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Mathematical modeling and simulation of the operation of lithium-
ion batteries is not trivial, as concentration and potential fields must
be evaluated simultaneously in both solid and liquid phases. This
is complicated by the fact that the transport and kinetic parameters
which determine battery behavior are highly nonlinear, leading to
very complex governing equations. Doyle et al.1 developed a general
model based on concentrated solution theory to describe the internal
behavior of a lithium-ion sandwich consisting of positive and nega-
tive porous electrodes, a separator, and current collectors.2 This model
proved generic enough to incorporate further advancements in battery
systems understanding, leading to the development of a number of
similar models.3–13 Reviews of models for lithium-ion batteries can
be found elsewhere in the literature.10–12 Table I depicts a pseudo-two-
dimensional isothermal model for a lithium-ion battery.14–16 Table II
presents the various expressions used in the model, while Table III
shows the physical parameters used in this paper. For analysis and
control of lithium-ion batteries in hybrid environments (e.g. with a
fuel cell, capacitor, or other electrical components), there is a need
to simulate state of charge, state of health, and other parameters of
lithium-ion batteries in milliseconds. Full-order physics-based mod-
els may simulate discharge curves in several seconds to minutes,
depending on the solvers, routines, computers, etc. In contrast, empir-
ical models (based on correlations of past data) can simulate specific
operating scenarios in milliseconds. However, use of these models
under a different operating condition than for which they were devel-
oped may cause abuse or underutilization of electrochemical power
sources. This paper presents a coordinate transformation and mathe-
matical analysis for reformulation of physics-based models to solve
them quickly, conveniently, and accurately in a way that is valid for a
wide range of operating conditions and parameters.

The porous electrode model as given in Table I is a physics-based
first principles model that describes the behavior of a 1-D battery sub-
ject to isothermal conditions. This is a system of ten partial differential
equations (PDEs) in one linear coordinate, x, the radial coordinate, r,
and the temporal coordinate, t, which must be solved simultaneously.
The first equation is derived from concentrated solution theory and
material balances. The second equation is the charge balance in the
liquid phase while the third equation is the charge balance in the solid
phase. The fourth equation is Fick’s law of diffusion inside the solid
particles (solid phase). These equations must be applied to each re-
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gion individually, while noting that there is no active solid phase in
the separator region.

In order to simplify the model, the radial dependence of the solid
phase concentration can be eliminated by using a polynomial profile
approximation.14 Rather than representing the solid phase concentra-
tion as a continuous function of x, r and t, the solid phase is represented
by the particle surface concentration and the particle average concen-
tration, both of which are functions of the linear spatial coordinate
and time only. This type of volume-averaging17, 18 combined with the
polynomial approximation19, 20 has been shown to be accurate for low
to medium rates of discharge.21–25 This step eliminates equations 1.4
and 1.10 from Table I and results in the following equations for the
average and surface solid phase concentration:

∂

∂t
cs,avg

i = −3
ji
Ri

[1]

Ds,i

Ri
(cs,sur f

i − cs,avg
i ) = − ji

5
i = p, n [2]

where the subscript i refers to either the positive or negative electrode.
This step results in a total of 12 equations that must be solved across
the three regions: the positive and negative electrodes, and the separa-
tor. Although this reformulation results in a net gain of two additional
equations that must be solved, it is computationally advantageous be-
cause there are now only two independent variables (x and t) that
must be accounted for rather than three (x, r, and t). Note that the
polynomial profile approximation is not valid at high rates or short
times; it is efficient at long times and for low to moderate rates of
charging/discharging, and hence is used in this paper for demonstra-
tion purposes. For higher rates of discharge, a different approximation
for the solid phase concentration must be used in order to maintain ac-
curacy. Several such approaches can be found in the literature.15, 21–25

This paper uses the mixed finite difference approach developed by
Ramadesigan, et al.25 for simulation of discharge rates greater than
1C. The mixed finite difference approach uses 6 optimally spaced node
points (with 6 corresponding governing equations) to describe the be-
havior of the lithium ion concentration in the radial direction within
the solid phase particles. This is in contrast to the polynomial pro-
file approximation, which relies on 2 governing equations to describe
the solid phase concentration. This allows the mixed finite difference
approach to better capture the dynamics within the electrode at high
rates, though at the cost of additional computation time.

Typically, numerical approaches are used to solve these equations.
The first of these solution approaches have included discretization
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Table I. Governing Equations for Li-ion batteries.

Governing Equations Boundary Conditions

Positive Electrode
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]
+ ap (1 − t+) jp
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= 0 (1.1)
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Separator
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]
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Negative Electrode
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in both space and time.1–5 Recently, discretization in space alone
has been used by few researchers in order to take advantage of the
speed gained by time-adaptive solvers such as DASSL26 for the time
coordinate.27, 28 This reduces the system of PDEs to a system of dif-
ferential algebraic equations (DAEs) of index 1 with time as the only
independent variable. However, this results in a very large number of
nonlinear DAEs to be solved when a finite difference scheme is used.
Assume that 50 equally spaced node points in the linear length scale
(i.e. in x) are used to discretize each of the cathode, separator, and an-
ode. The cathode now has 50 ordinary differential equations for both
the electrolyte concentration and solid-phase average concentration,
and 50 algebraic equations for the potential in both the electrolyte and

solid phase as well as for the solid-phase surface concentration. This
results in a system of 250 DAEs for the cathode. The anode is dis-
cretized in the same manner resulting in 250 additional DAEs. Since
there is no active solid phase in the separator, using 50 node points
will result in 50 differential equations for the electrolyte concentration
and 50 algebraic equations for the electrolyte potential, for a total of
100 DAEs to describe this region. Thus, the total number of DAEs to
be solved for the full-order model across the entire cell is 250 + 250
+ 100 = 600 DAEs.

Given the large number of DAEs that must be solved, the full order
spatial discretization is slow and computationally inefficient. These
inefficiencies are compounded when used for control or optimization,
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Table II. Additional Expressions for Li-ion batteries.

jp = 2kpc0.5cs
∣∣∣0.5

r=Rp

(
cs

max,p − cs |r=Rp

)0.5
sinh
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RT
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i
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4.1253 × 10−2 + 5.007 × 10−4c − 4.7212 × 10−7c2

+1.5094 × 10−10c3 − 1.6018 × 10−14c4

)
, i = p, s, n (2.3)
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which require fast simulation to be used effectively. Therefore it is not
ideal to use a direct full order finite difference approach for these pur-
poses. There have been many approaches to simplify the battery model
for efficient evaluation while attempting to maintain a high degree of
accuracy. Proper orthogonal decomposition (POD) uses the full nu-
merical solution to fit a reduced set of eigenvalues and nodes to get a
meaningful solution with a reduced number of equations.27 However,

this method requires rigorous numerical solutions to build the POD
reduced-order models. Also, once the operating condition is changed,
the boundary conditions are modified, or if the parameter values are
adjusted significantly, the POD model needs to be reconstructed.

Another method put forth by Cai et al.29 uses orthogonal collo-
cation on finite elements (OCFE). By doing this, they were able to
obtain similar accuracy as a conventional finite volume method while

Table III. Parameters.

