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Physics-based electrochemical models play a prominent role in the model-based analysis, virtual engineering, and Battery
Management Systems (BMS) of lithium-ion and next-generation batteries. In this paper, we demonstrate the rich physics of phase-
field models and convey their potential in BMS applications. Our phase-field model-based optimization framework predicts an
impulse-like control profile to reduce capacity degradation. This work was partially inspired by the pulse-charging protocol
proposed by Professor Landau in his 2006 work [B. K. Purushothaman and U. Landau, J Electrochem Soc, 153(3), A533 (2006)].
An open-source framework is shared for predicting the (im)pulse protocol reported in this paper.
© 2024 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
ad57f9]
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Batteries serve as energy storage devices for a variety of
applications, from consumer electronics to electric vehicles and
renewable energy storage. Battery models can serve two primary
purposes for all of these use cases. Prior to manufacturing the battery
cell, battery models can be utilized to drive design by linking the
performance requirements of a battery cell in a particular system to
the electrode and material level design choices during the develop-
ment phase.1 After a battery has been implemented into the target
system, battery models are developed to predict the physical state of
a battery and track degradation dynamics to optimize performance,
efficiency, and long-term health.2 Battery Management Systems
(BMS) sustain safe battery operating conditions, manage thermal
loads, and perform fault detection during operation to detect
scenarios that lead to undesired events.3,4

Physics-based electrochemical models are essential tools that
facilitate the simulation of electrochemical and transport phenomena
inside the battery, enable battery parameter estimation, and inform
control-based cycling protocols for lithium-ion (Li-ion) batteries.5

BMS implemented with physics-based models can also estimate the
state-of-charge (SOC) and state-of-health (SOH) of the battery.
Physics-based models consist of coupled differential-algebraic
equations (DAEs) that can vary in complexity and simulation time
based on the granularity of the underlying physics. These models,
compared to empirical approaches, have greater accuracy and better
adaptability for the simulation of rapid cycling protocols, new cell
chemistries, and novel degradation mechanisms. With the adoption
of batteries in the automotive and energy sectors, the accurate
prediction of capacity degradation and remaining useful life (RUL)

of batteries has become critical. Various degradation mechanisms,
such as solid electrolyte interphase (SEI) growth, particle cracking,
and lithium plating contribute to the shortening of life and must be
captured in order to mitigate operational concerns present in aged
battery systems.6 BMS informed by electrochemical models are
well-suited to incorporate degradation phenomenon into predictive
models and give manufacturers and users meaningful inputs to assist
in operating the batteries. Physics-based BMS are particularly useful
in feedforward prediction of high-rate operation scenarios in electric
vehicle operation, specifically with respect to fast charging and
range estimates during towing, both of which serve to mitigate
consumer range anxiety and drive domestic electric vehicle adop-
tion. However, the computational costs associated with physics-
based battery models can be prohibitive for both onboard estimation
and control applications, as well as offline parameter identification
and control optimization.2 Therefore, model reformulation and
reduced order models are often needed to implement advanced
physics-based BMS methods and improve computational
efficiency.5,7 Finally, the recent trends in data-driven modeling
also make use of physics-based electrochemical modeling via
physics-informed machine learning models that can aid in improving
the computational footprint.8

In the realm of physics-based modeling, models of different
complexity, time, and length scales have been developed to study
batteries for BMS and systems engineering applications.5,9 The
diffusion process within the cell electrodes has typically been
modeled using Fick’s laws of diffusion. Recently, the intercalation
of lithium-ions in the electrode particle was posed as a phase change
problem, where the area intercalated with lithium undergoes phase
change compared to pristine material. Such phase change behavior is
found in cathodes such as lithium iron phosphate (LFP) and anodes
such as Graphite.10 With a refocus in the automotive sector on LFP:
Graphite batteries, consideration of the phase change during inter-
calation can aid in both the virtual engineering domain duringzE-mail: venkat.subramanian@utexas.edu

=Equal contribution.
*Electrochemical Society Student Member.

