
92u
9x2 +

92u
9y2 = 0; (1)

where �=H=L is the aspect ratio. For simplicity, the follow-
ing boundary conditions are set:

u(0; y) = 0 for 06y6 1; (2)
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u(1; y) = 0 for 06y6 1; (3)

u(x; 0) = 0 for 06 x6 1 (4)

and

u(x; 1) = sinh(�	)sin(	x) for 06 x6 1: (5)

Eq. (1) with the boundary conditions (2)–(5) has the an-
alytical solution (Schiesser, 1991)

u= sinh(�	y) sin(	x): (6)

The :rst step in our solution process is to replace 92u=9x2
in Eq. (1) by a :nite di$erence approximation accurate to
order h2 to give

d2ui
dy2

=−�2 ui+1 − 2ui + ui−1

h2
; i = 1 : : : N; (7)

where N is the number of interior node points used in dis-
cretization of x and h= 1=(N + 1) is the node spacing. The
boundary conditions at x = 0 and 1 (Eqs. (2) and (3)) are
transformed as follows:

u0 = 0; (8)

uN+1 = 0: (9)

The boundary conditions at y = 0 and 1 are transformed as
follows:

ui(y = 0) = 0; i = 1 : : : N; (10)

ui(y = 1) = sinh(�	)sin(	ih); i = 1 : : : N: (11)

For convenience, let � = y�=h. This converts the governing
equation (Eq. (7)) and boundary conditions (Eqs. (8)–(11))
into the following system of equations:

d2ui
d�2

=−ui+1 + 2ui − ui−1; i = 1 : : : N;

u0 = 0;

uN+1 = 0;

ui(�= 0) = 0; i = 1 : : : N;

ui
(
�=

�
h

)
= sinh(�	) sin(	ih); i = 1 : : : N: (12)

In Eq. (12), there are N second-order equations. These are
converted to 2N :rst-order equations as follows (Rice and
Do, 1995; Subramanian and White, 2000b)
dui
d�

= uN+1+i ; i = 1 : : : N;

duN+1+i

d�
=−ui+1 + 2ui − ui−1; i = 1 : : : N (13)

with u0 = 0 and uN+1 = 0. The conditions at �=0 for these
2N di$erential equations are

ui(�= 0) = 0; i = 1 : : : N (14)

and

uN+1+i(�= 0) = ci; i = 1 : : : N: (15)

In Eq. (15), the unknown constants ci, i=1 : : : N are found
after integrating the equations in Eq. (13) and by using the
boundary conditions at y = 1 (�= �=h):

ui
(
�=

�
h

)
= sinh(�	) sin(	ih); i = 1 : : : N: (16)

Eq. (13) is a system of 2N linear :rst-order di$erential equa-
tions and can be written in matrix form as

dY
d�

= AY + b(�); (17)

where

Y = [u1; u2; : : : ; uN ; uN+2; uN+3; : : : ; u2N+1]T: (18)

(Note that Eq. (18) does not contain uN+1 because it is set
equal to zero by the boundary condition at x=1 (Eq. (12))).
A is the 2N × 2N coeHcient matrix de:ned by

A =

[
0 I

a 0

]
; (19)

where 0 is the zero matrix of order N × N , I is the identity
matrix of order N × N and a is an N × N matrix given by

a =




2 −1 0 0 0 · · · 0

−1 2 −1 0 0 · · · 0

0 −1 2 −1 0 · · · 0

...
...

...
...

...
...

...

0 · · · 0 −1 2 −1 0

0 · · · 0 0 −1 2 −1

0 · · · 0 0 0 −1 2




(20)

and b(�) is a column vector of order 2N × 1 which is a
zero vector since u0 = uN+1 = 0 in this case. Eq. (17) can
be integrated analytically by using the exponential matrix
(Amundson, 1966; Taylor and Krishna, 1993; Varma and
Morbidelli, 1997; Subramanian and White, 2000a):

Y = exp(A�)Y0 +
∫ �

0
exp[A(�− �)]b(�) d�; (21)

where � is a dummy variable of integration. Y0 is the initial
condition vector (Y0 =Y at �=0). For the example chosen,
Y0 is given by Eqs. (14) and (15):

Y0 = [u1; u2; ::uN ; uN+2; uN+3; : : : ; u2N+1]T&=0

= [0; 0; : : : ; 0; c1; c2; : : : ; cN ]T: (22)