Symbol Parameter

Aluminum
Current
Collector

Positive
Electrodea Separatora

Negative
Electrodea

Copper
Current
Collector Units

ai Particle Surface Area to Volume 885000 723600 m2/m3

Brugg Bruggeman Coefficient 4 4 4
cs

i,max Maximum solid phase concentration 51554 30555 mol/m3

cs
i,0 Initial solid phase concentration 25751 26128 mol/m3

c0 Initial electrolyte concentration 1000 1000 1000 mol/m3

Cp Specific Heat 897 700b 700b 700b 385 J/(kg K)
D Electrolyte diffusivity 7.5 × 10−10 7.5 × 10−10 7.5 × 10−10 m2/s
Ds

i Solid Phase Diffusivity 1.0 × 10−14 3.9 × 10−14 m2/s

E
Ds

i
a Activation Energy for Temperature

Dependent Solid Phase Diffusion
5000b 5000b J/mol

Eki
a Activation Energy for Temperature

Dependent Reaction Constant
5000b 5000b J/mol

F Faraday’s Constant 96487 C/mol
ki Reaction Rate constant 2.334 × 10−11 5.031 × 10−11 m2.5/(mol0.5 s)
li Region thickness 10×10−6 b 80×10−6 25×10−6 88×10−6 10×10−6 b m
Rp,i Particle Radius 2.0×10−6 2.0×10−6 m
R Gas Constant 8.314 J/(mol K)
Tre f Temperature 298.15 K
t+ Transference number 0.364
ε f,i Filler fraction 0.025 0.0326
εi Porosity 0.385 0.724 0.485
λ Thermal Conductivity 237 2.1c 0.16c 1.7c 401 J/(m K)
ρi Density 2700 2500b 1100b 2500b 8940 kg/m3

σi Solid phase conductivity 3.55×107 100 100 5.96×107 S/m

a Unless otherwise noted, all parameters used for the electrodes and separator are from Ref. 28.
b Assumed value
c Ref. 39
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using fewer node points. Cai et al. also suggests that application of
the POD reduced order model to OCFE would further enhance the
computing speed. Additionally, Lee et al.,30 used the orthogonal col-
location method to numerically evaluate the electrode performance
and compare with experimental results. However, that paper focused
on the experimental aspects, and only on a single carbon electrode
without detailed explanations for the derivation of constants to handle
non-homogeneous boundary conditions. Forman et al.31 used a quasi-
linearization approximation to reduce the complexity of the porous
electrode pseudo-two dimensional model. They combined this with a
Padé approximation for the solid phase concentration to develop an
efficient and accurate method of solving battery models.31

Previously, Subramanian et al.28 reformulated the pseudo 2-D
porous electrode model for galvanostatic boundary conditions. That
model provided an efficient method to solve battery models in mil-
liseconds without using a reduced order model that potentially sacri-
fices accuracy. This approach has proven to be useful for isothermal
models, but has difficulties when non-linear properties and thermal
effects are considered. The integral calculation required for Galerkin
collocation becomes particularly complicated when the diffusion co-
efficient of the electrolyte phase is nonlinear. The approach presented
in this paper addresses these issues by using orthogonal collocation
and eliminating the need to perform numerical integration.

In our opinion, researchers have not used orthogonal collocation
directly because (1) it is not trivial to choose trial functions for com-
posite domains (i.e. cathode/separator/anode) and (2) the trial function
should satisfy all boundary conditions, including those of flux con-
tinuity at the cathode/separator and separator/anode interfaces. This
paper addresses these issues by presenting a coordinate transforma-
tion combined with an orthogonal collocation reformulation for the
simulation of lithium ion battery operation. This reformulation is de-
signed to be computationally easier to implement and efficient while
maintaining the fidelity of the physics based model on which it is
based.

This reformulation will achieve the goal of being computationally
efficient by substantially reducing the number of DAEs that must
be solved. Also, the coordinates will be transformed so that each
region (cathode, anode, and separator) is a function of a dummy
variable X in the domain [0, 1]. Following this, the remaining equations
are discretized in X by using orthogonal collocation. This approach
converges much faster than finite difference, thereby requiring fewer
terms to obtain a meaningful result.32 Once this is done, the system
of equations will be examined to eliminate any variable that can
be solved for in terms of the other variables. The physics of the
system are maintained by limiting the assumptions made during the
reformulation.

The coordinate transformation used in this reformulation enables
the extension of the model for a single cell sandwich to a multi-
cell stack. The robustness of the proposed reformulation is shown by
simulating an electrochemical thermal coupled multi-cell stack model.
The inclusion of temperature increases the computational load by
adding an additional dependent variable and including non-constant
and non-linear parameters in the model. This thermal simulation is
performed in context of a multi-cell battery stack to show the effects
that an applied temperature gradient has on individual cells in a stack.

This can be useful for examining the behavior of the cells within the
battery under various charging and discharging scenarios.

Coordinate Transformation

It should be noted that the original formulation of the problem has
the three regions defined sequentially. In other words, the equations
for the positive electrode are defined on the region [0, lp], the equations
for the separator are defined on the region [lp, lp+ls], and the negative
electrode equations are defined on the region [lp+ls, lp+ls+ln]. In
order to decrease the required computation, each region is rescaled to
a domain of [0, 1]. This effectively reduces the problem from three
regions to a single region. This is shown graphically in Figure 1.

As an example, this transformation is shown in detail for the
electrolyte concentration in the cathode, separator, and anode. From
Equations (1.1), (1.5), and (1.7) from Table I, the governing equations
for the electrolyte concentration are:

εp
∂c

∂t
= ∂

∂x

[
Deff,p

∂c

∂x

]
+ ap (1 − t+) jp 0 < x < l p [3.a]

εs
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[
Deff,s
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∂x
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εn
∂c

∂t
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∂x

[
Deff,n

∂c

∂x

]
+ an (1 − t+) jn l p + ls < x < l p + ls + ln

[3.c]
with the boundary conditions given as

∂c

∂x

∣∣∣∣
x=0

= 0 [4.a]

− Deff,p
∂c

∂x

∣∣∣∣x=l−p = −Deff,s
∂c

∂x
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x=l+p

[4.b]

c|x=l−p = c|x=l+p [4.c]

c|x=l p+l−s = c|x=l p+l+s [4.d]

− Deff,s
∂c

∂x

∣∣∣∣x=l p+l−s = −Deff,n
∂c

∂x

∣∣∣∣
x=l p+l+s

[4.e]

∂c

∂x

∣∣∣∣
x=l p+ls+ln

= 0 [4.f]

In order to convert the three region cell to a single region, the
spatial coordinate, x, must first be transformed to the dimensionless
coordinates X1, X2, and X3 in the anode, separator, and cathode, re-
spectively. These transformations are achieved using the following
equations:

X1 = x

lp
[5.a]

Figure 1. Proposed coordinate transformation for a single 1-D cell—note that the final diagram is used to show that the cathode, separator, and anode are solved
in the same coordinate domain. It does not indicate that a second linear dimension is considered.
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X2 = x − l p

ls
[5.b]

X3 = x − l p − ls

ln
[5.c]

Equations 5.a to 5.c can be applied to Equations 3.a to 4.f to arrive
at the transformed governing equations for the concentration profiles:

εp
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∂t
= 1

l p

∂

∂ X1

[
Deff,p

l p

∂c

∂ X1

]
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]
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While the boundary conditions become
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− Deff,p

l p
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∂ X1
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∂c
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c|X1=1 = c|X2=0 [7.c]

c|X2=1 = c|X3=0 [7.d]

− Deff,s
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∂c
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∂c
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[7.e]

∂c

∂ X3
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X3=1

= 0 [7.f]

From Equations 6.a to 7.f, it is clear that X1, X2, and X3 are in-
dependent variables that can be replaced by a single dummy variable
X, though we must differentiate between variables in the different re-
gions (i.e. c is replaced by cp , csor cn , for concentration in the positive
electrode, separator, and the negative electrode, respectively).
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cp|X=1 = cs |X=0 [9.c]

cs |X=1 = cn |X=0 [9.d]
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ln

∂cn

∂ X
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A similar process is performed on the remaining variables and the
resulting equations and boundary conditions are given in Table IV.

Orthogonal Collocation

This paper examines the orthogonal collocation approach as ap-
plied to the porous electrode model for lithium-ion batteries. The
theory of orthogonal collocation is well established and stability the-
ory has been discussed in the literature.32, 33 In order to set up a system
of DAEs, the proposed reformulation discretizes the model in the
x-direction while maintaining the time dependence to allow for the
implementation of time-adaptive solvers. In the reformulation, each
variable of interest is approximated by a summation of trial functions
of the form:

u(X, t) = F(X, t) +
N∑

k=0

Bk(t)Tk(X ) [10]

Where u(X, t) is the variable of interest, Tk(X ) are the chosen trial
functions with homogenous boundary conditions, F(X, t) is a func-
tion chosen to satisfy the (time-dependent) boundary conditions, and
Bk(t) are the coefficients of the trial functions. The only requirement
of the trial functions is that they all be linearly independent. However,
the choice of trial functions does affect the accuracy of the final so-
lution, and a proper choice can improve convergence. For this model,
the homogeneous trial functions are typically selected to be cosine
functions while the boundary conditions are satisfied by linear and
quadratic terms. Because of the coordinate transformation discussed
previously, the cosine trial functions can be applied in a simple form
of cos(kπX ) for each variable.

