The analytical solution to the primary current distribution problem in Model 1 obtained in the transformed coordinates using conformal mapping, along with the solution procedure, is given below.

First the original square domain in the $\mathrm{Z}=\mathrm{X}+\mathrm{IY}$ coordinate system is transformed to a line from $-\infty$ to $+\infty$ in the w coordinate system using

$$
\begin{equation*}
\frac{\mathrm{dZ}}{\mathrm{dw}}=\frac{-\mathrm{IK}[1]}{\sqrt{\mathrm{w}} \sqrt{\mathrm{w}-1} \sqrt{\mathrm{w}-1-\mathrm{a}} \sqrt{\mathrm{w-2-a}}} \tag{1}
\end{equation*}
$$

where $\mathrm{K}[1]$ and a are solved using the conditions $\mathrm{w}=1$ when $\mathrm{Z}=1+0 \mathrm{I}$ and $\mathrm{w}=1+\mathrm{a}$ when $\mathrm{Z}=1+1 \mathrm{I}$, corresponding to $\mathrm{X}=1, \mathrm{Y}=0$ and $\mathrm{X}=1, \mathrm{Y}=1$ in the original geometry, respectively. The value of a is found to be $\sqrt{2}-1$. Now w is mapped to $\mathrm{Z} 2=\mathrm{X} 2+\mathrm{IY} 2$ using the transformation,

$$
\begin{equation*}
\frac{\mathrm{dZ2}}{\mathrm{dw}}=\frac{-\mathrm{I} \mathrm{~K}[2]}{\sqrt{\mathrm{w}} \sqrt{\mathrm{w}-\frac{1}{\sqrt{2}}} \sqrt{\mathrm{w}-1-\mathrm{a}} \sqrt{\mathrm{w}-2-\mathrm{a}}} \tag{2}
\end{equation*}
$$

where $\mathrm{Z} 2=1+0$ I when $\mathrm{w}=\frac{1}{\sqrt{2}}$ is used to determine $\mathrm{K}[2]$, and $\mathrm{Z} 2=1+\mathrm{HI}$ when $\mathrm{w}=1+\mathrm{a}$ is
used to obtain H . The final solution in the Z 2 coordinate system is

$$
\begin{equation*}
\phi=1-\frac{\text { EllipticK }\left(\frac{1}{\sqrt{2+\sqrt{2}}}\right) \mathrm{Y} 2}{\text { EllipticK }\left(\sqrt{\frac{\sqrt{2}+1}{2+\sqrt{2}}}\right)} \tag{3}
\end{equation*}
$$

```
>
> restart;
> Digits:=15;
```

$$
\text { Digits := } 15
$$

The domain is tranformed from $\mathrm{Z}=\mathrm{X}+\mathrm{IY}$ to w . The points tranformed are
> Zdomain:=[[0,0],[1,0],[1,1],[0,1]];

$$
\text { Zdomain }:=[[0,0],[1,0],[1,1],[0,1]]
$$

> wdomain:=[0,1,1+a,a+2];

$$
\text { wdomain }:=[0,1,1+a, a+2]
$$

> eq1:=diff(Z(w),w)=-I*K1/sqrt(w)/sqrt(w-1)/sqrt(w-a-1)/sqrt(w-a-2);

$$
\text { eq } 1:=\frac{d}{d w} \mathrm{Z}(w)=\frac{-I K 1}{\sqrt{w} \sqrt{w-1} \sqrt{w-a-1} \sqrt{w-a-2}}
$$

a is not known apriori. The value of a should be found to make sure $[1,1]$ in the Z coordinate is transformed to [1+a] in the w coordinate.
> a:=sqrt (2) -1 ;

$$
a:=\sqrt{2}-1
$$

Value of K 1 is found using the transformation of $[1,0]$ to 1 in the w coordinate
> eq11:=1=int(rhs (eq1),w=0..1);

$$
\text { eq11 }:=1=-K 1 \sqrt{2} \text { EllipticK }\left(\frac{\sqrt{2}}{2}\right)
$$

> K1:=solve (eq11, K1);

$$
K l:=-\frac{1}{2} \frac{\sqrt{2}}{\text { EllipticK }\left(\frac{\sqrt{2}}{2}\right)}
$$