For the example chosen, when N = 1 interior node point is
used, the dependent variable at x=0 and 1 are given by the
boundary conditions (Eq. (12)) as

u0 = 0 and u2 = 0: (23)
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The solution at the interior node point (i = 1) is given by
Eq. (21). When N = 1 interior node point is used (with
�=1), the solution at the interior node point is obtained using
Eq. (21) as (note that b(�) is zero for the example chosen)

Y=

[
u1

u3

]
=



u1

du1
d�




=




cosh(
√
2�)

1√
2
sinh(

√
2�)

√
2 sinh

(√
2�
)

cosh
(√

2�
)



[
0

c1

]
: (24)

Eq. (24) can be simpli:ed as

Y =

[
u1

u3

]
=



u1

du1
d�


=



c1√
2
sinh

(√
2�
)

c1 cosh
(√

2�
)


 : (25)

We call this a semianalytical solution (Eq. (25)), as the
solution obtained is analytical in � (or y). In Eq. (25), c1
is the unknown initial condition for du1=d�. The constant c1
is obtained using the boundary condition at y=1 (Eq. (16)
with �= 1) as

Yy=1 =




1

du1
d� �=1

h


=



c1√
2
sinh

(
2
√
2
)

c1 cosh
(
2
√
2
)


 : (26)

Next, the :rst row of Eq. (26) is substituted in the boundary
condition at y = 1 (Eq. (11)) to get

c1 =
√
2

sinh(	)

sinh(2
√
2)
: (27)

By substituting this value for c1 in Eq. (25), analytical so-
lutions for u1 and du1=d� are obtained. Note that since we
have used only one interior node point (N = 1), we only
have one constant c1. If we use N interior node points, we
will have N constants ci, i=1 : : : N that can be found using
the boundary condition at y = 1 (�= �=h).

2.1. Expediting the calculation of exponential matrix

We have used MapleJ to calculate the exponential ma-
trix in Eq. (24). When N increases, the time taken by Maple
to calculate the exponential matrix increases drastically. For
N =10, the matrix order is 20× 20. For this matrix, Maple
takes around 10 min to calculate the exponential matrix in
a 2:6 GHz processor with 2 GB RAM. For this particular
problem, one can derive analytical expression for the expo-
nential matrix by calculating the eigenvalues and eigenvec-
tors analytically (Varma and Morbidelli, 1997). However,
these expressions are valid for a particular problem only. If
the governing equation or the boundary condition changes,

one has to redo all the steps. When the boundary condition at
y=0 or 1 changes the coeHcient matrix A does not change.
But, if the boundary condition at x = 0 or 1 changes, the
:rst or last row of a matrix (Eq. (20)) changes according to
the boundary condition. Hence obtaining analytical expres-
sions for the eigenvalues and eigenvectors for every problem
would involve tedious algebra. To avoid this, the coeHcient
matrix A can be converted to canonical form (Amundson,
1966; Varma and Morbidelli, 1997)

A = PDP−1; (28)

Where D is the diagonal matrix of order 2N × 2N with the
2N distinct eigenvalues (�k ; k = 1 : : : 2N ) as its diagonal
elements. For elliptic partial di$erential equations, it can be
shown that all the eigenvalues are distinct and real. P is the
eigenvector matrix de:ned as

P= [P1; P2; : : : ; P2N ]; (29)

where Pk is an 2N × 1 eigenvector corresponding to the
eigenvalue �k . One of the main advantages of Eq. (28) is that
it simpli:es the calculation of exponential matrix (Amund-
son, 1966; Varma and Morbidelli, 1997):

exp(A�) = P exp(D�)P−1: (30)

Since D is a diagonal matrix, the exponential matrix of D
is easily obtained as follows (Amundson, 1966; Varma and
Morbidelli, 1997):

exp(D�) =




e�1� 0 · · · 0 0

0 e�2� · · · 0 0

...
...

...
...

...

0 0 · · · e�2N−1� 0

0 0 · · · 0 e�2N �



: (31)

Maple can be used to obtain the eigenvalues and the eigen-
vector matrix (P). Maple takes a few seconds to calculate
the eigenvalues (e.g., it takes 5 s for a 20 × 20 matrix).
However, Maple takes a long time to calculate the eigen-
vector matrix, P. To overcome this problem, we can obtain
a particular eigenvector Pk using the equation (Varma and
Morbidelli, 1997):

(A − �kU)Pk = 0; (32)

where U is the identity matrix of order 2N ×2N . We de:ne
Pk as

Pk = [�1; �2; : : : ; �2N ]T: (33)
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On substituting Eq. (33) in Eq. (32), we obtain for N¿ 3




−�k�1 + �N+1

...

