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Abstract

A simple technique based on finite differences is presented for obtaining symbolic solutions for boundary value problems
(BVPs). The governing equations for the node points are expressed in matrix form and the dependent variables (e.g.
concentration) at both the boundaries (both at x=0 and x=1) are taken as unknown constants. The solution is obtained by
finding the matrix inverse using Maple. The unique aspect of the technique presented here is that the solution obtained is valid
for various boundary conditions (both linear and nonlinear) and geometries. Both linear ordinary differential equations (ODEs)
and partial differential equations (PDEs) with linear and non-linear boundary conditions are treated in this paper. Solutions
analytical in time are obtained for PDEs. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

We present here a symbolic inverse technique using
Maple for solving systems of linear BVPs. We start by
casting a given linear BVP into finite difference form
accurate to the order h2. This discretization yields a set
of linear algebraic equations that includes all the
parameters of the system and the dependent variables
(e.g. concentration) at the boundaries (both at x=0
and x=1) as unknown constants. These equations are
expressed in a linear matrix form, from which an
expression for the value of the dependent variable at
each node point is obtained by finding the symbolic
inverse using Maple.

First, the methodology is illustrated using a general
ordinary differential equation with unknown values at
both the boundaries. Once the solution is obtained, we
explain how the same solution can be used to generate
solutions for different boundary conditions and ge-
ometries. Next, we extend our symbolic inverse method
to partial differential equations by applying the Laplace
transform technique. The resulting BVP is solved in the
Laplace domain symbolically by using our symbolic

inverse method. The solution obtained in the Laplace
domain is then converted to the time domain by using
Maple. Hence, a symbolic semi-analytical solution is
obtained, which is similar to our previously presented
semi-analytical method (De Vidts & White, 1992) and
the method presented earlier by Villadsen and
Michelsen (1978), pp. 166–176, for solving parabolic
PDEs using orthogonal collocation. The method pre-
sented here is superior to these previous methods be-
cause the solutions obtained here are valid for various
boundary conditions and geometries. The existing semi-
analytical techniques (Villadsen & Michelsen, 1978; De
Vidts & White, 1992; Subramanian & White, 2000) are
valid for specific boundary conditions only. Our new
technique (symbolic inverse) solves for the values at the
boundaries as unknown constants and hence the solu-
tions once obtained cover various boundary conditions
and geometries.

2. Symbolic solution for ordinary differential equations
(ODEs)

We demonstrate the technique for linear problems
first by solving a general diffusion like equation. The
governing differential equation in dimensionless form
(e.g. diffusion with reaction, heat transfer, etc.) can be
written as,
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d2y
dx2+

p
x

dy
dx

=H2y (1)

where H is a dimensionless parameter and p is a
geometry dependent parameter (p=0, 1, 2 for rectan-
gular, cylindrical, spherical coordinates, respectively).
First, the boundary conditions are specified as arbitrary
constants.

y(0)=c0 (2)

and

y(1)=cL (3)

Next, the x-axis is discretized into N (interior) node
points. The step size in the x-axis is then given by,

h=
1

N+1
(4)

Thus, for N=2 points, (h=1/3), we seek expressions
for the dependent variable at four node points (y0, y1, y2

and y3) in terms of H and p. The boundary condition at
x=0 (Eq. (2)) gives,

y0= c0 (5)

and the boundary condition at x=1 (Eq. (3)) gives,

y3=cL (6)

The dependent variables at the interior node points (y1

and y2) satisfy the governing Eq. (1) with the second
derivative in x expressed in three-point central differ-
ence form accurate to the order h2:

y0−2y1+y2

h2 +
p
h

y2−y0

2h
−H2y1=0 (7)

at node 1 and,

y1−2y2+y3

h2 +
p
2h

y3−y1

2h
−H2y2=0 (8)

at node 2.
The governing equations for y1 and y2 (Eqs. (7) and (8))
can be simplified using Eqs. (5) and (6) and expressed in
matrix form as,

AY=b (9)

where,

Y=
�y1

y2

n
(10)

The coefficient matrix when h=1/3 is,

A=

Æ
Ã
Ã
Ã
È

−H2−18 9+
9
2

p

9−
9
4

p −H2−18

Ç
Ã
Ã
Ã
É

(11)

and the forcing function is

b=

Æ
Ã
Ã
Ã
È

9
2

c0(p−2)