**Electrochemical Society Member.
***Electrochemical Society Fellow.

Journal of The Electrochemical Society, 2024 171 063507
1945-7111/2024/171(6)/063507/7/$40.00 © 2024 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited

https://orcid.org/0000-0002-7389-029X
https://orcid.org/0000-0003-2694-7641
https://orcid.org/0000-0003-2731-7107
https://orcid.org/0000-0003-2135-9381
https://orcid.org/0000-0002-1535-8844
https://orcid.org/0009-0009-6611-6990
https://orcid.org/0000-0002-9306-7436
https://orcid.org/0000-0003-2251-8129
https://orcid.org/0000-0002-2092-9744
https://doi.org/10.1149/1945-7111/ad57f9
https://doi.org/10.1149/1945-7111/ad57f9
https://iopscience.iop.org/issue/1945-7111/171/6
https://iopscience.iop.org/issue/1945-7111/171/6
mailto:venkat.subramanian@utexas.edu
https://crossmark.crossref.org/dialog/?doi=10.1149/1945-7111/ad57f9&domain=pdf&date_stamp=2024-06-27


development, and the controls domain while in operation.
Researchers have approached this phase change problem in terms
of evolving core–shell problems11,12 and, more recently, using phase
field models13,14 that may hold certain advantages over the tradi-
tional Fickian diffusion models.

Phase field models originated from diffuse-interface models
developed by Cahn & Hilliard in the 1950s.15 They are based
upon thermodynamics and characterized by a diffuse interface that
introduces the phase-field variable to indicate the phase state of a
material system.16 As the system evolves, the phase-field variable
directly reflects the phase transition process which is derived
according to principles of local equilibrium and free energy
minimization, typically described by nonlinear partial differential
equations (PDEs) and solved numerically. Phase-field models have
been applied to batteries to gain deeper insights into the physics of
lithiation,17 lithium plating (Li-plating),18 particle cracking,19 and
dendritic growth.20 Phase-field models are relevant for both the
current and next generation of battery chemistries, but they need to
be properly parametrized, formulated, and simulated for robust and
convergent simulations. In addition, as shown in a recent paper,
kinetics-driven interface growth requires simulation of Hamilton
Jacobi equations.18

Electrochemical model-based control approaches remain at the
forefront of efforts to improve the overall life and performance of
Li-ion batteries. Battery design parameters such as electrode thick-
ness and porosities are optimized using full battery models as well as
reduced-order models.21,22 Optimum charging protocols are obtained
to improve battery lifetime and reduce degradation.23–25 Pathak et al.
developed a model-based optimal charging approach for a NMC
based Li-ion pouch cell that resulted in a cycle life improvement of
over 100%, compared to a standard CC-CV charging method.26

Recent efforts have been focused on minimizing Li-plating via
optimized charging protocols during regular cycling27,28 and ex-
treme fast charging.29 The model-based investigation on the effects
of temperature and cell parameters on the performance of CC-CV
and boost charging profiles has shown that under conditions that
favor shorter diffusion timescales, performance is better with the
boost charging profiles.30 Finally, Landau et al.31 have analyzed
constant current and pulse current profiles for Fickian diffusion (in a
simulation mode, not optimal control mode) and argued that pulse
current reduces the charging time and reduced concentration
polarization-related losses. This work has been built upon by adding
more physics and mechanisms subsequently.32–34

This work is partially inspired by the pulse-charging protocol that
was proposed by Professor Landau in his 2006 paper.31 In that work,
empirically selected pulse charging profiles that show enhanced
charging were modeled using Fick’s law of diffusion. It was shown
that using pulsed charging profiles avoided lithium saturation at the
surface, enabling charging at higher rates. This was a model-based
examination of empirical pulsed profiles used by experimentalists
and not an effort to arrive at an optimal profile using Fick’s law for
diffusion in particles. In the present work, we have shown that, using
phase field formulations in place of Fick’s model actually predicts a
pulsed profile as an optimal charging profile, thereby providing
theoretical framework for empirically observed pulsed profiles
during experiments. Thus, we have aimed to integrate the recent
advances in phase-field models for batteries with the model-based
control and optimization approaches from our previous works.23,35