−�k�N + �2N

2�1 − �2 − �k�N+1

−�1 + 2�2 − �3 − �k�N+2

...

−�N−2 + 2�N−1 − �N − �k�2N−1

−�N−1 + 2�N − �k�2N




= 0: (34)

Next, Eq. (34) can be solved to obtain the following expres-
sions for Pk

Pk = [�1; �2; : : : ; �2N ]T;

where

�1 = 1;

�2 = (2− �2k)�1;
�i =−�i−2 + (2− �2k)�i−1; i = 3 : : : N;

�N+i = �k�i; i = 1 : : : N: (35)

Note that we have arbitrarily chosen �1 =1 in Eq. (35). The
exponential matrix (Eq. (30)) once obtained is valid for any
set of boundary conditions at y= 0 and/or y= 1. Note that
Eq. (35) is valid for the Laplace’s equation (Eq. (1)) for any
boundary conditions at x=1, y=0 and 1. When the bound-
ary condition at x=0 changes, only the equation for �2 will
change (depending on the boundary condition) and all other
expressions are still valid. In addition, it can be shown that
the last expression in Eq. (35) (�N+i = �k�i; i = 1 : : : N )
is valid for any elliptic PDE in rectangular and cylindrical
coordinates. A simple procedure was written in Maple to
simulate this example (worksheet available upon request).
Maple’s inbuilt command can be used to obtain the eigen-
values. Once the eigenvalues are obtained, eigenvectors can
be obtained using Eq. (35). The total time taken for this pro-
gram with N = 18 node points (A is a 36 × 36 matrix) to
obtain the exponential matrix, semianalytical solution and
3D plots is less than 1 min (of which nearly 30 s are con-
sumed by Maple for setting up the equations, and obtaining
the 3D plot).

2.2. Error analysis

For the example chosen, the average Mux at x= 0 can be
calculated and used to estimate the error. The average Mux

Table 1
Error estimation

Number of interior Error associated with the Error associated with
node points, N semianalytical method, the method of
in the x direction ErrorSemianalytical (%) false transients,

Errorfalse transients (%)

2 28.20 147.21
4 12.75 57.87
6 6.90 30.12
10 2.88 12.33
14 1.57 6.65
18 0.99 4.15

in the x direction at x = 0 (along y) can be obtained as

Mux =
∫ y=1

y=0

[
9u
9x

]
x=0

dy: (36)

The exact value of this can be obtained from Eq. (6) (with
�= 1) as follows:

Muxexact =
∫ y=1

y=0

[
9
9x (sinh(	y) sin(	x))

]
x=0

dy

= cosh(	)− 1: (37)

The error associated with our semianalytical technique can
be calculated as follows:

Errorsemianalytical(%) =
|Muxsemianalytical − Muxexact|

Muxexact
100:

(38)

The error calculated by Eq. (38) decreases with an in-
crease in the number of interior node points N as shown in
Table 1. N = 18 node points are found to be suHcient to
obtain less than 1% error for the average Mux.
The error associated with the semianalytical method pre-

sented here is on the order of Ox2. However, the error as-
sociated with the method of false transients is on the order
of Ox2 + Oy2. To illustrate the superiority of the semi-
analytical technique compared to the method of false tran-
sients, we solved Eq. (1) by adding the pseudo-time deriva-
tive (Schiesser, 1991) and applying :nite di$erences in both
x and y directions. We chose the same number of interior
node points (N ) in both x and y directions. The method
of false transients was performed until the process reached
steady state. The error associated with the method of false
transients can be calculated as follows:

Errorfalse transients(%) =
|Muxfalse transients − Muxexact|

Muxexact
100

(39)

and are presented in Table 1. As shown in Table 1, semian-
alytical method is superior to the method of false transients
when the same number of node points is used. For a :xed
number of node points in the x-direction (N ) (accurate to or-
der h2), to get higher accuracy with the method of false tran-
sients, either a higher number of node points or higher-order
:nite di$erences should be used in the y direction. This is
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Fig. 1. Dimensionless temperature distribution inside a rectan-
gle—analytical method of lines for linear elliptic partial di$erential equa-
tions. (� = H=L = 1; N = 18).

true because our semianalytical method is analytical in the
y direction and the method of false transients is numerical
in the y direction.
The dimensionless temperature pro:le obtained for this

example (for � = 1) is plotted in Fig. 1 for N = 18 node
points. Because of symmetry, we get u1 = u2, etc.