−
9
4

cL(p+4)

Ç
Ã
Ã
Ã
É

(12)

Eq. (9) can be solved by finding the inverse of A

Y=A−1b (13)

by using Maple:

Y=
�y1

y2

n
=

Æ
Ã
Ã
Ã
È

9
144c0−72pc0+8c0H2−4c0H2p+72cL+54pcL+9cLp2

1944+288H2+8H4−162p+81p2

9
144cL−54pc0+8cLH2+2cLH2p+72c0+36pcL+9c0p2

1944+288H2+8H4−162p+81p2

Ç
Ã
Ã
Ã
É

(14)

Note H, p, c0 and cL are parameters in Eq. (14). The
complete solution can be written as:

Y=

Æ
Ã
Ã
Ã
È

y0

y1

y2

y3

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

c0

9
144c0−72pc0+8c0H2−4c0H2p+72cL+54pcL+9cLp2

1944+288H2+8H4−162p+81p2

9
144cL−54pc0+8cLH2+2cLH2p+72c0+36pcL+9c0p

2

1944+288H2+8H4−162p+81p2

cL

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

(15)
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Thus, a symbolic solution is obtained for the given
general linear differential equation. Eqs. (1)–(15) are
easily modeled in Maple V as illustrated in the ap-
pendix. The solution once obtained can be extended for
different boundary conditions as described below.

2.1. Heat transfer in a rectangular fin

Consider the conduction of heat in a rectangular
cooling fin. The governing differential equation (Davis,
1984, pp. 72–75, Subramanian, Haran & White, 1999)
in dimensionless form is,

d2y
dx2=H2y (16)

subject to the following boundary conditions,

y(0)=1 (17)

and

dy
dx

(1)=0 (18)

The rectangular cooling fin has an analytical solution:

y=
cosh H(1−x)

cosh H
(19)

The general solution obtained earlier (Eq. (15)) is valid
for this BVP where

p=0 (rectangular geometry) (20)

c0=1 (Eq. (17)) (21)

y1−4y2+3cL

2h
=0 (Eq. (18)) (22)

Note that, three point backward difference expressions,
accurate to the order h2 are used for accurate dy/dx in
Eq. (22). To obtain cL, the expressions for y1 and y2

from Eq. (15) are substituted into Eq. (22):

cL= −3
H2−18

54+24H2+H4 (23)

Hence the complete solution for a rectangular fin is

y=

Æ
Ã
Ã
Ã
È

y0

y1

y2

y3

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

1

9
6+H2

54+24H2+H4

54
1

54+24H2+H4

−3
18−H2

54+24H2+H4

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

(24)

The profiles obtained for N=10 points are plotted in
Fig. 1 with H as a parameter. The values of y at the
node points with N=10 agree with the analytical solu-
tion (Eq. (19)) to within three digits. The computer time
required to produce Fig. 1 was less than 1 min.

2.2. Cylindrical catalyst pellet

Eq. (1) with p=1 can be used to describe diffusion
with reaction in a cylindrical catalyst pellet (Villadsen &
Michelsen, 1978, pp. 72–75):

d2y
dx2+

1
x

dy
dx

=H2y

dy
dx

(0)=0

y(1)=1

(25)

where H is the Thiele modulus. In this case,

p=1

c0= −
15
4

H2−36
135+30H2+H4

cL=1

(26)

where a three point forward difference expression accu-
rate to the order h2 was used with y1 and y2 from Eq.
(15) to obtain c0. The final solution at all the node
points for this case is,

y=

Æ
Ã
Ã
Ã
È

y0

y1

y2

y3

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

−
15
4

H2−36
135+30H2+H4

135
135+30H2+H4

45
12

H2+12
135+30H2+H4

1

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

(27)

The results for N=10 for various values of H are
plotted in Fig. 2. These results agree to within three

Fig. 1. Dimensionless temperature profiles in a rectangular fin as a
function of dimensionless heat transfer coefficient, H-Symbolic solu-
tions for linear ODEs.
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Fig. 2. Dimensionless concentration profiles in a cylindrical catalyst
pellet as a function of the Thiele modulus, H-Symbolic solutions for
cylindrical coordinate systems.

