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a b s t r a c t 

We propose a multiscale model predictive control (MPC) framework for stationary battery systems that 

exploits high-fidelity models to trade-off short-term economic incentives provided by energy and fre- 

quency regulation (FR) markets and long-term degradation effects. We find that the MPC framework 

can drastically reduce long-term degradation while properly responding to FR and energy market sig- 

nals (compared to MPC formulations that use low-fidelity models). Our results also provide evidence that 

sophisticated battery models can be embedded within closed-loop MPC simulations by using modern 

nonlinear programming solvers (we provide an efficient and easy-to-use implementation in Julia ). We 

use insights obtained with our simulations to design a low-complexity MPC formulation that matches the 

behavior obtained with high-fidelity models. This is done by designing a suitable terminal penalty term 

that implicitly captures long-term degradation. The results suggest that complex degradation behavior 

can be accounted for in low-complexity MPC formulations by properly designing the cost function. We 

believe that our proof-of-concept results can be of industrial relevance, as battery vendors are seeking to 

participate in fast-changing electricity markets while maintaining asset integrity. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Batteries are flexible assets that can help modulate power grid

loads at multiple timescales. A particular source of flexibility that

is becoming increasingly valuable to the power grid is frequency

regulation (FR) [1] . Under an FR market, the power grid remuner-

ates a battery for providing a flexibility band that is used to modu-

late loads at time resolutions of seconds. From the battery perspec-

tive, determining an optimal amount of FR capacity to be offered in

the market is a non-trivial task. Specifically, dynamics of FR signals

can be rather aggressive and significantly deteriorate the battery

life (capacity fade). Moreover, the battery needs to determine how

to best use stored energy and when to buy power to replenish the

battery. This involves a complex multiscale decision-making prob-

lem in which the battery must balance short-term revenue with

long-term asset degradation. In lithium-ion battery systems, one of

the main reaction mechanisms of capacity fade is caused by irre-

versible side reactions that occur at the boundary of the electrode
∗ Corresponding author. 
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nd electrolyte. These side reactions create a layer known as the

olid electrolyte interphase (SEI) layer [2] . The growth of the SEI

ayer causes growth of resistance and loss of active lithium mate-

ial [3,4] . Capacity fade is thus a critical consideration in battery

arket participation and provision of flexibility. 

Optimal participation strategies for battery systems in FR mar-

ets [5–7] and in demand charge mitigation [8–10] have been ex-

lored in the literature. A common limitation of these studies is

hat they use empirical/low-fidelity (e.g., equivalent-circuit [11] )

odels. Empirical models are not able to accurately capture dy-

amic behavior and are formulated based on a limited number

f experimental conditions (they have limited generalizability). For

xample, the equivalent-circuit reported in [11] fits the data re-

orted in the same paper fairly well (root-mean-square error of

.14%) but does not fit the data reported in a different paper (root-

ean-square error of 12.23%) [12] . More importantly, the lifetime

rediction of empirical models often rely on low-fidelity represen-

ations of battery degradation (e.g., cycle counting) or impose con-

ervative constraints that try to indirectly prevent degradation. As

 result, such formulations cannot accurately capture safety con-

traints (e.g., maximum voltage and lifetime) and can make subop-

imal market participation decisions. 

https://doi.org/10.1016/j.jprocont.2020.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2020.04.001&domain=pdf
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List of symbols 

D j solid phase diffusion coefficient of lithium in the 

particles of electrode j , m 

2 /s 

E remaining energy of battery, MWh 

E max battery capacity, MWh 

F Faraday constant, 96,487 C/mol 

c e concentration of electrolyte in solution phase, 

mol/m 

3 

c j solid phase concentration of lithium in the elec- 

trode j , mol/m 

3 

c 
a v g 
j 

average concentration within the particle in the 

electrode j , mol/m 

3 

c s 
j 

surface concentration of lithium in the electrode j , 

mol/m 

3 

C r rate of capacity fade, 1/s 

C f capacity fade 

i o,sd the exchange current density for the side reaction 

A/m 

2 

I app applied current passing through the cell, A 

j negative n and positive p electrodes 

J j local reaction current density referred to electroac- 

tive surface area of electrode j , A/m 

2 

k j rate constant of electrochemical reaction, 

m 

2.5 /(mol 0.5 s) 