The height Y in the Z coordinate is found by integrating from 1 to $1+\mathrm{a}$ in the w coordinate.
> simplify(int(rhs (eq1),w=1..1+a));

$$
\frac{2 I \sqrt{2} \text { EllipticK }\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)}{\text { EllipticK }\left(\frac{\sqrt{2}}{2}\right)(\sqrt{2}+1)}
$$

> evalf(\%);

$$
1.00000000000000 I
$$

The choice of $\mathrm{a}=\operatorname{sqrt}(2)-1$ gives the height of 1 for Z coordinate.
> eval(simplify(int(rhs (eq1),w=0..1+a)));

$$
\frac{\sqrt{2} \operatorname{EllipticK}\left(\frac{\sqrt{2}}{2}\right)+\operatorname{EllipticK}\left(\frac{\sqrt{2}}{2}\right)+2 I \sqrt{2} \operatorname{EllipticK}\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)}{\operatorname{EllipticK}\left(\frac{\sqrt{2}}{2}\right)(\sqrt{2}+1)}
$$

> evalf(\%);

$$
1.00000000000000+1.00000000000001 I
$$

integration from 0 to $1+\mathrm{a}$ in the w coordinate gives 1,1 in the Z coordinate.
> simplify(int(rhs (eq1),w=0..1/sqrt (2)));
$\frac{\text { EllipticF }\left(\frac{\sqrt{2}}{\sqrt{2+\sqrt{2}}}, \frac{\sqrt{2}}{2}\right)}{\text { EllipticK }\left(\frac{\sqrt{2}}{2}\right)}$
> evalf(\%);

$$
0.500000000000001
$$

Integrating w from 0 to wmid $=1 / \mathrm{sqrt}(2)$ gives the point $0.5,0$ in the Z coordinate
> wmid:=1/sqrt (2);

$$
\text { wmid }:=\frac{\sqrt{2}}{2}
$$

Next w domain is transformed to Z 2 domain $\mathrm{Z} 2=\mathrm{X} 2+\mathrm{IY} 2$
> Z2domain:=[$[0,0],[1,0],[1, H],[0, H]]$;

$$
\text { Z2domain }:=[[0,0],[1,0],[1, H],[0, H]]
$$

> wdomain2:=[0,1/sqrt (2), 1+a, a+2];

$$
\text { wdomain } 2:=\left[0, \frac{\sqrt{2}}{2}, \sqrt{2}, \sqrt{2}+1\right]
$$

> eq2:=diff(Z2(w),w) =-I*K2/sqrt (w)/sqrt(w-wmid)/sqrt (w-1-a)/sqrt (w-a -2);

$$
e q 2:=\frac{d}{d w} \mathrm{Z} 2(w)=\frac{-2 I K 2}{\sqrt{w} \sqrt{4 w-2 \sqrt{2}} \sqrt{w-\sqrt{2}} \sqrt{w-\sqrt{2}-1}}
$$

K2 is found based on the transformation of wmid to $[1,0]$ in Z 2 coordinate.
> eq21:=1=int(rhs (eq2),w=0..wmid);

$$
e q 21:=1=-\frac{2 \text { K2 EllipticK }\left(\frac{1}{\sqrt{2+\sqrt{2}}}\right)}{\sqrt{\sqrt{2}+1}}
$$

> K2:=solve (eq21,K2);

$$
K 2:=-\frac{1}{2} \frac{\sqrt{\sqrt{2}+1}}{\text { EllipticK }\left(\frac{1}{\sqrt{2+\sqrt{2}}}\right)}
$$

The corner 0,1 in the Z coordinate is mapped by integrating eq 2 from 0 to 1 in the w coordinate
> int(rhs (eq2),w=0..1);
$1+\frac{\operatorname{EllipticF}\left(\sqrt{2-\sqrt{2}}, \sqrt{\frac{\sqrt{2}+1}{2+\sqrt{2}}}\right) I}{\operatorname{EllipticK}\left(\frac{1}{\sqrt{2+\sqrt{2}}}\right)}$
> corner:=evalf(\%);

$$
\text { corner }:=1 .+0.559419351518322 I
$$

This is the point 1,0 in the original coordinate.
The height in the Z2 coorinate is found by integrating eq 2 from wmid to $1+a$.
> ytot:=int(rhs (eq2),w=wmid..1+a);

$$
y \text { tot }:=\frac{\text { EllipticK }\left(\sqrt{\frac{\sqrt{2}+1}{2+\sqrt{2}}}\right) I}{\text { EllipticK }\left(\frac{1}{\sqrt{2+\sqrt{2}}}\right)}
$$