The approximate form of each variable is given in Table V. For the
variables with non-homogeneous boundary conditions, an additional
linear and/or quadratic term is added to the approximate solution to
satisfy the boundary conditions. This allows the boundary conditions
to be applied analytically before applying the time-adaptive DAE
solver. For example, the liquid phase concentration is approximated
by the equations:

cp(X, t) = Ap,c(t)X 2 +
Np∑

k=0

Bp,c,k(t) cos(kπX ) [11]

cs(X, t) = As,c,1(t)X + As,c,2(t)X 2 +
Ns∑

k=0

Bs,c,i (t) cos(kπX )

[12]

cn(X, t) = An,c(t)(X − 1)2 +
Nn∑

k=0

Bn,c,k(t) cos(kπX ) [13]

for the positive electrode, the separator, and the negative electrode,
respectively. For the roughest approximation, let Np = Ns = Nn = 1.
In this case Equations 11–13 become

cp(X, t) = Ap,c(t)X 2 + Bp,c,0(t) + Bp,c,1(t) cos(πX ) [14]

cs(X, t) = As,c,1(t)X + As,c,2(t)X 2 + Bs,c,0(t) + Bs,c,1(t) cos(πX )
[15]

cn(X, t) = An,c(t)(X − 1)2 + Bn,c,0(t) + Bn,c,1(t) cos(πX ) [16]
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Table IV. Transformed Governing Equations for Li-ion batteries.

Governing Equation Boundary Conditions

Positive Electrode

εp
∂cp

∂t
= 1

l p

∂

∂ X

[
Deff,p

l p

∂cp

∂ X

]
+ ap (1 − t+) jp

∂cp

∂ X

∣∣∣∣
X=0

= 0 (4.1)

−Deff,p

l p

∂cp

∂ X

∣∣∣∣X=1 = −Deff,s

ls

∂cs

∂ X

∣∣∣∣
X=0

−σeff,p

l p

∂�2,p

∂ X
− κeff,p

l p

∂�2,p

∂x
+ 2κeff,p RT

F

(1 − t+)

l p

∂ ln cp

∂x
= I

∂�2,p

∂ X

∣∣∣∣
X=0

= 0 (4.2)

−κeff,p

l p

∂�2,p

∂ X

∣∣∣∣X=1 = −κeff,s

ls

∂�2,s

∂ X

∣∣∣∣
X=0

1

l p

∂

∂ X

[
σeff,p

l p

∂

∂ X
�1,p

]
= ap F jp

1

l p

∂�1,p

∂ X

∣∣∣∣
X=0

= − I

σe f f,p
(4.3)

∂�1,p

∂ X

∣∣∣∣
X=1

= 0

∂

∂t
cs,avg

p = −3
jp

Rp
(4.4.a)

Ds
p

Rp

(
cs,sur f

p − cs,avg
p

)
= − jp

5
(4.4.b)

Separator

εs
∂cs

∂t
= 1

ls

∂

∂ X

[
Deff,s

ls

∂cs

∂ X

]
cp|X=1 = cs |X=0 (4.5)

cs |X=1 = cn |X=0

−κeff,s

ls

∂�2,s

∂ X
+ 2κeff,s RT

F

(1 − t+)

ls

∂ ln cs

∂ X
= I �2,s |X=1 = �2,n |X=0 (4.6)

�2,p|X=1 = �2,s |X=0

Negative Electrode

εn
∂cn

∂t
= 1

ln

∂

∂ X

[
Deff,n

ln

∂cn

∂ X

]
+ an (1 − t+) jn

∂cn

∂ X

∣∣∣∣
X=1

= 0 (4.7)

−Deff,s

ls

∂cs

∂ X

∣∣∣∣X=1 = −Deff,n

ln

∂cn

∂ X

∣∣∣∣
X=0

−σeff,n

ln

∂�1,n

∂ X
− κeff,n

ln

∂�2,n

∂ X
+ 2κeff,n RT

F

(1 − t+)

ln

∂ ln cn

∂ X
= I �2,n |X=1= 0 (4.8)

−κeff,s

ls

∂�2,s

∂ X

∣∣∣∣X=1 = −κeff,p

ln

∂�2,n

∂ X

∣∣∣∣
X=0

1

ln

∂

∂ X

[
σeff,n

ln

∂

∂ X
�1,n

]
= an F jn

∂�1,n

∂ X

∣∣∣∣
X=0

= 0 (4.9)

1

ln

∂�1,n

∂ X

∣∣∣∣
X=1

= − I

σe f f,n

∂

∂t
cs,avg

n = −3
jn
Rn

(4.10.a)

Ds
n

Rn

(
cs,sur f

n − cs,avg
n

) = − jn
5

(4.10.b)

It should be pointed out that there are no lithium ions leaving or
entering the cell sandwich, so the flux at both ends of the cell is set
to zero. These boundary conditions are included in the original form
above by choosing the linear and quadratic terms appropriately. For
example, in Equation 11 there is no linear term for the concentra-
tion of the electrolyte in the positive electrode so that the derivative,
∂

∂ X cp(X, t), is zero at the current collector located at X = 0, while
holding no such restrictions at the positive electrode-separator in-
terface. Similarly, the (X − 1)2 term accomplishes the same effect
in Equation 13 for the negative electrode. The equations given in
Table V have been developed by considering the boundary conditions

for each variable in the same manner as described above. The coef-
ficients of the linear and quadratic terms, Ar,v,i (t) (where r, v and i
denote the region, variable, and term to which the coefficient applies),
are determined by requiring that each variable be continuous at both
electrode-separator interfaces, while also maintaining a continuous
flux.

By applying the continuity boundary conditions, it is possible to
analytically solve for these coefficients simultaneously in terms of
the coefficients of the trial functions. This is shown below for the
positive electrode in which only a single cosine term is used, though
this procedure can be applied for any number of trial functions used,
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Table V. Approximate forms of Equations.

Positive Electrode

cp(X, t) = Ap,c(t)X2 +
Np∑

k=0

Bp,c,k (t) cos(kπX ) (5.1)

�2,p(X, t) = Ap,�2 (t)X2 +
Np∑

k=0

Bp,�2,k (t) cos(kπX ) (5.2)

�1,p(X, t) = iappl p

σe f f,p

[
1

2
X2 − X

]
+

Np∑
k=0

Bp,�1,k (t) cos(kπX ) (5.3)

cs,sur f
p (X, t) =

Np∑
k=0

Bp,cs,sur f ,k (t) cos(kπX ) (5.4)

cs,avg
p (X, t) =

Np∑
k=0

Bp,cs,avg ,k (t) cos(kπX ) (5.5)

Separator

cs (X, t) = As,c,1(t)X + As,c,2(t)X2 +
Ns∑

k=0

Bs,c,k (t) cos(kπX ) (5.6)

�2,s (X, t) = As,�2,1(t)X + As,�2,2(t)X2 +
Ns∑

k=0

Bs,�2,k (t) cos(kπX ) (5.7)

Negative Electrode

cn(X, t) = An,c(t)(X − 1)2 +
Nn∑

k=0

Bn,c,k (t) cos(kπX ) (5.8)

�2,n(X, t) = An,�2 (t)(X − 1)2 +
Nn∑

k=0

Bn,�2,k (t) cos

[(
k + 1

2

)
πX

]
(5.9)

�1,n(X, t) = − iappln

σe f f,n

[
1

2
X2

]
+

Nn∑
k=0

Bn,�1,k (t) cos(kπX ) (5.10)

cs,sur f
n (X, t) =

Nn∑
k=0

Bn,cs,sur f ,k (t) cos(kπX ) (5.11)

cs,avg
n (X, t) =

Np∑
k=0

Bn,cs,avg ,k (t) cos(kπX ) (5.12)

for every region, and for every variable of interest. For example, it can
be shown that the coefficient of the quadratic term from Equation 14
is related to the remaining coefficients by

Ap,c (t) = −Bp,c,0 (t) + Bp,c,1 (t) + Bs,c,0 (t) + Bs,c,1(t) [17]

Therefore the concentration equation for the positive electrode can be
written as:

cp (X, t) = (−Bp,c,0 (t) + Bp,c,1 (t) + Bs,c,0 (t) + Bs,c,1(t))X 2

+Bp,c,0 (t) + Bp,c,1 (t) cos(πX ) [18]

This process is then repeated for each of the other unknowns
(�1, �2, cs,avg) in each electrode, and the separator, when applicable.
The final form of the approximated solutions (including solving for
the Ar,v,i (t)’s in terms of the Br,v,i (t)’s) are not shown due to the large
number of terms present as each Ar,v,i (t) may be a function of up to
six Br,v,i (t)’s when using a single cosine term.