M sd molecular weight of SEI, kg/m 

3 

r radial coordinate in the spherical particle, m 

P power supplied to the battery, MW 

R j particle radius for electrode j , m 

R f resistance of the SEI film, � · m 

2 

R SEI initial resistance of the SEI film, � · m 

2 

sd side reaction 

S j total electroactive surface area of electrode j , m 

2 

t time, s 

T temperature, K 

U j local equilibrium potential of electrode j, V 

U ref constant equilibrium potential of the side reaction, 

V 

V cell voltage, V 

φj solid phase potential of electrode j , V 

κ sd SEI ion conductivity, S/m 

ηj local overpotential of electrode j, V 

ρsd density of SEI, kg/m 

3 

δf SEI film thickness, m 

Electricity Market 

F k FR capacity provided at k –th hour, MW 

L k committed power to load at k –th hour, MW 

N length of the prediction horizon 

O k power purchased from the day-ahead-market at k –

th hour, MW 

P k,s net battery charge/discharge rate at k –th hour and 

s –th step, MW 

P maximum charging rate, MW 

P maximum discharging rate, MW 

S number of time steps per hour 

x k,s state variables of battery at k –th hour and s –th step 

αk,s fraction of FR capacity requested by the ISO at k –th 

hour and s –th step 

ηl minimum percentage of energy at the end of the 

prediction horizon 

ηu maximum percentage of energy at the end of the 

prediction horizon 
J

πC f penalty parameter for capacity fade $/% 

π e 
k 

electricity price at k –th hour, $/MWh 

π f 

k 
FR capacity price at k –th hour, $/MW 

τ l minimum percentage of energy within battery 

τ u maximum percentage of energy within battery 

� total amount of profit earned before the end of life 

Despite the disadvantages of low-fidelity battery models, the

se of such models has been motivated by the computational com-

lexity of high-fidelity (physics-based) models, which comprise

ets of highly nonlinear differential equations. A simple approach

o capture capacity fade in control and optimization formulations

s to consider this a function of cumulative energy [13,14] . More

ophisticated approaches take into account factors such as depth of

ischarge (DOD) [15] and state of charge (SOC) [16] . The two-step

pproach proposed in [17] uses an empirical model that ignores

apacity fade for decision-making and employs a detailed physics-

ased model to determine the capacity fade incurred under such

 decision (a posteriori). Aging-aware empirical models have also

een used to address multiple case studies in power grids [18,19] . 

A few researchers have used high-fidelity models to capture ca-

acity fade. The work in [12] compared three battery models to

erform price arbitrage, and noted that the high-fidelity model,

uch as the single particle models used in this paper, improved

he revenue and capacity prediction error substantially compared

ith two aging-aware empirical models. The authors in [20] used

 high-fidelity model to determine the tradeoffs between capac-

ty fade and charge time. The authors in [21] used a high-fidelity

odel coupled with an optimal model-based controller for health-

ware battery charging. Other researchers have used highly nonlin-

ar physics-based battery models in renewable grid systems [22–

4] . To the best of our knowledge, however, approaches that di-

ectly embed high-fidelity models in frequency regulation market

articipation strategies have not been reported in the literature. We

ttribute this not only to the computational complexity of physics-

ased models but also to the inherent multiscale nature of the bat-

ery management problem. Specifically, battery management sys-

ems must capture long-term capacity fade effects and short-term

uctuations of electricity prices and FR signals. 

This paper presents a model predictive control (MPC) frame-

ork to simultaneously optimize FR market participation while

itigating capacity fade using high-fidelity battery models.

hysics-based models can provide accurate predictions of internal

tates of the battery system and such states can be linked to degra-

ation/capacity fade, thereby predicting the lifetime of the battery

nder dynamic operating conditions in FR markets [23,25] . Our

ramework solves a short-term (1 hour) optimization problem at

igh time resolution (2 seconds ) and uses a terminal cost penalty

n capacity fade to capture long-term effects. We conduct exten-

ive closed-loop simulations and find that the MPC formulation

rovides substantial improvements in economic potential and ca-

acity fade over formulations that use low-fidelity models. This is

he result of having direct control over internal battery states. Our

imulations are enabled by the use of computationally efficient dis-

retization schemes and sparse nonlinear programming solvers. We

se the knowledge gained with high-fidelity MPC simulations to

esign a computationally more tractable reformulation of the MPC

roblem that does not require a high-fidelity model and we show

hat this formulation provides satisfactory economic and degra-

ation performance. We also provide an efficient and easy-to-use

ulia implementation of the MPC framework. 
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2. Single particle battery model 