Current Status

Intercalation modeled with Fickian diffusion.—Traditionally,
Fickian diffusion has been used to model the intercalation of Li-ions
within the electrode particles.36 Though the spherical domain is
more appropriate for battery models, this paper reports models in
cartesian coordinates (rectangular slab) for clarity and numerical
ease. In this case, the electrode is assumed to be a planer rectangular
electrode with symmetry at =x 0, while the other is in contact with
electrolyte ( =x 1). The cartesian results are applicable to spherical

particles as well. The galvanostatic charge for constant diffusivity
for a fully discharged cathode particle can be written as:
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In this model, c and x are dimensionless concentration and
distance, t is dimensional time ( )s , and td is the diffusion time
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D
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Nx represents the flux of concentration. If we consider

=c 0 as the fully delithiated (charged) state of the cathode,
corresponding to a fully charged state of the battery cell

(SOC = 100%), then δ = 1

3600
is the scaled current density for a

C-rate of 1 C. Volume averaging of Eq. 1 gives δ= −dc

dt
avg showing

mass conservation consistent with the Faraday’s law. For a given
current density and t ,d this model can predict concentration profiles
at different times. Based on the Butler-Volmer or Marcus theory, one
can then find the overpotential at =x 1 i.e. at the electrode and
electrolyte interface. Assuming that there is no kinetic limitation, the
potential of the electrode is given by = − ( )V OCV c3.42 s where cs

is the dimensionless concentration at =x 1. 3.42 V is the observed
potential for LiFePO4 at 50% SOC as reported in the Zeng and
Bazant paper.13 Pseudo-two-dimensional (P2D) type models based
on Newman’s seminal work,36 build on these models with different
variations (nonlinear diffusivity) for the solid-phase diffusion. Note
that to predict the voltage profile, one needs an Open-Circuit Voltage
(OCV) fitting from the experimental data, or an algebraic represen-
tation such as the Multi-Species, Multi-Reaction model.37,38

Cahn hilliard reaction model.—Zeng and Bazant13 presented a
thermodynamically improved version of the intercalation model
based on the Cahn-Hilliard Reaction (CHR) model. This model can
be written (with some modifications for ease of simulation and
analysis) as,
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Note that td is added in this paper compared to Zeng and
Bazant’s13 paper, and rectangular coordinates are used). Nx here
again refers to the modified flux expression. μ is the chemical
potential, whereas ω and κ are the enthalpy of mixing per site and
the gradient energy penalty coefficient in dimensionless form
respectively.13 The ω parameter may be regarded as a scaled molar
enthalpy of the mixing parameter. It is a measure of the strength of
interactions between intercalated ions and vacant sites in the active
material. A negative value of ω indicates greater attraction between
the intercalated ions and sites. This value thus predicts single-phase
behavior throughout the Li stoichiometry range. A positive value of
ω higher than a certain threshold (ω >2) leads to the formation of
two intercalant phases. We have chosen two representative values
denoting single phase and phase separating dynamics. These values
correspond to the LFP system in this case. The theoretical maximum
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for SOC is 1. Since, there is ( − )clog 1 term in the model equation,
0.999 is used as the maximum to avoid numerical failures. Volume

averaging of Eq. 2 will still predict δ= − .
dc

dt
avg For 1 C charge

(assuming =c 0.001 at the full charged state of the cell, corre-

sponding to a low state-of-lithiation of the cathode), δ = 1

3600
gives

the 1 C rate of charge. Model (2) has many attractive features
compared to model (1), such as:

1. Model 2 does not need an extensive empirical fitting for open-
circuit voltage expression (OCV) compared to model 1, which
does need one. The presented model does need to be para-
meterized for ω and κ by fitting experimental data, but this is
fundamentally and quantitatively different from the conven-
tional approach to modeling OCV, which involves use of
arbitrary functional relationships and fitting a much larger
number of parameters. The voltage profile (assuming no kinetic
limitation) is given by, μ= −V 3.42 ,RT

F s where μs is the
chemical potential at =x 1 in dimensionless form.

2. In certain materials, multiple phases need to be considered (due
to phase separation or attraction) during intercalation. Tailoring
the value of ω in model 2 is better suited and easier to
implement to capture this phenomenon instead of an empirical
profile obtained using experiments.13 Prof. Bazant has strongly
advocated models of this type due to its thermodynamic
consistency amongst other models developed in the last decade.