Note that A depends only on the governing equation and
the boundary conditions at x = 0 and 1. It is convenient
that once the exponential matrix (exp(A�)) is found, the
exponential matrix can be used for a di$erent set of boundary
conditions at y = 0 and 1. This is true because the solution
obtained is analytical in the y direction and valid for any
boundary conditions in y.

Example 2. Consider the following boundary value prob-
lem
92u
9x2 +

92u
9y2 = 0 (40)

with the following boundary conditions:

u(0; y) = 0 for 06y6 1; (41)

u(1; y) = 0 for 06y6 1; (42)

u(x; 0) = 1 for 06 x6 1; (43)

9u
9y (x; 1) = 1− u(x; 1)4 for 06 x6 1: (44)

Eq. (44) is non-linear and consequently the solution of
this example problem will require iteration. However, the
exponential matrix obtained earlier in Example 1 is valid for
this case also. We just need to change the boundary condi-
tion Y0 according to Eq. (43) and recalculate the constants
c1; c2; : : : ; cN by using Eq. (44). The average surface tem-
perature at y = 1 is used as a criterion for convergence.
The pro:les obtained for this example are plotted in Fig. 2.
N=13 node points was found to be suHcient to obtain three
digit accuracy for this example.

Fig. 2. Dimensionless temperature distribution inside a rectan-
gle—analytical method of lines for linear elliptic partial di$erential equa-
tions with non-linear boundary conditions. (� = 1; N = 13).

Example 3. The technique described in this paper can also
be used for solving PDEs in cylindrical coordinates. For
example, consider the Graetz problem (Schiesser and Silebi,
1997)

2Pe(1− r2) 9T9z =
92T
9r2 +

1
r
9T
9r +

92T
9z2 (45)

with the following boundary conditions:
9T
9r (0; z) = 0 for 06 z6 zL; (46)

T (1; z) = 1 for 06 z6 zL; (47)

T (r; 0) = 0 for 06 r ¡ 1 (48)

and
9T
9z (r; zL) = 0 for 06 r6 1: (49)

The temperature distribution obtained by using our semi-
analytical method is plotted in Fig. 3 for Pe=10 and zL=2.
Note that values of Peclet number and zL are chosen so that
the e$ect of the axial conduction can be seen. For this exam-
ple, the average temperature at z=zL was used as a criterion
for convergence (i.e., the number of interior node points was
increased until the temperature at z= zL converged). N =10
node points was found to be suHcient to obtain three digit
accuracy.

3. Semianalytical method of lines for non-linear elliptic
PDEs

Example 4. The semianalytical method presented above
can be extended to treat certain non-linear PDEs. For ex-
ample, consider a non-linear di$usion-reaction problem

�2
92u
9x2 +

92u
9y2 = u2 (50)
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Fig. 3. Dimensionless temperature distribution inside a cylin-
der—analytical method of lines for linear elliptic partial di$erential equa-
tions in cylindrical coordinates Graetz problem. (Pe=10; zL=2; N=10).

with the following boundary conditions:

u(0; y) = 1 for 06y6 1; (51)

9u
9x (1; y) = 0 for 06y6 1; (52)

9u
9y (x; 0) = 0 for 06 x6 1 (53)

and

u(x; 1) = 0 for 0¡x6 1: (54)

Eq. (50) is non-linear only because of the term u2. The
procedure for solving this problem using our semianalytical
technique is as follows:
1. Replace the non-linear term in the equation (u2) by

g(x; y).
2. Next, :nite di$erences are applied in the x-direction and

the governing equation is converted to �=y�=h coordinate as

dui
d�

= uN+1+i ; i = 1 : : : N;

duN+1+i

d�
=−ui+1 + 2ui − ui−1

+
h2

�2
gi(�); i = 1 : : : N: (55)

3. Eq. (55) is cast into matrix form (see Eq. (17)). Note
that the A matrix is independent of g and gi(�) occurs only
in the b matrix given as follows:

b=
[
0; 0; : : : ; 0;

h2

�2
g1(�);

h2

�2
g2 (�); : : : ;

h2

�2
gN (�)

]T
: (56)

4. Since the A matrix is independent of g, the exponential
matrix is found by :nding eigenvalues and eigenvectors as
in Example 1.