The coefficients of the trial function, Br,v,i (t), must be determined
in order to give the best possible approximation of the solution to the
twelve governing equations. The residual of a differential equation
can be used to quantitatively determine the best solution. For any
differential equation, or system of differential equations, of the form

D [y(x)] = 0 [19]

The residual for an approximate solution is defined as

D[yapprox (x)] = R (x) [20]

In other words, the residual is the deviation of an approximate solution
from exactly satisfying a differential equation. For the porous elec-
trode pseudo 2-D battery model examined in this paper, 12 governing
equations must be satisfied, and as such there will be 12 such resid-
uals, obtained by applying the approximate solution to the governing
equations. Since these approximations are not exact, the best way to
minimize the residuals while maintaining computational efficiency
must be determined. This allows an adequate number of equations to
be developed in order to solve for the best possible series coefficients.
In order to accomplish these goals, consider the “Method of Weighted
Residuals.”33 This method solves for the coefficients, Br,v,i (t), by set-
ting the integral of the residual multiplied by a weight function to
zero. Mathematically:

∫ R

v

(Br,v, j (t), X )Wv, j (X ) d X = 0 v = �1,�2, c, cs,sur f , cs,avg

j = 0 . . . Nr r = p, s, n

[21]
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where Rv(Br,v, j (t), X ) is the residual for the governing equation for
variable v, Wv, j (X ) is the jth weight function used for variable, v,
and Nr is the number of cosine terms used for approximation in the
r th region. It should be noted here that there is no requirement that the
variables in different regions be approximated by the same number of
terms. However, all the variables in a single region must be represented
by the same number of terms. For example, if the concentration profile
in the positive electrode is approximated using two cosine terms, the
liquid and solid phase potentials must also be approximated by two
cosine terms in the positive electrode, but the concentration profile in
the separator may be represented by any number of terms.

By using the method of weighted residuals, we now have a way
of creating a sufficient number of differential algebraic equations to
solve for all of the time dependent coefficients. However, the form
of an appropriate weighting function must be determined in order
achieve reasonable computing speed.32, 33 Since the integration of the
weighted residuals can provide significant computational difficulties,
eliminating the integral in Equation 21 would reduce the simulation
time of the battery models. Therefore, the weighting functions were
selected to be Dirac Delta functions:

Wv, j (X ) = δ(X j ) [22]

The mean weighted residual becomes the residual evaluated at a point
X j :

Rv(Br,v,i (t), X j ) = 0 [23]

The governing differential equations are exactly satisfied at these col-
location points. This is called the collocation method. The location
of these collocation points can have a significant impact on the ac-
curacy of the approximation, even when the same number of points
is used.32, 33 The best possible approximation is found by choosing
the collocation points as zeros of a specific class of orthogonal poly-
nomials called the Jacobi polynomials, which defines the orthogonal
collocation method.32, 33 The Jacobi polynomials are given by the re-
lation:

P (α,β)
N (x) =

N∑
k=0

(−1)N−k γk xk [24]

Where γ0 = 1 and γi is given by the recurrence relation:

γk = N − k + 1

k

N + k + α + β

k + β
γk−1 [25]

For a Jacobi polynomial of order M, there are M zeros in the interval
[0,1]. Since there are Nr + 1 coefficients for each variable in each
region, a Jacobi polynomial of order Nr + 1 must be used to develop
enough collocation equations. α & β are characteristic parameters of
the Jacobi polynomial. A trial and error approach found that α = β
= 0 minimized the error of the discharge curve relative to the finite
difference approach for most simulations. However, at high rates of
discharge and high node points, oscillations were observed as a result
of numerical instabilities. This instability was eliminated by using
α = β = 1 for a 5C discharge and α = β = 2 for a 10C discharge.

Once the zeros are determined for the Jacobi polynomials of in-
terest, the residual at each collocation point can be set to 0 as in
Equation 23. In development of the DAEs to be used to solve for the
coefficients, each governing equation must be accounted for individ-
ually so that there are as many residual equations for each governing
equation as there are coefficients to be solved in that region. For in-
stance, if the variables in the positive electrode are represented by a
single cosine term, the average solid phase concentration is approxi-
mated by

cs,avg
p (X, t) = Bp,cs,avg ,0 (t) + Bp,cs,avg ,1 (t) cos(πX ) [26]

Therefore a 2nd order Jacobi polynomial is required to find two
collocation points to solve for the two unknowns, Bp,cs,avg ,0 (t)
& Bp,cs,avg ,1 (t). Since all variables in the positive electrode
(�1,p, �2,p, cp, cs,sur f

p , cs,avg
p ) are approximated using the same

number of terms, the same collocation points are used in each residual.

The residuals are calculated using each of the five governing equa-
tions in the positive electrode. Since each residual is defined to be
zero at two node points from the orthogonal collocation method, we
have now developed a system of 10 DAEs to solve for the 10 unknown
coefficients in the positive electrode. This must be repeated for each
of the other two regions as well. In the case that each variable in all
three regions are approximated by a single cosine term, there are 10
DAEs in both the positive and negative electrodes, and four DAEs
in the separator for a total of 24 coupled DAEs that must be solved
simultaneously.

In general terms, the dependent variables in the positive elec-
trode, the separator, and the negative electrodes are represented by
Np , Ns , and Nn cosine terms respectively. Each variable thus has
Nr + 1 coefficients that must be determined in each region, where
r denotes the region, and therefore Nr + 1 residuals must be calcu-
lated. This results in Nr + 1 DAEs for each variable. Since there are
5 governing equations (and 5 variables) for the positive and negative
electrodes and 2 governing equations in the separator we have a to-
tal of 5(Np + 1) + 2(Ns + 1) + 5(Nn + 1) DAEs that must be solved
simultaneously.

These equations are functions of time only, some of which are
ordinary differential equations in time, while the remaining are alge-
braic equations. Solving this system is not trivial, and the algebraic
variables must be initialized prior to solving to ensure that the initial
conditions are consistent with the governing algebraic equations, and
is a reason numerical simulations often fail for battery models. Once
this is done, this system can be solved using FORTRAN with the help
of time-adaptive solvers such as DASSL or DASKR.26, 28

Once the coefficients are determined, the unknown variables are
represented by continuous functions valid at any position in the cell.
This is in contrast to a solution obtained using a finite difference ap-
proach in which the variable is only determined at discrete node points
and would require interpolation methods to find the solution between
two node points. Also, orthogonal collocation converges to a solution
with an error on the order of h2N, where N is the number of collocation
points and h is the node spacing.32 The finite difference solution that
is typically used has an error on the order of h2. Although the resulting
equations are more complicated when using orthogonal collocation,
fewer terms are required for a meaningful solution, resulting in fewer
DAEs that must be solved and a net reduction in computation time.32

This proposed reformulation makes no assumptions of the form of
any parameter used in any of the equations. There are no requirements
that the diffusion coefficients, nor the conductivities, are constant or
linear, and successful results have been obtained by using diffusion
coefficients which are functions of the electrolyte concentration and
temperature. This model is also versatile enough to work under gal-
vanostatic, potentiostatic, and constant power conditions, even for
continuous cell charge-discharge cycles. This model also does not as-
sume a particular chemistry and has proven to be robust for different
chemistries involving a variety of open circuit potentials and battery
design parameters. Importantly, as we have chosen the polynomials
in the region 0 to 1, globally convergent profiles can be obtained for
any condition by increasing the number of terms in the series.