2.3. Spherical domain

Eq. (1) written with p=2 describes diffusion with
reaction in a spherical catalyst pellet (Finlayson, 1980,
pp. 168):

d2y
dx2+

2
x

dy
dx

=H2y

dy
dx

(0)=0

dy
dx

(1)=Bi(1−y(1))

(28)

where H is the Thiele modulus and Bi is the Biot number.
Again, Eq. (15) with p=2 can be used with three point
forward and backward finite difference expressions for
the derivatives at the boundaries to obtain:

c0= −9
H2−54

162H2+9H4+486Bi+72BiH2+2BiH4

cL=2
Bi(243+36H2+9H4)

162H2+9H4+486Bi+72BiH2+2BiH4

(29)
The final solution for this case can be obtained by
substituting c0 and cL from Eq. (29) into Eq. (15). For
brevity, the final solution is not given here. Again for
N=10 node points, the concentration profiles inside the
spherical catalyst pellet for different values of Biot
numbers are plotted in Fig. 3 for the Thiele modulus
H=2.

2.4. Non-linear boundary conditions

One of the advantages of the technique presented here
is that it obviates the need for iterations for nonlinear
boundary conditions. For example, if one has to solve
the BVP

d2y
dx2=y

y(0)=1−exp(−m* �dy
dx

(0)�)
dy
dx

(1)=0

(30)

where m is a constant. We see in Eq. (30) that as m
approaches infinity, the BVP reduces to the fin problem
(Section 2.1) with H=1. Even now the solution obtained
(Eq. (15)) is valid. For this case c0 and cL are solved in
Maple using the fsolve command for specific values of
m (see the Appendix A). The procedure consists of
writing the equation for y(0) in Eq. (30) in finite
difference expression form followed by solving simulta-
neously the resulting equation together with Eq. (22) for
c0 and cL (see the Appendix A). For example, when m
is 2, c0 is 0.57 and cL is 0.37. Profiles for different values
of m with N=10 are presented in Fig. 4.

Fig. 3. Dimensionless concentration profiles in a spherical particle as
a function of the Biot number, Bi-Symbolic solutions for spherical
particles with a new parameter in the boundary condition.

Fig. 4. Symbolic inverse method for nonlinear boundary conditions-
dimensionless temperature distribution.

digits with those from Villadsen and Michelsen (1978),
pp. 72–75.
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3. Symbolic solutions for partial differential equations
(PDEs)

The methodology developed in the previous section
for ODEs is extended to partial differential equations
(PDEs) here. First, the given PDE is converted into an
ODE by applying the Laplace transform technique in
time (or time like independent variable). Then, the
resulting ODE is solved symbolically in the Laplace

domain by using Maple. Once the solution is obtained
in the Laplace domain, the final solution is obtained by
finding the inverse Laplace transform again by using
Maple. To illustrate our method, consider the diffusion
equation:

(c
(t

=
(2c
(x2+

p
x
(c
(x

(31)

with the initial condition:

c=1 @ t=0 (32)

and boundary conditions:

c=c0 @ x=0 (33)

c=cL @ x=1 (34)

Applying the Laplace transform technique (by using
Maple) for t in Eq. (31), we obtain:

sc(s)−ct=0=
d2c(s)

dx2 +
p
x

dc(s)
dx

(35)

If we replace c(s) by u for brevity and use the initial
condition (Eq. (32)), Eq. (31) simplifies to:

d2u
dx2+

p
x

du
dx

−su+1=0 (36)

The boundary conditions (Eqs. (33) and (34)) in the
Laplace domain are:

u(0)=
c0

s
(37)

and

u(1)=
cL

s
(38)

Eqs. (36)–(38) are similar to Eqs. (1)–(3). The method
applied in Section 2 is applied to solve Eq. (36) and the
solution obtained for N=2 is:

Hence a solution is obtained in the Laplace domain as
a function of c0, cL and p as parameters.