3. A simulation of model 2 at 25% cell state of charge is given in
Figs. 1a and 1b for κ = 0.001 with =N 100 linear elements in
COMSOL. For low and negative values of ω, model 2 predicts
Fickian-like diffusion behavior as in model 1 but is much easier
to simulate. For large values of ω ω( > )2 , proper care should
be taken to simulate model 2, paying attention to numerical
oscillations, convergence, and stability of the numerical scheme.
These features make model 2 very rich in terms of physics and
numerical analysis.

Limitations of the proposed model.—The model considered is
one-dimensional. The effect of curvature will be seen only in 2D or
3D models. In addition, anisotropy is not included in the phase-field
model reported in this paper. For model 2, explicit time stepping is
difficult to achieve as the time step restriction will be based on

<dt h4 where h is the element/node size in spatial discretization.
Implicit time stepping is feasible, but sometimes this might give
meaningless results. When weak form FEM is used, linear, quad-
ratic, and cubic are element shapes used in the simulation. They are
referred to as first order (linear) and higher order (quadratic and
cubic) shape functions in this paper. For example, the COMSOL
simulation of this model for ω = −2 and 4.5 for =N 10 and 100
elements with first order (linear) shape functions are shown in
Figs. 1c–1f. One can see that concentration becomes negative and
ideally the simulation should stop, but the stop condition might be
skipped erroneously in default adaptive time-stepping methods with
backward difference for time stepping (changing the solvers or
tuning the parameters will avoid this problem). The oscillations at
high values of ω do not go away with higher order methods or shape
functions (quadratic or cubic) and they only fade away at a higher
number of elements. Incidentally, as the number of elements is
increased, convergence is seen, and only meaningful concentration
values are predicted. Variable grid spacing with reduced mesh sizes
near the surface, =x 1 might converge faster for this model. Model
2 features a log term for the description of μ variable. This makes the
simulations susceptible to numerical inconsistencies. Therefore, a
reformulation of the model equations is required as described in the
next section. Finally, phase-field models are computationally chal-
lenging to solve and the theory to solve these models is still under
development (in particular for robust and efficient simulation in CPU
constrained environments).

Charging profiles and optimal control for reduced degrada-
tion.—Model-based BMS has shown significant improvement in
battery life and reduced charging time for different battery chemis-
tries and systems. There is a lot of uncertainty in battery degradation
mechanisms and parameters. However, a meaningful objective for
model 2 to minimize concentration gradients across a particle can be
stated by using the formulation given below.

∫= ( − ( )) [ ]obj c c t dt0, 3
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Subjecting this to Eq. 2 we get ∫ δ = .
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f This objective

minimizes the concentration gradient across the particle for a given
total charge stored. A minimized concentration gradient within the
particle will reduce stress induced degradation/cracking. The ori-
ginal model (Model 2) was reformulated as follows for ease of
simulation and optimal control.
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To confirm that the reformulated model (Eq. 4) matches with the
original model (Eq. 2), simulations were performed with increasing
number of N , the number of elements. After =N 100, for all the
values of ω, results are converged. Equation 4 does not have a
logarithm term which reduces solver failures while running the
model inside an optimization framework.

For obtaining the optimal control profiles a control vector
parametrization approach was used with cell-centered finite differ-
ence formulation with a numerical method of lines (MOL) frame-
work for Eq. 4. The number of stages (Nstages) is the number of
intervals that the total charging time is divided into, in the optimal
charging problem. The objective was found to monotonically
decrease with an increase in Nstages when the number of stages
was doubled as shown in Fig. 2a. The control profiles obtained for
minimized degradation are given in Fig. 2b where ω = 4.5.

Analysis of optimal control profiles.—The results from the
control profiles suggest the following:

1. The improved model (Eq. 2) compared to diffusion model
(Eq. 1) gives an impulse profile as the optimal control profile.
This profile is also consistent with a recent experimental
observation reported elsewhere.39

2. Regular charging profiles at constant current charging (CC) for
one hour show significant concentration gradients across the
electrode due to phase separation (Fig. 2c). As opposed to CC
charging, the optimal control profile significantly reduces the
gradients across the electrodes as shown in Fig. 2c for ω = 4.5.