Reformulation

Further reformulations can be done to improve computation time
by eliminating the need to numerically solve for the solid phase surface
concentration while using the polynomial approximation for the solid
phase. Once the remaining variables have been approximated by a
series solution, it is possible to analytically solve for csur f

s in terms of
these variables. First, the pore wall flux, ji , can be determined from
Equation 2 above to give.

ji = −5
Dsolid,i

Ri

(
cs,sur f

i − cs,avg
i

)
[27]

This form can be inserted into Equations 1.3 and 1.9 from Table I
(for the positive and negative electrodes, respectively) to give the
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following equation:

σeff ,i
∂2�1

∂x2
= −ai F

5Ds
i

Ri

(
cs,sur f

i − cs,avg
i

)
[28]

From this the surface concentration can be solved in terms of the
average solid phase concentration and the solid phase potential:

cs,sur f
i = cs,avg

i − σe f f,i Ri

5ai F Ds
i

∂2�1

∂x2
[29]

At this point, the focus will be limited to the positive electrode for
demonstration purposes. The solid phase potential, �1,p , and solid
phase average concentration, cs,avg

p , each have a series solution given
by

�1,p = iappl p

σe f f,p

[
1

2
X 2 − X

]
+

Np∑
k=0

Bp,�1,k (t) cos(kπX ) [30]

cs,avg
p =

Np∑
k=0

Bp,cs,avg
p ,k (t) cos (kπX ) [31]

By inserting Equations 30 and 31 into Equation 29, the solid phase
surface concentration can be immediately written as

cs,sur f
p = − Rpiapp

5ap F Ds
i l p

+ Bp,cs,avg ,0 (t) +
Np∑

k=1

{
Bp,cs,avg ,k (t)

−σe f f,p Rpk2π2

5ap F Ds
i l2

p

Bp,�1,k (t)

}
cos (kπX ) [32]

By solving for the surface concentration analytically in terms of
the other variables, we can eliminate the need to solve for two of
the twelve unknowns (one from each electrode), resulting in fewer
DAEs that must be solved. However, if the solid phase conductivity,
σe f f ,i , is a function of x or is nonlinear, this reformulation cannot be
performed.

Development of a Coupled Thermal Electrochemical
Multi-Cell Stack Model

In order to more accurately simulate battery operation, the model
can be improved by considering thermal effects and to study multiple
cells arranged in a stack configuration. This increases the complex-
ity and fidelity of the model by including more physical phenomena.
Bernardi et al.34 used an energy balance to develop a general ther-
mal model for battery operation by considering the various modes
of heat generation within the cell. Other researchers have built upon
this model by incorporating heat generation effects during battery dis-
charge for specific systems and conditions.35–38 Kumaresan et al.39

used the model developed by Gu and Wang38 to couple temperature
to other variables for a single cell and validated the model with the
results obtained experimentally.

Pals and Newman40 modeled the temperature profile of a multi-
cell stack by simulating the behavior of a single cell, with lithium foil
as the anode, to determine the rate of heat generation and different
temperatures and states of charge. They then modeled a full stack by
considering the effect of heat transfer between cells in the stack by us-
ing an approximation for the heat generation in each cell. In this way,
the individual cells were decoupled and the calculations for an individ-
ual cell were performed independently of the temperature calculation
for the entire stack.40 Chen and Evens41, 42 performed a thermal anal-
ysis of a lithium-ion battery stack in the context of preventing thermal
runaway reactions. However, they simplified the model by incorpo-
rating empirical discharge data and constant physical parameters into
the model.

The simulation presented in this paper maintains the coupling
between all the cells within the stack and the full physics based
model with temperature varying properties, and heat generation and
discharge for each cell are calculated simultaneously. The equations

used for the thermal model are identical to those given in Table I with
the addition of three more governing equations to model the temper-
ature in three regions, as well as nonlinear electrolyte diffusion and
electrolyte conductivity coefficients which are functions of concen-
tration and temperature, based on work done by Valøen et al.43 These
additional equations are shown in Tables VI and VII. This is compu-
tationally difficult and an efficient method is required for simulation,
and we believe this has slowed the development of such a stack model.
Further complications also arise due to the presence of current collec-
tors located between each pair of cell sandwiches, as well as at both
ends of the battery stack. These current collectors provide additional
thermal mass to the system which can slow the heating of the battery
and should be considered in any comprehensive thermal stack model.

The same orthogonal collocation and reformulation solution
method presented above for the isothermal battery simulation was
used for reformulation of the thermal model for a battery stack. The
coordinate transformation described above makes it possible to add
multiple cells to a stack. The inclusion of current collectors in the
model increases the number of regions which are considered without
a significant increase in the number of variables. A challenge in the
transformation occurs because there is one more current collector
than there are cells; there is not a one-to-one correspondence be-
tween the current collectors and cell sandwiches. The transforma-
tion is achieved by considering the current collectors as additional
regions in which only the temperature variable is considered. The
only other variable which is applicable in the current collector is the
solid phase potential, which is assumed to be constant and equal to
the end point potentials of the adjacent electrodes. The primary chal-
lenge arises in formulating the equations and boundary conditions in
a consistent manner in the battery stack. However, once this is accom-
plished, there is very little numerical difficulty in solving the resulting
equations.

The approximate expressions for temperature were developed in
the same way as the other variables and are given in Table VIII.
Both linear and quadratic terms are included in these approximate
expressions in order to maintain generality so that various thermal
boundary conditions can be used, such as constant temperature, con-
stant flux, or convection, as well as continuity of temperature and
of heat flux between the regions. The current collectors are approxi-
mated in a similar manner. Since the current collectors are constructed
of highly conductive materials, the temperature does not vary signif-
icantly across the current collectors, and no cosine terms are needed
for an accurate approximation. A single constant term is adequate and
must be solved for using the governing heat equation. The inclusion of
the current collectors minimally increases the computational load, as
only a small number of variables are added. For example, an eight-cell
stack has 298 DAEs that must be solved for if current collectors are
ignored. That increases to 307 DAEs when the temperature within the
current collectors is considered.

Model simulation of full battery stacks provides additional chal-
lenges which can be addressed by using this reformulation and orthog-
onal collocation followed by a numerical solution to solve the time
dependence. It is necessary to consider a full multi-cell battery stack
when thermal effects are included, as a temperature profile across the
battery can affect cell performance. In the case of isothermal opera-
tion, each cell is exposed to the exact same conditions which cause
each individual cell to behave identically. If this symmetry is broken,
for instance by forcing a temperature gradient across the cell stack,
the cells may behave differently from each other.

A schematic of an N-cell stack is given in Figure 2a, where
each anode-separator-cathode group constitutes a single cell, with
aluminum current collectors located between adjacent cathodes and
copper current collectors located between adjacent anodes. Note that
both electrodes at the end of the stack are anodes, and each successive
cell reverses the order of the electrodes. In this configuration, the cells
are connected in parallel so that the same voltage is applied at each
cell. Therefore, if a constant current discharge is applied to the entire
battery stack, the current provided by each individual cell may vary
with time. At the boundaries between the electrodes and current col-
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Table VI. Additional governing equations for thermal battery model with applied temperature boundary conditions.