3.1. Diffusion in a plane sheet

Eq. (39) can be used with p=0 to solve for the
diffusion in a plane sheet (Crank, 1994 pp.47–51). The
governing equation is:

(c
(t

=
(2c
(x2 (40)

with the initial condition c(x, 0)=1 and boundary
conditions,

c(0, t)=1
c(1, t)=0

(41)

Maple is used to convert the boundary conditions to
the Laplace domain as:

u(0)=
1
s

u(1)=0
(42)

These boundary conditions can be substituted into Eq.
(39) to obtain:

�solution in the
Laplace domain

�
=

Æ
Ã
Ã
Ã
È

u0

u1

u2

u3

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

c0

s�
−

1296c0+648pc0−216s−72sc0+36spc0− 8s2−648cL−486pcL−81p2cL−36ps
s(1944+288s+8s2−162p+81p2)

n
�648c0−486pc0+216s+72scL+18spcL+8s2+1296cL+324pcL+81p2c0−18ps

s(1944+288s+8s2−162p+81p2)
n

cL

s

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

(39)
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�Solution in the
Laplace domain

�
=

Æ
Ã
Ã
Ã
È

u0

u1

u2

u3

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

1
s� 1296+288s+8s2

s(1944+288s+8s2)
n

� 648+216s+8s2

s(1944+288s+8s2)
n

0

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

(43)

Once the solution is obtained in the Laplace domain,
the solution in the time domain is obtained by finding
the inverse Laplace transform using Maple:

Solution=

Æ
Ã
Ã
Ã
È

c0

c1

c2

c3

Ç
Ã
Ã
Ã
É

Solution=

Æ
Ã
Ã
Ã
È

c0

c1

c2

c3

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

1�2
3
+

1
2

exp(−9t)−
1
6

exp(−27t)
n

�1
3
+

1
2

exp(−9t)+
1
6

exp(−27t)
n

0

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

(44)

Note that the expressions for the dependent variable
obtained at the node points are analytical in time. The
results obtained for this case with N=10 are plotted
with time t as a parameter in Fig. 5.

3.2. Other examples

Different BVPs can be solved by just recalculating c0

and cL. Some of the examples are solved here. For all
the cases considered in this section the initial condition
is c(x, 0)=1. Consider diffusion with constant flux at
the surface of a plane sheet (Crank, 1994, pp. 61–62).
The BVP can be written as:

(c
(t

=
(2c
(x2

(c
(x

(0, t)=0

(c
(x

(1, t)= −1

(45)

As before by using Eq. (39) (p=0) and N=10, the
solution is plotted in Fig. 6 with t as a parameter. It
should be noted that a completely different BVP is
solved by just recalculating the constants c0 and cL in
Eq. (39).

Next, consider diffusion in a cylinder with a time
dependent concentration at the surface (Crank, 1994,
pp.75–76)

(c
(t

=
(2c
(x2+

1
x
(c
(x

(c
(x

(0, t)=0

c(1, t)=2−exp(− t)

(46)

The profiles obtained by using the procedure presented
here with N=10 are plotted in Fig. 7. Note that Maple

Fig. 5. Symbolic solutions for PDEs in rectangular coordinates-di-
mensionless concentration profiles with constant surface boundary
conditions at both ends.

Fig. 6. Symbolic solutions for PDEs-dimensionless concentration
profiles under a flux boundary condition at both the surfaces.
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Fig. 7. Symbolic solutions for PDEs in cylindrical domain-dimension-
less concentration profiles under time dependent boundary condi-
tions.

ical discharge of a spherical electrode under galvanos-
tatic discharge:

(c
(t

=
(2c
(x2+

2
x
(c
(x

(c
(x

(0, t)=0

(c
(x

(1, t)= −1

(47)

The concentration profiles are solved as before and
plotted in Fig. 8 and agree with those presented in the
literature (Subramanian & White, 1999a). Again, the
solution is also valid for nonlinear boundary condi-
tions, as was illustrated is Section 2. In this case, at a
particular time, the nonlinear boundary condition is
solved in Maple by using fsolve. For example, consider
diffusion in a sphere with a nonlinear surface boundary
condition:
(c
(t

=
(2c
(x2+

2
x
(c
(x

(c
(t

(0, t)=0

c(1, t)=100 exp(c(1, t))

(48)

The values at the node points were solved using the
fsolve command in Maple for a particular value of
time. The profiles for this case with N=10 are plotted
in Fig. 9.