This section describes a model for a lithium-ion battery that

will be used as the core of the proposed MPC framework. The

single particle (SP) model [26,27] used in this paper describes

the micro-scale of the battery system. The SP model is obtained

by neglecting the solution phase of the cell and assuming con-

stant and uniform concentration of the electrolyte and potential

in the solution phase. Although the SP model is less accurate than

other full order electrochemical models (e.g., Doyle-Fuller-Newman

model) when the C-rate is high, but it is also computationally

more tractable. Here, C-rate is a measure of charge and discharge

rate; for example, a C-rate of 1C means that the discharge current

will discharge the entire battery in an hour, while a C-rate of 2C

means that the discharge current will discharge the entire battery

in half an hour. This paper uses the parameters reported in [28] ,

which have been estimated using data collected from extensive

voltage/current cycling tests of LiFePO 4 cells. The model used as-

sumes that the temperature of the battery is kept constant; this is

reasonable to assume in stationary battery systems (because such

systems have efficient cooling capabilities). 

In the SP model, both electrodes are assumed to be made of

uniform spherical particles with a radius R j , where the subscript

j ∈ { n, p } represents the negative and positive electrodes, respec-

tively. The diffusion of the lithium ions within the particles is de-

scribed by Fick’s second law in spherical coordinates: 

∂c j 

∂t 
= 

1 

r 2 
∂ 

∂r 

(
r 2 D j 

∂c j 

∂r 

)
, j ∈ { n, p} (2.1)

with the boundary conditions: 

(
∂c j 

∂r 

)
r=0 

= 0 , 

(
∂c j 

∂r 

)
r= R j 

= − J j 

D j F 
. (2.2)

where r represents the radial direction coordinate, t is the time

dimension, c j denotes the solid phase concentration of lithium in

the electrode j, J j denotes the average local reaction current den-

sity, D j is the diffusion coefficient of lithium in the solid phase,

and F is the Faraday constant. It has been previously shown in

[29] that the partial differential equations (2.1) and (2.2) can be

simplified into a set of differential and algebraic equations (DAEs)

by approximating the concentration profile within the sphere by

a parabolic profile. The work in [30] shows that the approximate

model matches the exact model well. The DAE system captures

the average concentration within the particle c 
a v g 
j 

and the surface

concentration c s 
j 

as: 

dc a v g 
j 

dt 
= 

−3 J j 

R j F 
(2.3)

c s j = c a v g 
j 

+ 

−J j R j 

5 D j F 
. (2.4)

The local current density J j is obtained by using the

Butler −Volmer (BV) kinetic expression: 

J j = 2 · i 0 , j · sinh 

(
0 . 5 F 

RT 
η j 

)
(2.5)

i 0 , j = F k j (c j,max − c s j ) 
0 . 5 (c s j ) 

0 . 5 c 0 . 5 e . (2.6)

where T denotes temperature (assumed fixed), ηj is the local over-

potential, k j is the rate constant of electrochemical reaction, c j,max 

represents the maximum concentration of lithium ions in the par-

ticles of electrode j, c e is the concentration of electrolyte in so-
ution phase. The local overpotentials driving the electrochemi-

al reaction are given by ηp = φp − U p (θp ) and ηn = φn − U n (θn ) +
 f I app / S n , where φj is the solid-phase potential of electrode j, R f 

s the resistance of the SEI film, U j is the open-circuit potential, S j 
s the total electroactive surface area of electrode j , and I app is the

pplied current passing through the cell. I app is defined as posi-

ive for charging process and negative for discharge process. More-

ver, we have that θ j = c s 
j 
/c j,max , j ∈ { n, p} . Following [31] , we as-

ume that capacity fade is caused by an irreversible solvent reduc-

ion reaction, which causes the formation of a resistive SEI film in

he negative electrode. This mechanism results in the loss of active

aterial and the increase of internal impedance. The authors in

31] assume that the side reaction only occurs during charging. Fol-

owing observations made in [16,32,33] , however, we assume that

he side reaction occurs under both charging and discharging. We

rgue that this assumption is not only closer to reality but, sur-

risingly, also makes the model computationally more tractable (it

voids discontinuous logic that turns on/off capacity fade behav-

or). 