Governing Equation Boundary Conditions

Positive Current Collector

ρAl C p,Al
∂TAl

∂t
= 1

lcc

∂

∂ X

[
λAl

lcc

∂TAl

∂ X

]
+ i2

app

σAl
−λAl

lAl

∂TAl

∂ X

∣∣∣∣
X=1

= −λp

l p

∂Tp

∂ X

∣∣∣∣
X=0

(6.1)

−λAl

lAl

∂TAl

∂ X

∣∣∣∣
X=0

= −λp

l p

∂Tp

∂ X

∣∣∣∣
X=0

Positive Electrode

ρpC p,p
∂Tp

∂t
= 1

l p

∂

∂ X

[
λp

l p

∂Tp

∂ X

]
+ Qrxn,p + Qrev,p + Qohm,p Tp

∣∣
X=0 = TAl |X=1 (6.2)

−λp

l p

∂Tp

∂ X

∣∣∣∣
X=1

= −λs

ls

∂Ts

∂ X

∣∣∣∣
X=0

Separator

ρsC p,s
∂Ts

∂t
= 1

ls

∂

∂ X

[
λs

ls

∂Ts

∂ X

]
+ Qohm,s Tp |X=1 = Ts |X=0 (6.3)

Ts |X=0 = Tn |X=1

Negative Electrode

ρnC p,n
∂Tn

∂t
= 1

ln

∂

∂ X

[
λn

ln

∂Tn

∂ X

]
+ Qrxn,n + Qrev,n + Qohm,n −λs

ls

∂Ts

∂ X

∣∣∣∣
X=1

= −λn

ln

∂Tn

∂ X

∣∣∣∣
X=0

(6.4)

Tn |X=1 = TCu |X=0

Negative Current Collector

ρCuC p,Cu
∂TCu

∂t
= 1

lCu

∂

∂ X

[
λCu

lCu

∂TCu

∂ X

]
+ i2

app

σCu
−λn

ln

∂Tn

∂ X

∣∣∣∣
X=1

= −λCu

lCu

∂TCu

∂ X

∣∣∣∣
X=0

(6.5)

TCu |X=1 = Tapp

lectors, the electrolyte concentration is considered to have zero flux,
whereas the temperature and heat flux are continuous. Additionally,
the solid phase potential drop between the anode/current collector in-
terface and the cathode/current collector interface is the same across
all cells. This couples the behavior of each cell, so that all cells in the
stack must be solved simultaneously. Because of the large number of
equations that arise from the coupled thermal electrochemical multi-
cell stack model, reformulation was performed to reduce the number
of DAEs for efficient simulation.

In order to perform the stated transformation on an N-cell stack
with current collectors, it was necessary to mathematically treat al-
ternating cell sandwiches differently. For the odd numbered cells, the
entire sandwich consisted of a total of five regions: a copper cur-
rent collector, the anode, the separator, the cathode, and an aluminum
current collector. The even numbered cells only consisted of the cath-
ode, the separator, and the anode. Additionally, the odd numbered
cells were flipped so that they were orientated in a cathode-separator-
anode configuration so that all cells are consistent. A final copper
current collector (which is present regardless of the size of the stack)
was considered independently of the individual cells. This results in a
system as shown in Figure 2b for a 4-cell stack, in which the positive
electrode for each cell is defined on the region [0, lp], the separator on
the region [lp, lp+ls], and the negative electrode on the region [lp+ls,
lp+ls+ln] (the current collectors, where applicable, are considered
outside of this range). This simplifies the problem by eliminating the
need to keep track of the location and orientation of each cell in the
entire stack during simulation. For the interior cells, the boundary
conditions at each end of each cell are determined by continuity. It
must be noted that the application of the continuity of flux requires
the direction of the flux to be reversed in adjacent cells to account
for flipping every other cell to achieve a consistent orientation. Once
this is done, each cell is transformed to a single region, as shown in
Figure 2b. This reduces the entire stack to a single region defined
from [0, 1], and the stack can be solved in the same way as described
previously.

Results and Discussion

The model prediction obtained using a collocation reformulation
using a varying number of terms is compared to a full-order finite
difference solution based on 50 node points in x for the electrodes and
35 node points for the separator in Figures 3, 4, and 8. The primary
curve of interest is the discharge graph in Figure 3a, which shows the
full-order finite difference solution, as well as three solutions obtained
using the orthogonal collocation approach for a 1C rate of discharge.
Figure 3b shows the residuals of the orthogonal collocation solu-
tions relative to the finite difference solution, while Table IX shows
a comparison of the root mean squared error as well as computa-
tion time. The least accurate collocation solution is obtained by using
only one cosine term for each region, as shown by the dashed line in
Figure 3. Progressively more accurate solutions can be obtained by
using orthogonal collocation with a greater number of terms. Figure 3
also shows collocation solutions obtained using (3, 2, 3) terms (dotted
line), (5, 3, 5) terms (dash-dot line), and (7, 3, 7) terms (solid line).
Note that the nomenclature,

(
Np, Ns, Nn

)
, is used to represent the

number of cosine terms used in the positive electrode, the separator,
and the negative electrode, respectively. Experimental validation of
the porous electrode pseudo-2D model can be found elsewhere in the
literature.3–13 Therefore an established solution method using finite
difference was used to validate the reformulated model presented in
this paper.

The remaining internal variables which are solved for in this re-
formulation cannot be experimentally determined in general. How-
ever, even without experimental validation, the ability to predict the
behavior of these internal variables is critical for complete under-
standing of the lithium ion battery. Factors such as state of charge and
state of health can be determined from this model to give a prediction
of the future behavior and future life of a battery. Figure 4 shows
how these internal variables change with time at the region interfaces.
These figures show the convergence of the orthogonal collocation
method as more terms are used. Additionally, Figure 5a shows the
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Table VII. Additional Equations for Thermal Model.
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(
�1,i − �2,i − Ui

)
, i = p, n (7.1)a

Qrev,i = Fai ji Ti
∂Ui

∂T
, i = p, n (7.2)a

Qohm,i = σeff,i

(
1

li

∂�1,i

∂ X

)2

+ κeff,i

(
1

li

∂�2,i

∂ X

)2

+ 2κeff,i RTi

F
(1 − t0

+)
1

l2
i

1

ci

∂ci

∂ X

∂�2,i

∂ X
, i = p, n (7.3)a

Qohm,s = κeff,s

(
1

ls

∂�2,s

∂x

)2

+ 2κeff,s RTs

F
(1 − t0

+)
1

cs

1

l2
s

∂cs

∂ X

∂�2,i

∂ X
(7.4)a

Def f,i = ε
bruggi
i 1 × 10−4 × 10

−4.43− 54
Ti −229−5.0×10−3ci

−0.22×10−3ci
, i = p, s, n (7.5)b

κi = ε
bruggi
i 1.0 × 10−4 × ce,i

(
−10.5 + 0.668 × 10−3ci + 0.494 × 10−6c2

i + 0.074Ti −
1.78 × 10−5ci Ti − 8.86 × 10−10c2

i Ti − 6.96 × 10−5T 2
i + 2.80 × 10−8ci T 2

i

)2

(7.6)b

Ui (Ti , θi ) = Ui,ref (Tref , θi ) + (Ti − Tref )

[
dUi

dT

]∣∣∣∣
Tref

, i = p, n (7.7)c

dUp

dT
= −0.001

[
0.199521039 − 0.928373822θp+
1.364550689000003θ2

p − 0.6115448939999998θ3
p

]
[

(1 − 5.661479886999997θp + 11.47636191θ2
p−

9.82431213599998θ3
p + 3.048755063θ4

p)

] (7.8)c

dUn

dT
=

0.001

[
0.005269056 + 3.299265709θn − 91.79325798θ2

n + 1004.911008θ3
n − 5812.278127θ4

n+
19329.7549θ5

n − 37147.8947θ6
n − 38379.18127θ7

n − 16515.05308θ8
n

]
[

1 − 48.09287227θn + 1017.234804θ2
n − 10481.80419θ3

n + 59431.3θ4
n−

195881.6488θ5
n + 374577.3152θ6

n − 385821.1607θ7
n + 165705.8597θ8

n

] (7.9)c

Ds
i,e f f = Ds

i exp

⎛
⎝− E

Ds
i

a

R

[
1

T
− 1

Tre f

]⎞
⎠ , i = p, n (7.10)a

ki,e f f = ki exp

(
− Eki

a

R

[
1

T
− 1

Tre f

])
, i = p, n (7.11)a

a Ref. 39.
b Ref. 43
c Ref. 44

concentration profile across the transformed domain (i.e. the cell is
solved as a single region from 0 to 1) at the end of discharge. Once
this is transformed back to the original domain, the concentration
profile across the entire sandwich can be determined and is shown in

Figure 5b. It is important to note that the average concentration of the
lithium ions in the electrolyte solution must be conserved through-
out the entire simulation. Importantly, when the original equations are
taken and averaged with the use of the boundary conditions (BCs), the

Table VIII. Approximate forms of Temperature Equations.