4. Discussion

A symbolic finite difference method is presented for
ODEs. The advantage of the technique over that pre-
sented earlier (Subramanian & White, 1999b) is that the
solution is independent of the boundary conditions (as
illustrated in Section 2) and is valid for nonlinear
boundary conditions also.

The method is then extended to PDEs by applying
the Laplace transform technique for the time variable.
A semi-analytical solution in time is obtained which is
consistent with the existing literature (De Vidts &
White, 1992; Subramanian & White, 2000). The advan-
tage of the method presented here is that the solution is
valid for various boundary conditions (both linear and
nonlinear) as illustrated in Section 3.

The order of accuracy used in this paper is h2. We
have used N=10 interior node points for all the
figures. Even though the symbolic solution looks com-
plex for even N=2 node points (Eq. (15)), Maple
handles it very well. In the Appendix a simple Maple
program is given to explain the technique and show
how the same solution can be used for different
boundary conditions. By using the same program by
substituting N=10 in the program and not changing
anything else Figs. 1–4 can be produced. By just mod-

Fig. 8. Symbolic solutions for PDEs in spherical domain-dimension-
less concentration profiles under flux boundary conditions at both the
surfaces; electrochemical discharge of a spherical particle electrode.

Fig. 9. Symbolic solutions for PDEs with nonlinear boundary condi-
tions-dimensionless concentration profiles.

was used to convert the time dependent boundary
condition to the Laplace domain. Spherical diffusion
can also be treated. For example, consider electrochem-
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ifying the same program for just redefining A matrix all
the results in Figs. 5–9 can be obtained. Total time taken
on a 333 MHz Pentium processor for producing Figs.
1–4 starting from the first step (Eq. (1)) is less than 1 min.
Total time taken for producing Figs. 5–9 is less than 2
min. An important difference between Eq. (39) and the
matrix exponential method presented earlier (De Vidts &
White, 1992) is that it is not necessary to find eigen-values
of the coefficient matrix for using the method presented
here.

Only diffusion like PDEs are solved in this paper.
However the same method can be extended to the
Laplace equation to solve current distribution problems
(Subramanian & White, 2000). A computer with
minimum RAM of 64 MB is recommended as Maple is
a memory intensive software. The number of node points
required depends upon the problem. We don’t go beyond
N=20 node points. Instead of increasing N beyond 20
node points we increase the order of accuracy to h4 or
h6. Finite difference expressions for h4 or higher order
accuracy (look complicated) can be derived from
Taylor’s series (Maple program for obtaining finite
difference expressions of any order is not reported here,
but can be obtained from the authors upon request).

5. Summary

A symbolic solution technique has been presented for
solving linear ODEs and PDEs with linear and nonlin-
ear boundary conditions. The method presented is sim-
ple and gives a general solution, which is valid for
various boundary conditions and geometries. The gen-
eral solution once obtained practically solves a large
system of BVPs (not reported here). Several linear PDE
examples in the current literature (Carslaw & Jaeger,
1973; Crank, 1994) were solved using our technique in
less than 1 min.
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Appendix A. Symbolic solutions for boundary value
problems (ODEs)

\ restart:
Section 2 of paper

Enter the number of digits here
\Digits:=5;

Digits :=5

Enter the governing equation (Eq. (1)) here.
\ge:=diff (y(x), x$2)+p/x*diff(y(x),x)-
H�2*y(x);

ge :=
� (2

(x2 y(x)
�

+
p
� (
(x

y(x)
�

x
−H2y(x)

Enter the number of internal node points here.
\N:=2;

N :=2

Enter the boundary condition at x=0 and 1 (Eqs. (2)
and (3))
\bc0:=y [0]=c0; bcL:=y [N+1]=cL;

bc0:=y0=c0

bcL :=y3=cL

Use these boundary conditions to solve for y [0] and
y [3] (Eqs. (5) and (6))
\y[0]:=solve (bc0, y[0]); y [N+1]:=solve
(bcL, y [N+1]);
y0:=c0

y3:=cL

User has to specify with (linalg) for linear algebra
operations in Maple
\with (linalg):
Warning, new definition for norm
Warning, new definition for trace