The current density for the side reaction J sd is governed by the

utler-Volmer kinetics, which can be simplified by assuming that

he reaction is irreversible and that the change of solvent concen-

ration is small, to obtain J sd = −i o,sd exp ( −F ηsd / RT ) , where i o,sd 

enotes the exchange current density for the side reaction. Symbol

sd denotes the side reaction overpotential, which is in turn given

y ηsd = φn − U re f + R f I app / S n . Here, U ref represents the constant

quilibrium potential of the side reaction. Symbol R f denotes the

otal resistance of the SEI film and is given as R f = R SEI + δ f / κsd ,

here R SEI denotes the initial film resistance, κ sd denotes the con-

uctivity of the film and δf denotes the film thickness. The film

rowth is governed by the differential equation: 

dδ f 

dt 
= 

−J sd M sd 

ρsd F 
(2.7)

here M sd denotes the molecular weight of the side product and

sd represents the density of the side product. The rate of capacity

ade C r is a function of the maximum capacity of the cell Q max and

s given by C r = 

J sd S n 
Q max 

. The cumulative capacity fade is the integral

f the fade rate and given by C f = 

∫ 
C r dt . The voltage V , current

 app , power P , and energy E are computed from: 

V = φp − φn (2.8)

J p = 

I app 

S p 
(2.9)

 n + J sd = 

−I app 

S n 
(2.10)

P = I app V/ 10 

6 (2.11)

E = 

c a v g n 

c n, max 
E max , (2.12)

here E max is the battery capacity. As can be seen, the battery

odel comprises a complex set of highly nonlinear differential and

lgebraic equations. 

. Multiscale market participation problem 

We begin by describing the decision-making setting under

hich the battery is operated and we then describe the MPC for-

ulation to automate market participation decisions. 

.1. Decision-making setting 

The battery seeks to determine optimal market participation

trategies in energy and FR markets that are operated by an in-

ependent system operator (ISO), while simultaneously mitigating



Y. Cao, S.B. Lee and V.R. Subramanian et al. / Journal of Process Control 90 (2020) 46–55 49 

Fig. 1. PJM data for a month for FR signal (top), FR capacity price (middle) and 

day-ahead price (bottom). 
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attery degradation. This work focuses on the setting provided by

JM Interconnection. We use real price and FR signal data from

JM to conduct our study. The various cost and revenue compo-

ents that are considered are: 

• Frequency regulation capacity (hourly) : The battery needs to de-

cide the committed FR capacity band for the next immediate

hour. The ISO can request the battery to dispatch a fraction

of the committed capacity based on the grid requirements in

real-time (every two seconds in PJM). The real-time FR signal

from the ISO has a bounded range of [-1,+1] (see Fig. 1 ). The

ISO compensates the battery for providing an operational band

based on time-varying market FR capacity prices (updated ev-

ery hour). In the studied setting, we ignore performance-based

compensation from FR markets [34,35] . This assumption is mo-

tivated by recent work, which has found that FR capacity pay-

ments are significantly more lucrative than FR mileage pay-

ments [36] . The FR capacity band provided is updated every

hour and remains constant over the entire hour. 
• Power purchase (hourly) : Power can be purchased from the day-

ahead energy market (DAM) to recharge the battery. The opti-

mal purchase timing is driven by a time-varying market price

(updated every hour). The amount of power purchased can be

updated every hour and remains constant over the hour. 
• Load (hourly) : Power can be withdrawn by an adjustable load

to help maintain the amount of energy remaining in the bat-

tery. We assume that the load can be updated every hour and
remains constant over the entire hour. The revenue associated

with this energy load is zero. 

.2. High-fidelity MPC formulation 

The battery management problem that is tackled in this work

s multiscale in nature because it must capture hourly variations in

nergy and FR price signals, second-by-second variations of FR sig-

als, and long-term battery degradation (spanning days to years).

nder the proposed MPC framework, that we call high-fidelity

PC (HF-MPC), an optimization problem is solved at every hour

 over the prediction horizon N t := { t + 1 , t + 2 , . . . , t + N} . Here, N

s the length of the prediction horizon. Since the FR signal is up-

ated every two seconds, each hour is discretized using S = 1,800

ime steps and we define the time interval set S := { 1 , . . . , S} . 
The parameters of the MPC formulation are: π e 

k 
∈ R denotes the

lectricity price at k –th hour [$/MWh], π f 

k 
∈ R + is the FR capac-

ty price at k –th hour [$/MW], αk,s ∈ [ −1 , 1] is the fraction of FR

apacity requested by the ISO at k –th hour and s –th step [-] (if

k,s > 0, the ISO sends power while if αk,s < 0 the ISO withdraws

ower), E ∈ R + is the battery capacity [MWh], P ∈ R + is the max-

mum charging rate [MW], and P ∈ R + is the maximum discharg-

ng rate [MW]. In this paper, we assume that the FR signal and

rice signals are known in advance (we consider a deterministic

rocess). 