Positive Current Collector

TAl (X, t) = AAl,T,1(t)X + AAl,T,2(t)X2 + BAl,T (t) (8.4)

Positive Electrode

Tp(X, t) = Ap,T,1(t)X + Ap,T,2(t)X2 +
Np∑

k=0

Bp,T,k (t) cos(kπX ) (8.1)

Separator

Ts (X, t) = As,T,1(t)X + As,T,2(t)X2 +
Ns∑

k=0

Bs,T,k (t) cos(kπX ) (8.2)

Negative Electrode

Tn(X, t) = An,T,1(t)X + An,T,2(t)X2 +
Nn∑

k=0

Bn,T,k (t) cos(kπX ) (8.3)

Negative Current Collector

TCu (X, t) = ACu,T,1(t)X + ACu,T,2(t)X2 + BCu,T (t) (8.4)
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Figure 2. (a) Schematic for a multi-cell battery stack (b) Transformation of a 4-cell battery stack to a single cell. The letters denote connection points between
adjacent cells where continuity is maintained, and the bold lines represent the current collectors. All coupled thermal electrochemical multi-cell stack simulations
presented in this paper consider the effect of the current collectors when performing calculations.

mass is conserved. The collocation method presented here maintains
this conservation, and there is no appreciable variation of average
concentration with time.

Figures 4a and 5 show that the electrolyte concentration at the end
of discharge increases across the battery from the positive electrode to
the negative electrode. These figures also show that the concentration
in the positive electrode decreases during discharge, while it increases

in the negative electrode, as lithium metal stored in the anode comes
out of the active solid particle and reacts at the surface to produce
lithium-ions causing an increase in local lithium salt concentration
in the electrolyte. At higher rates of discharge, more lithium ions
are released at the anode and absorbed in the cathode, increasing
the concentration gradient that must be overcome and limiting the
capacity at high rates of discharge.
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Figure 3. (a) Voltage-Time Curve for constant current discharge (1C) (b)
Residual plot of collocation solutions vs. finite difference.

The primary advantage of this method is the speed of simulation,
which arises because a fewer number of terms are required to obtain
a converged solution. Table IX shows the simulation time when us-
ing various numbers of collocation points, as well as the root mean
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Figure 4. Variable values at the current collector/cathode interface (*), the
cathode/separator interface (◦), the separator/anode interface (♦), and the an-
ode/current collector interface (�) for (a) electrolyte concentration (b) liquid
phase potential (c) solid phase potential (d) solid phase surface concentration
and (e) solid phase average concentration. The markers represent the finite
difference solution, the dashed line for (1,1,1) collocation, the dotted line for
the (3,2,3) collocation, and the dash-dotted line for (5,3,5).

squared error (RMSE) relative to the finite difference solution. The
times are presented using a FORTRAN based DASSL solver, as well
as a Maple45 solver for all simulations performed. All simulations
were run on a computer using a 3.33 GHz Intel processor with 24 GB
RAM. Rates of discharge greater than a 1C rate were simulated using

Table IX. Simulation time and Root Mean Squared Error compared to FD.

Method

Number of
Differential
Algebraic
Equations

Simulation Time
(Maple) (ms)

Simulation Time
(DASSL) (ms)

RSME
(mV)

Finite Difference (50,35,50) 590 N/Aa 4617 –
Orthogonal Collocation (1,1,1) 20 781 46 17.84
Orthogonal Collocation (3,2,3) 38 2355 78 5.46
Orthogonal Collocation (5,3,5) 56 6022 109 1.56
Orthogonal Collocation (7,3,7) 72 9812 156 0.57
1C Rate MFD (7,3,7) Collocation 136 28361 187 0.91
2C Rate MFD (7,3,7) Collocation 136 24680 172 6.18b

5C Rate MFD (9,4,9) Collocation 170 38548 234 5.29b

10C Rate MFD (11,4,11) Collocation 204 64381 250 9.42b

8-Cell Thermal Electrochemical Coupled Stack 307 666608 2449 N/Ac

a The full order finite difference failed when using Maple solvers.
b The 2C, 5C, and 10C rates were compared to a full order MFD finite difference formulation which used 982 equations that took 2106 to 4040 ms to

run using DASSL.
c An 8-cell thermal electrochemical coupled stack failed when using a full order finite difference.
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Figure 5. Electrolyte concentration across battery for (1,1,1) collocation
(dashed line), (3,2,3) collocation (dotted line), and (5,3,5) collocation (solid
line) in (a) transformed coordinates and (b) natural coordinates at 3500 seconds
of discharge.

the mixed finite difference reformulation for the solid phase concen-
tration in order to accurately track the battery behavior at high rates
of discharge. However, the additional number of equations resulting
from the mixed finite difference solution results in slower compu-
tation, as can be seen in Table IX. Note also that more terms were
required to achieve a converged solution when analyzing higher rates.

In order to quantify convergence of the series, the maximum mag-
nitude of the coefficients of successive terms must be analyzed. This
is shown in Figure 6, indicating that the first terms are dominant and
that the system does converge. Interestingly, the later terms for de-
scribing the solid phase concentration carry more weight than for the
other variables (although still significantly less than the first term).
The behavior of the coefficients for the liquid phase concentration
and potential in the separator are nearly completely determined by the
constant term alone. In fact, the weight of this term is in excess of
99.99%. This can be explained by analyzing the governing equations
for the separator, as given in Table I:

εs
∂c

∂t
= ∂

∂x

[
Deff,s

∂c

∂x

]
[33]

− κeff,s
∂�2

∂x
+ 2κeff,s RT

F
(1 − t+)

∂ ln c

∂x
= I [34]

If diffusion occurs quickly enough (which would be expected con-
sidering the small thickness of the region), the time derivative term in
Equation 33 would approach 0. This leads to a linear concentration
profile in the separator if the diffusivity is a constant. Therefore, the
cosine terms of Equation (5.6) from Table VI would not contribute
much to the final approximation. If the concentration is nearly lin-
ear and the reciprocal of concentration is nearly constant, the second
term of Equation 34 will be nearly constant. Since the liquid phase
conductivity, κeff,s, is only a weak function of concentration, and the
concentration does not vary appreciably across the separator (see
Figure 5), the conductivity will also remain nearly constant. This
would lead to a linear profile for the liquid phase potential across the
separator. This allows very good accuracy to be retained, even if no
cosine terms are used in the separator.

A similar pattern emerges for the solid phase potential in the posi-
tive and negative electrodes, with the coefficient of the constant term
dominating the cosine terms with a weight of over 99.99%. This sug-
gests that the solid phase potential could be approximated accurately
with only the constant term, further reducing the computation required
and improving computational speed. However, implementation of this
requires that the procedure used be adjusted, as it is required that the
collocation points be identical for each variable in the current form.
Preliminary attempts to limit the number of terms for the solid phase
potential while maintaining a greater number of terms for the remain-
ing variables have been unsuccessful. In our opinion, this is due to the
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Figure 6. Maximum magnitude of coefficients for equations in Table V nor-
malized to the first coefficient term used for (5,3,5) collocation.

fact that although �1 has a nearly flat profile, its spatial derivatives
(and therefore current density) have a significant profile across the
electrode.