Three point Finite difference expressions are substi-
tuted in the governing equation (accurate to the order
h�2) given as
\ge:=subs (diff(y (x), x$2)=(y[i+1]-
2*y[i]+y[i−1])/h �2, diff(y(x), x)=y[i+
1]-y[i−1])/(2*h),y(x)=y[i], x=i*h, ge);

ge :=
yi+1−2y1+yi−1

h2 +
1
2

p(yi+1−yi−1)
i h2 −H2y1

The governing equations at the node points are given
by (Eqs. (7) and (8))
\ for a from 1 to N do eq[a]:=subs (i=a,
ge); od;

eq1:=
y2−2y1+y0

h2 +
1
2

p(y2−y0)
h2 −H2 y1

eq2:=
y3−2 y2+y1

h2 +
1
4

p(y3−y1)
h2 −H2 y2

3 point forward and backward differences are stored in
fd and bd
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\ fd:=(−y[i+2]+ 4*y[i+1]-3*y[i])/2/h;

fd :=
1
2

−yi+2+4yi+1−3 yi

h

\bd:=(y[i−2]−4*y[i−1]+3*y[i])/2/h;

bd :=
1
2

yi−2−4 yi−1+3 yi

h

Dimensions of A and b matrix are defined here
\A:=matrix (N, N);b:=matrix (N, 1);

A :=array (1 .. 2, 1 .. 2, [ ])

b :=array (1 .. 2, 1 .. 1, [ ])

First A matrix is initialized to 0
\ for i from 1 to N do of j from 1 to N do A[i,
j]:=0; od: od:
A matrix is formed now
\ for i from 1 to N do for j from 1 to N do
A [i, j]:=coeff (eq[i], y[j]); od; od;

b matrix is formed here
\ for i from 1 to N do
b[i, 1]:=-simplify (eq[i]-sum ( %A[i,

j]*y[j] %, %j %=1..N));od:
values of x are substituted in A and b matrix here
\ for i from 1 to N do for j from 1 to N do
A [i, j]:=subs (x=i*h, A[i, j]): od; od;
\ for i from 1 to N do b [i, 1]:=subs (x=
i*h, b[i, 1]): od
step size is defined as (Eq. (4))
\h:=eval (1/(N+1));

h :=
1
3

A and b matrix are evaluated here (Eqs. (11) and (12))
\ for i from 1 to N do for j from 1 to N do
A [i, j]:=eval (A[i, j]) :od :od: for i

from 1 to N do
B [i, 1]:=eval (b [i, 1]):od: evalm (A);

evalm (b);

Æ
Ã
Ã
Ã
È

−18−H2 9+
9
2

p

9−
9
4

p −18−H2

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
È

9
2

c0 (−2+p)

−
9
4

cL (4+p)

Ç
Ã
Ã
Ã
É

Eqs. (13)–(15) are done in Maple here
\sol:=evalm (inverse (A)&*b):
\sol:=map (simplify, sol):
\soldf:=matrix (N+2, 1):
\ for i from 1 to N do y [i]:=sol [i, 1];

od:=
\soldf [1, 1]:=y [0]: for i from 2 to N+1
do soldf [i, 1]:=simplify (y[i−1): od:
soldf[N+2,1):=simplify (y[N+1]): evalm
(soldf);

9
144 c0−72 p c0+8 c0 H2−4

c0
c0 H2p+72 cL+54 p cL+9 cL p2

1944+288 H2+8 H4−162 p+81 p2

9
72 c0−54 p c0+9 c0 p2+144 cL+36 p cL+8 cL H2+2 cL H2 p

1944+288 H2+8 H4−162 p+81 p2

cL

Now the values at the node points are stored in y [i ].
\ for i from 0 to N+1 do y[i]:=soldf [i+1,
1]; od:

Section 2.1 of paper — Heat transfer in fin
Enter the boundary conditions (Eqs. (16) and (17))

BC0:=Y(x)=1
\BCL:=diff (Y(x), x)=0;

BCL :=
(

(x
Y(x)=0

\ i= %i %:
Now equations Eqs. (20)–(22) in the paper are given as,
\p1=0;

p1:=0

\Eq0:=subs (diff(Y (x), x)=subs (i=0,
fd), Y (x)=y [0], x=0, BC0);