5. For the :rst iteration, the values for gi(�) in Eq. (56)
are taken as

gi(�) = 0:5; i = 1 : : : N: (57)

6. The semianalytical solution is then found using Eq.
(21). Once the semianalytical solution is obtained, the un-
known boundary condition constants at y=0 (ci; i=1 : : : N )
are found using the boundary condition at y=1 (Eq. (54)).
7. After the :rst iteration, the values of gi’s are updated

using the semianalytical solution obtained as follows:

gi(�) = [(ui(�))previous iteration]2; i = 1 : : : N: (58)

8. Once new values for the gi’s are obtained, step 6 is re-
peated until three digit accuracy is obtained for the constants
(ci; i = 1 : : : N ).
9. To facilitate the integration involved in step 6, the gi’s

are converted to a series in �. For this example, 10 terms
were found to be suHcient (these series are not reported
here because of the space constraint).
10. This process yields series solutions for ui(y), i =

1 : : : N . For this example, three iterations were found to be
suHcient for convergence. When N = 2, the series solution
obtained for the interior node points are (�= 0:5)

u1(y) = 0:43096− 0:32384y2 − 0:09129y4

− 0:01461y6 + · · · (59)

and

u2(y) = 0:17041− 0:19178y2 + 0:01515y4

+ 0:00567y6 + · · · : (60)

A procedure was written in Maple to solve this non-linear
example. This procedure gives series solutions in y as the
output. The total time taken for this example with N = 10
node points was about 2 min using a 2:6 GHz processor with
2 GB RAM. The average dimensionless concentration at y=
0 is used as a measure for convergence. N =10 node points
were found to be suHcient for this non-linear problem (to
obtain three digit accuracy). The series solutions obtained
(forN=10 node points) are not reported because of the space
constraint. The dimensionless concentration distribution is
plotted in Fig. 4.

4. Discussion

The main features of our semianalytical technique can be
summarized as follows:
1. A semianalytical solution is obtained for linear elliptic

partial di$erential equations, i.e., the solution obtained is
analytical in the y direction and numerical in the x direction.
2. A closed-form semianalytical solution is obtained for

linear and non-linear boundary conditions at y = 0 and 1.
3. The solution once obtained can be used to do di$erent

boundary condition case studies because the solution ob-
tained is valid for arbitrary boundary conditions at y = 0
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Fig. 4. Dimensionless concentration distribution inside a rectan-
gle—analytical method of lines for non-linear elliptic partial di$erential
equations. (� = 0:5; N = 10).

and 1 and requires only recalculation of the unknown condi-
tions (constants c1; c2; : : : ; cN ) for di$erent sets of boundary
conditions at y = 0 and 1.
4. A semianalytical solution can be obtained for cylin-

drical coordinates (Example 3), composite domains (Subra-
manian and White, 2000b) and arbitrary geometries (Sub-
ramanian and White, 2000b) in the y direction and for
semi-in:nite domains in the y direction.
5. A semianalytical solution can be obtained for cer-

tain non-linear elliptic PDEs as shown in Example 4. For
non-linear problems, the number of iterations required will
vary with the problem. In addition, one has to note that the
coeHcient of second derivative (both x and y) in Eq. (50)
has to be independent of the dependent variable. Our semi-
analytical method can be applied only if the right-hand side
of the equation alone has non-linear terms.
6. In our paper, eigenvalues are obtained from Maple and

a procedure was written to obtain the eigenvectors. Alter-
natively, one could use series approximations for the expo-
nential matrix after scaling the matrix as described by Moler
and van Loan (1978).
7. In this paper, we have used :nite di$erences accurate to

the order of Ox2. Using :nite di$erence expressions accurate
to the order of Ox4 makes the coeHcient matrix (A) in
Eq. (17) dense and :nding the exponential matrix diHcult.
8. Even though the technique has been developed for a

single elliptic PDE, the same concept could be extended to
coupled linear and non-linear elliptic PDEs.
9. It should be straightforward to extend our methodology

to 3D elliptic PDEs. One could apply :nite di$erences in x
and y directions and integrate analytically in z.
In this paper, :nite di$erences were used to replace the

derivatives in the x-direction. Alternatively, one could use
orthogonal collocation or other discretization techniques and
derive semianalytical solutions in y.

5. Conclusions

For linear elliptic PDEs, a semianalytical solution based
on the matrix exponential method has been developed. For
non-linear elliptic PDEs, series solutions are developed by
using the semianalytical solution and iteration.

Notation

A coeHcient matrix
ci dimensionless unknown constants
h step size in the x direction (dimensionless)
H height of the rectangle, cm
L length of the rectangle, cm
N total number of node points
Pe Peclet number
u dimensionless temperature
Y dependent variable in vector form
zL dimensionless length of the cylinder

Greek letters

� aspect ratio, H=L
� dimensionless y ordinate =�y=h
� dummy variable

Subscript and superscript

i index of the node point
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