The proposed approach has been used to estimate the values of
internal parameters from experimental discharge curves. Also, this
approach can simulate continuous battery cycling operation which
undergoes constant current/power discharging followed by constant
current charging and constant potential charging. This demonstrates
the versatility of this method to simulate a wide variety of operating
conditions. Figure 7 shows two such cycles which are subject to a
constant power discharge of 120 W/m2 a constant current charge of
25 A/m2, followed by a constant current charge at 4.1 V. For compar-
ison, a 1C rate corresponds to ∼30 A/m2 using this chemistry. Note
that the current state of the internal variables within the battery is
carried over from the end of each cycle to the next cycle. Because
the internal variables change with time, the behavior of the battery
during these cycles is not necessarily identical, perhaps due to incom-
plete charging of the battery. Also, the internal parameters, such as
porosity, etc. can be made to change with cycle number. Therefore,
as developments continue in the understanding of capacity fade this
continuous cycling procedure can predict the future behavior of the
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Figure 7. Voltage-Time and Current-Time curves for two continuous cycles
consisting of constant power discharge followed by constant current charge
and constant potential charge.
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Figure 8. Discharge Curve for Higher Discharge Rates.

battery by either changing the parameters already included, or by in-
troducing additional parameters/mechanisms specifically to address
capacity fade. This may be achieved by modifying the continuum
model directly, or by coupling the continuum model with microscopic
models, such as Kinetic Monte Carlo46–50 or Stress-Strain models51–53

to create a true multiscale model.
This method can also be used when higher rates of discharge are ap-

plied. However, in those circumstances, it is necessary to use the mixed
finite difference approximation for the solid phase concentration,25

rather than the parabolic profile used in the majority of this paper
while describing a 1C discharge. The basic method presented for re-
formulation in the x-direction, however, is valid for both parabolic
profile approximation and for the mixed finite difference approach.
The normalized discharge curve is given in Figure 8 for 1C, 2C, 5C,
and 10C rates of discharge, with mixed-finite difference reformulation
for solid-phase concentration. Table IX shows the computation time
required to simulate the higher discharge conditions, as well as the
RMSE of the voltage-time curve relative to a full finite difference.
Also, more node points were required to accurately simulate a higher
rate discharge when using collocation. It is expected that further im-
provements in computation time could be achieved by optimizing the
initial and maximum time steps in the solver.
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Figure 9. Temperature at the center of an 8-cell stack during a 1C rate of
discharge subject to varying external heat transfer coefficients.
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Figure 10. Temperature profile across an 8-cell lithium ion battery at the
end of discharge when the ends (a) are maintained to be a fixed temperature
difference of 10 K and (b) are exposed to a heat transfer coefficient of 1 W/m2K
and an ambient temperature of 298 K.

Expanding the model to include the effects of temperature in a
multiple cell stack can allow for more detailed simulation, albeit at
an increased computational cost (See Table IX). Figure 9 shows the
temperature rise at the center of the battery with varying values of
the heat transfer coefficients at the end of the stack. For the insulated
(h = 0) case, there is a 55 K temperature rise within the battery,
whereas there in no discernible temperature rise when the battery
ends are held at fixed temperature (h = ∞). In this case, the battery is
sufficiently thin (on the order of microns) that there is not a significant
temperature profile within the battery. Figure 10a shows the temper-
ature profile of an 8-cell stack when a heat transfer coefficient of 1
W/m2K is applied to the ends. Notice that the observed variation in
the battery is a small fraction of a degree. However, for large batteries,
or in two and three dimensions, the possibility of creating a hotspot
becomes more significant.

Figure 10b shows the temperature profile within an 8-cell stack
when a temperature difference is applied at the ends. The discharge
current for the first and last cell in an 8-cell series stack under these
conditions is shown in Figure 11. Notice that the current provided
by the individual cells are not identical throughout discharge. In this
simulation, the temperature of each end of the multi-cell stack is
fixed to create temperature decrease of 10 K across the battery. This
causes the individual cells to behave differently, resulting in the subtly
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Figure 11. Current-Time curves for the first cell (solid line) and last cell (dot-
ted line) within an 8-cell stack with an applied temperature gradient undergo-
ing constant current discharge (1C) using the coupled thermal electrochemical
model.
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Figure 12. Concentration profile across an 8-cell stack at the end of discharge
for (a) transformed coordinates and (b) natural coordinates. In (a), (◦) denotes
the first cell and (♦) denotes the last cell in the series.

different current curves observed in Figure 11. The higher tempera-
ture of the first cell causes it to initially discharge at a faster rate
than the last cell. However, by the end of discharge, the cooler cell
provides a greater current because it exists at a greater state of charge.
Figure 12a shows the concentration profile across the entire battery
in the transformed coordinates for each individual cell, which further
demonstrates how temperature can affect internal battery character-
istics. Figure 12b shows the concentration profile across the entire
stack in natural coordinates at the end of discharge. Note that there
is no electrolyte in the region of the current collectors, leading to
a discontinuity at those points. In this example, the stack is suffi-
ciently small that internal heat generation effects do not significantly
alter the temperature profile when the ends are held at a fixed tem-
perature. However, for larger stacks, higher applied current and/or
different boundary conditions, the temperature profile may be signifi-
cantly affected by internal heat generation leading to greater behavior
variations among the individual cells without an arbitrarily forced
condition. The other spatial directions, y and z, are important for ther-
mal models at high rates, and the coordinate transformation and the
orthogonal collocation approach is still valid. A detailed pseudo 4D
model (x, y, z and r) in stack environment can be reduced to a unit
cell of X, Y, Z varying from 0 to 1 in dimensionless transformed coor-
dinates as explained earlier. The proposed approach is also useful for
developing models for optimization of graded electrodes or materials
wherein control vector parameterization converts a given single region
to N regions to represent discrete functions of porosity, particle size or
shape.54–56

Conclusion

A coordinate transformation and reformulation of the porous elec-
trode pseudo 2-D model for lithium-ion battery stacks was developed
and presented that could be solved accurately and quickly. The co-
ordinate transformation was used to rescale the three regions of the
battery model into a single region evaluated on the interval zero to
one. This allows collocation to be applied using the zeros of the Jacobi
polynomials. This leads to the ability to analytically solve for certain
variables prior to using any numerical solver. This results in a system
of fewer DAEs which allows for easier (and quicker) computation
compared to the traditional finite difference approach.

The reformulation presented is robust enough to be used for a
variety of conditions with limited assumptions to maintain the most
accurate physics of the model. Although only a single battery chem-
istry is shown here, this method has been used successfully for a
number of different chemistries across a wide range of transport and
kinetic parameters. This model thus allows an efficient battery model
simulation for use in control and optimization routines, as well as
for parameter estimation. Efficient simulation is essential for opti-
mization and parameter estimation because of the large number of

simulations that must be run to converge to an appropriate solution.
Future work will focus on refining the stack model to allow for sim-
ulation of larger stacks, while accounting for multi-scale effects and
capacity fade. Additionally, this model will be used in conjunction
with optimization routines for lithium-ion battery electrode design to
improve performance. The addition of Arrhenius type dependence of
diffusion coefficients and reaction rate constants on temperature was
also included. This increases the fidelity of the model at the expense
of increased complexity and computation time. This approach is ro-
bust enough to solve these equations faster than if a finite difference
approach were used. This is especially pronounced when a coupled
thermal electrochemical multi-cell stack model is used due to the large
number of equations that must be solved. However, such a stack model
better describes how individual cells operate in the context of a full
battery stack. This is important when thermal or other effects cause
the individual cells to operate differently from each other. Since it is
often not practical or possible to measure each cell individually in a
stack, these differences can lead to potentially dangerous or damag-
ing conditions such as overcharging or deep-discharging certain cells
within the battery causing thermal runaway or explosions. The ability
to efficiently simulate battery stacks facilitates monitoring of indi-
vidual cell behavior during charging and discharging operations and
thereby reducing the chances of temperature buildup causing thermal
runaway making the use of stacks safer.
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List of Variables

A(t) Coefficient of linear or quadratic term—Solved in terms of
B(t) using BCs

a Surface area per volume of electrode
B(t) Collocation coefficients

c Electrolyte concentration
cs Solid Phase Concentration
D Liquid phase Diffusion coefficient

Deff Effective Diffusion coefficient
Ds Solid phase diffusion coefficient
Ea Activation Energy
F Faraday’s Constant
h Heat Transfer Coefficient
I Applied Current
j Pore wall flux
k Reaction rate constant
l Length of region

N Number of terms to approximate the solution
P(x) Jacobi Polynomial

R Particle Radius, or Residual
t+ Transference number
T Temperature

U Open Circuit Potential
W Weight Function

α, β Characteristics of the Jacobi polynomial
ε Porosity

ε f Filling fraction
θ State of Charge
κ Liquid phase conductivity
σ Solid Phase Conductivity

�1 Solid Phase Potential
�2 Liquid Phase Potential
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List of Subscripts

eff Effective, as for diffusivity or conductivity
c Related to Electrolyte concentration

cs Related to Solid Phase concentration
n Related to the negative electrode—the anode
p Related to the positive electrode—the cathode
s Related to the separator

�1 Related to the solid phase potential
�2 Related to the liquid phase potential

List of Superscripts

avg Average, as for solid phase concentration
sur f Surface, as for solid phase concentration

s Related to Solid Phase
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