Eq0:=c0=1

\EqN:=subs (diff (Y (x), x)=subs (i=0,
bd), Y(x)=y [N+1], x=L, BCL);

EqN :=
3
2

y1−6y2+
9
2

y3=0

note that fd is used Eq0 (at x=0) and bd is used in
EqN (at x=1). Now c0 and cL are solved as (Eq. (26))
\soln:=solve ({subs(p=p1, Eq0), subs (p=
p1, EqN) }, {c0, cL});

soln :=
!

c0=1, cL= −3
−18+H2

54+24 H2+H4

"
The solution obtained should be assigned
\assign (soln);
Now the final solution can be obtained by evaluating
soldf, the general solution to get Eq. (24) (transpose is
printed for brevity)
\Yfinal:=simplify (map (eval, subs (p=p1,
evalm (soldf)))):transpose (Yfinal);�

1 9
H2+6

54+24 H2+H4

54
1

54+24 H2+H4−3
−18+H2

54+24 H2+H4

n

Ã
Ã

Ã

Æ

È
Ã
Ã

Ã

Ç

É
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This general solution can be plotted for specific values
of H as
\par:=[0, 0.5, 1, 2, 3, 10];

par := [0, .5, 1, 2, 3, 10]

\ for k from 0 to 5 do
p2 [k]:=plot ([seq ([ (i) *h, Re (evalf

(subs (H=par [k+1], Yfinal [i+1, 1])))]
,i=0.. N+1) ], style=line): od:
\with (plots):
Fig. 10 can be obtained as
\display ( {seq (p2 [i], i=0..5) }, axes=
boxed, thickness=3);

Section 2.2 of paper — Cylindrical catalyst pellet
The constraints c0 and cL should be first unassigned
\unassign (‘c0’): unassign (‘cL’):
The boundary conditions are given as (Eq. (25))
\BC0: =diff (Y (x), x)=0; BCL:=Y (x)=1;

BC0:=
(

(x
Y(x)=0

BCL :=Y (X)=1

\ i:= %i %:
As before the boundary conditions are used to solve for
c0 and cL (Eq. (26))
\p1:=1;

p1:=1

\Eq0:=subs (diff (Y(x), x)=subs ( i=N+1,
f64), Y (x)=y [N+1], x=0, BCL];

Eq0:= −
3
2

y2+6 y1−
9
2

y0=0

\EqN:=subs (diff (Y (x) , x)=subs ( i=N+1,
bd), Y (x)=y [N+1], x=L, BCL);

EqN :=cL=1

\soln:=solve ( {subs (p=p1, Eq0), subs
(p=p1, EqN) }, {c0, cL});

soln :=
!

c0= −
15
4

−36+H2

135+30 H2+H4, cL=1
"

\assign (soln);
As before the final solution can be obtained as
\Yfinal:=simplify (evalm (subs (p=p1, map
(eval, soldf)))):transpose (Yfinal);�

−
15
4

−36+H2

135+30 H2+H4

135
1

135+30 H2+H4

45
4

H2+12
135+30 H2+H4 1

n
\par:=[0, 0.5, 1, 2, 3, 10];

par := [0, .5, 1, 2, 3, 10]

\ for k from 0 to 5 do
p2 [k]:=plot ([seq ([(i)*h, Re (evalf

(subs (H=par [k+1], Yfinal [i+1, 1] )))]
,i=0..N+1)], style=line) :od:
\with (plots):
Fig. 11 is obtained as
\display ({seq (p2 [i], i=0..5)}, axes=
boxed, thickness=3);
Section 2.3 of paper — Spherical domain
For this section only final result is printed for brevity
\unassign ( %c0 %):unassign ( %cL %):
\BC0:=diff (Y (x), x)=0;

BC0:=
(

(x
Y (x)=0

\BCL:=diff (Y (x), x)−Bi* (1−Y (x));

BCL :=
� (
(x

Y(x)
�

−Bi (1−Y (x))

\ i:= %i %:
\p1:=2;

p1:=2

\Eq0:=subs (diff (Y (x), x)=subs (i=0,
fd), Y (x)=y [0], x=0, BC0);

Eq0:= −
3
2

y2+6 y1−
9
2

y0=0

Fig. 10.

Fig. 11.
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Fig. 12.