3. The addition of more mechanisms (e.g., kinetics, mesoscale, or
other detailed models) to model 2 might move the control
profiles towards a pulse profile, as Professor Landau predicted
earlier, or provide completely different control profiles.

4. An open-source framework is developed and shared for
predicting the (im)pulse protocol reported in this paper.40 This
was first developed in MATLAB and future publications will
explain the detailed math involved in optimizing the algorithms,
for real-time simulation in embedded systems and BMS. In
addition, a webpage will be maintained with simulation exam-
ples in Maple, MATLAB, and C.

5. The code presented can be modified to include kinetics and
spherical coordinates. Nonlinear path constraints on voltage and
temperature can be added as inequality constraints, but this
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Figure 1. Results for model 2 for Csurface vs distance x for (a) ω = −2, SOC = 25% (b) ω = 4.5, SOC = 25%. Results for model 2 Csurface vs t for (c) ω =
−2 at N = 10 (d) ω = 4.5 at N = 10 (e) ω = 4.5 at N = 100, and (f) ω = -2 at N = 100.
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might require additional convergence studies with respect to the
number of control stages and number of node points.

Conclusions and future prospects.—Physics-based battery
models are based on physical and electrochemical principles that
govern the internal processes of the cell. As more and more physics
is unearthed from innovative new diagnostic tools and techniques,
there is a need to revisit the existing models. The case study shown
in this paper suggests that when models are upgraded (in this paper,
the diffusion equation was replaced with phase-field models), the
optimal control profiles yield impulse-like behavior, which was

perhaps intuitively predicted by Professor Landau ahead of time.31

Conclusions and future prospects are summarized below:

1. Physics: Ideally, a thermodynamically consistent model should
be chosen as opposed to models requiring empirical fits for the
OCV expression (model 2 vs model 1). However, this requires
additional computational work, and with the advent of GPU-
based computers and improved software and hardware, more
detailed multiscale models can be simulated efficiently and
moved to control and design applications.

2. Numerical simulation: Grid convergence studies should be a
part of numerical analysis when the physics is modified (for

Figure 2. The control profiles obtained for minimized degradation for the phase-field model. (a) Objective function vs Nstages (number of stages)(Nstages is the
number of intervals in which charging is divided to get optimal profile) (b) Constant current profile vs Phase-field model-based optimal charging profile for ω =
4.5 (c) Concentration at x = 0 and x = 1 (surface) vs time for constant current vs phase-field model-based optimal charging for ω = 4.5. The optimal control
profile obtained for the model mimics an impulse profile.
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example, model 1 is easier to simulate compared to model 2).
Model 1 is amenable to spectral methods, but they might result
in meaningless solutions for model 2. A simple cell-centered
finite difference is used in the code for simulation and control.
This was guided by the fact that higher order methods/shape
functions did not remove the oscillations. The best possible
numerical method depends on the physics and the operating
conditions for the model. Rectangular coordinates were used in
the paper and codes, and the numerical scheme used provides
the same order of accuracy in spherical coordinates as well. If
finite element methods and higher order methods are used, the
spherical coordinates would require modifications at =x 0 for
better accuracy and convergence. Additionally, the simulation
approach was not optimized, however providing the structure
and values of analytical Jacobian can speed up the simulation.
Future work will involve efficient mathematical techniques to
attain sufficient convergence with reduced CPU time possibly
facilitated by reduced number of discretized equations (in
space), different temporal discretization methods, parallel
CPU/GPU computing, and other order reduction techniques.

3. Software: The results presented in this paper are based on
MATLAB codes for simulation and optimization. Running the
codes in C can result in a higher efficiency of simulation with
lower memory footprint. Optimization of codes and algorithms
for the model presented in this paper will be reported in future
publications.

4. Degradation mechanisms: The results presented assume that
higher currents do not lead to additional modes of degradation
(thermal, SEI layer, Li plating, etc). Addition of other degrada-
tion or performance mechanisms can change the control profile
obtained. This requires integration and validation of the control
profiles with in situ diagnostic techniques.
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