> evalf(\%);

$$
1.22004159128347 I
$$

The magnitude in the Y direction is given by the coefficient of I , the imaginary number
> Ytot:=coeff(ytot,I);

$$
\text { Ytot }:=\frac{\text { EllipticK }\left(\sqrt{\frac{\sqrt{2}+1}{2+\sqrt{2}}}\right)}{\text { EllipticK }\left(\frac{1}{\sqrt{2+\sqrt{2}}}\right)}
$$

The analytial solution in the Z 2 corordinate is a line in Y2 to satisfy simple zero flux conditions at X 2 $=0$ and $\mathrm{X} 2=1$.
> phianal:=1+b*Y2;

$$
\text { phianal }:=1+b \text { Y2 }
$$

The value of phi is zero at $\mathrm{Y} 2=\mathrm{Ytot}$ (originally the cathode domain in the Z domain)
> bc:=subs (Y2=Ytot, phianal) $=0$;

$$
b c:=1+\frac{b \text { EllipticK }\left(\sqrt{\frac{\sqrt{2}+1}{2+\sqrt{2}}}\right)}{\text { EllipticK }\left(\frac{1}{\sqrt{2+\sqrt{2}}}\right)}=0
$$

> b:=solve (bc, b) ;

$$
b:=-\frac{\text { EllipticK }\left(\frac{1}{\sqrt{2+\sqrt{2}}}\right)}{\text { EllipticK }\left(\sqrt{\frac{\sqrt{2}+1}{2+\sqrt{2}}}\right)}
$$

The analytical solution is given by
> phianal;

$$
1-\frac{\text { EllipticK }\left(\frac{1}{\sqrt{2+\sqrt{2}}}\right) Y 2}{\text { EllipticK }\left(\sqrt{\frac{\sqrt{2}+1}{2+\sqrt{2}}}\right)}
$$

> evalf(phianal);

$$
\text { 1. }-0.819644188480505 Y 2
$$

The potential at the corner is given by substituting the imaginary value of corner for Y 2 in phinanal)
> phicorner:=subs(Y2=Im(corner), phianal);

$$
\text { phicorner }:=1-\frac{0.559419351518322 \text { EllipticK }\left(\frac{1}{\sqrt{2+\sqrt{2}}}\right)}{\text { EllipticK }\left(\sqrt{\frac{\sqrt{2}+1}{2+\sqrt{2}}}\right)}
$$

> evalf(phicorner);

$$
0.541475179604475
$$

local flux/current density calculation, written in terms of w is
> curr:=b*rhs (eq2)/rhs (eq1);

$$
\text { curr }:=-\frac{\sqrt{\sqrt{2}+1} \sqrt{2} \text { EllipticK }\left(\frac{\sqrt{2}}{2}\right) \sqrt{w-1}}{\text { EllipticK }\left(\sqrt{\frac{\sqrt{2}+1}{2+\sqrt{2}}}\right) \sqrt{4 w-2 \sqrt{2}}}
$$

average flux/current density calculation for the anode
> currave:=int((curr),w=0..wmid)/wmid;

$$
\text { currave }:=-\frac{1}{2} \frac{\sqrt{\sqrt{2}+1}(\sqrt{2}-1) \text { EllipticK }\left(\frac{\sqrt{2}}{2}\right)\left(2^{(3 / 4)}+2^{(1 / 4)}+\operatorname{arctanh}\left(\frac{2^{(3 / 4)}}{2}\right)\right) \sqrt{2}}{\text { EllipticK }\left(\frac{2^{(3 / 4)}}{2}\right)}
$$

[> Digits:=25:
The average current density at $\mathrm{Y}=0$, local current density at $\mathrm{X}=0, \mathrm{Y}=0$ and potential at $\mathrm{X}=1, \mathrm{Y}=0$ (Corner) can be used to study convergence of FEM and other numerical methods
> evalf(currave), evalf(subs (w=0, curr)), evalf(phicorner);
$-1.656507648777793388522396,-1.161311530233258689567781$,
0.5414751796044734741869534
[>