BC0:=Y(x)=1−e
�
−m

) (
(x

Y (x)
)�

\BCL:=diff (Y (x), x);

BCL :=
(

(x
Y(x)

\ i:= ‘i’:
\p1:=0;

p1:=0

\Eq0:=subs (diff (Y (x), x)=subs (i=0,
fd), Y (x)=y [0], x=0, BC0);

Eq0:=c0=1−e (−m�−3/2y2+6y1−9/2y0�)

\EqN:=subs (diff (Y (x), x)=subs ( i=N+1,
bd), Y (x)=y [N+1], x=L, BCL);

EqN :=
3
2

y1−6y2+
9
2

y3

We demonstrate below how to solve for a nonlinear
boundary condition
\m1:=2;

m1:=2

\soln:=fsolve ({subs (p=p1, m=m1, H=1,
Eq0), subs (p=p1, m=m1, H=1, EqN) }, {c0,
cL});

soln :={c0= .57017, cL= .36809}

\assign (soln);
\Yfinal:=simplify (evalm (subs (p=p1, H=
1, m=m1, map (eval, soldf)))): transpose
(Yfinal);

[.57017 .45470 .38975 .36809]

For a different value of m one can solve as
\unassign ( %c0 %): unassign ( %cL %):
\m1:=10;

m1:=10

\soln:=fsolve ({subs (p=p1, m=m1, H=1,
Eq0), subs (p=p1, m=m1, H=1, EqN)}, {c0,
cL});

soln :={c0= .99939, cL= .64519}

\assign (soln);
\Yfinal:=simplify (evalm (subs (p=p1, H=
1, m=m1, map (eval, soldf)))):transpose
(Yfinal);

[.99939 .79699 .68312 .64519]

\EqN:=subs (diff (Y (x), x)=subs ( i=N+1,
bd), Y (x)=y [N+1], x=L, BCL);

EqN :=
3
2

y1−6 y2+
9
2

y3−Bi (1−cL)

\soln:=solve ({subs (p=p1, Eq0), subs
(p=p1, EqN)}, {c0, cL}):
\assign (soln);
\Yfinal:=simplify (evalm (subs (p=p1, map
(eval, soldf))));

Yfinal :=

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

−9
(H2−54)Bi

162 H2+9 H4+486 Bi+72 Bi H2+2 Bi H4

486
Bi

162 H2+9 H4+486 Bi+72 Bi H2+2 Bi H4

27
(18+H2) Bi

162 H2+9 H4+486 Bi+72 Bi H2+2 Bi H4

2
Bi (243+36 H2+H4)

162 H2+9 H4+486 Bi+72 Bi H2+2 Bi H4

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

\par:=[0, 0.5, 1,2,10, 100];

par := [0, .5, 1, 2, 10, 100]

\ for k from 0 to 5 do
p2 [k]:=plot ([seq ([(i)*h, Re (evalf

(subs (H=2, Bi=par [k+1], Yfinal [i+1,
1])))], i=0..N+1)], style=line) :od:
\with (plots):
Fig. 12 is obtained as
\display ({seq (p2 [i], i=0..5)}, axes=
boxed, thickness=3);
Section 2.4 of paper — Non-linear boundary conditions
\unassign (‘c0’):unassign (‘cL’):
\BC0:=Y (x)=1-exp (-m*abs (diff (Y (x),
x)));



V.R. Subramanian, R.E. White / Computers and Chemical Engineering 24 (2000) 2405–24162416

The user can just change N=10 at the beginning of this
program and run the program to produce Figs. 1–4 in
less than 2 min.
Total time taken for N=2 node points is around 8 s.

Appendix B. Nomenclature

coefficient matrixA
forcing functionb
dimensionless concentrationc
dimensionless concentration at the i th node pointci

dimensionless concentration at x=0c0

dimensionless concentration at x=1cL

constants (initial derivatives, only in Section 4)cI

step size in x directionh
H dimensionless heat transfer coefficient, Thiele

modulus
L length (cm)

number of interior node points usedN
s laplace transform variable

time (s)t
u dependent variable in the Laplace domain

independent variablex
dependent variable (dimensionless)y
dependent variable at the i th node point (dimen-yi

sionless)
Y dependent variable vector
y independent variable (only in Section 4)
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