The variables of the MPC formulation are: F k ∈ R + is the FR

apacity provided at k –th hour [MW], O k ∈ R + is the power pur-

hased from the day-ahead-market at k –th hour [MW], L k ∈ R + is

he committed power to load at k –th hour [MW], P k,s ∈ R is the

et battery charge/discharge rate at k –th hour and s –th step [MW]

 P k,s > 0 the battery is being charged and if P k,s < 0 the battery

s being discharged), x k,s ∈ R + are the state variables of battery at

 –th hour and s –th step ( c 
a v g 
j 

, and δf ), E k,s ∈ R + is the remaining

nergy in the battery [MWh], C 
f 

k,s 
∈ R + is the capacity fade [-], and

 k,s ∈ R + [V] is the voltage. This paper assumes that the states x k,s 

an be estimated accurately from voltage and current data. The es-

imation of states is a separate (and challenging) research topic and

s not explored in this study. 

All quantities with a single subindex k are held constant over

he time interval [(k − 1) , k ] and all quantities with subindices k,

 are held constant over the interval [ k − 1 + (s − 1) /S, k − 1 + s/S] .

he FR capacity F k represents a symmetric band and the actual FR

ower requested by the ISO is −αk,s F k . 

.2.1. Objective function 

The objective of the MPC problem is to maximize profit (consid-

ring the revenue from FR participation and the energy cost) while

enalizing capacity fade over the horizon N t : ∑ 

k ∈N t 
π f 

k 
F k −

∑ 

k ∈N t 
π e 

k O k − πC f (C f 
t+ N,S 

− C f 
t+1 , 1 

) (3.13) 

he first term is the revenue obtained from the provision of FR

apacity , the second term is the cost of purchasing power from the

ay-ahead market, and the third term is the capacity fade penalty.

he parameter πC f is the penalty parameter, which estimates the

ong-term value of capacity fade. 

.2.2. Constraints 

The battery model introduced in Section 2 is discretized using

ackward Euler scheme in time and can be expressed in the fol-

owing compact form: 

x k,s +1 = ϕ 1 (x k,s , P k,s ) , k ∈ N t , s ∈ S (3.14) 

(E k,s , C 
f 

k,s 
, V k,s ) = ϕ 2 (x k,s , P k,s ) , k ∈ N t , s ∈ S (3.15) 



50 Y. Cao, S.B. Lee and V.R. Subramanian et al. / Journal of Process Control 90 (2020) 46–55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d  

a  

p  

w  

p

3

 

p  

b  

t  

c  

C  

s  

m  

v  

m  

b  

n  

a  

e  

U  

p  

a  

�  

O  

h  

d  

F  

fi  

t  

F  

o  

p  

m  

k  

t

4

 

c  

e  

s  

s  

i  

m  

i  

a  

W  

a  

s  

c  

W  

a  

m  

h  

fi  

c  

m  

t  

d  

o  

T

The net charged/discharged battery power equals the amount of

power sent to the battery due to FR participation plus the amount

of energy ordered minus the amount of load 

P k,s = αk,s F k + O k − L k , k ∈ N t , s ∈ S. (3.16)

The use of high-fidelity model enables us to directly impose safety

constraints on internal states such as the voltage V ≤ V k,s ≤ V , k ∈
N t , s ∈ S . Due to capacity fade, the amount of remaining capacity is

given by (1 − C 
f 

k,s 
) E . The following constraint is used to ensure that

the stored energy is within the remaining capacity: τl (1 − C 
f 

k,s 
) E ≤

E k,s ≤ τu (1 − C 
f 

k,s 
) E , k ∈ N t , s ∈ S . Parameters τ l and τ u impose a

safety margin to prevent over-charge and over-discharge. We con-

sider a terminal constraint on the remaining energy at the end of

the prediction horizon: ηl (1 − C 
f 

k,s 
) E ≤ E t+ N,S ≤ ηu (1 − C 

f 

k,s 
) E . The

terminal constraint is enforced to prepare the battery for market

participation in the next horizon. We also impose simple logical

bounds on variables: −P ≤ P k,s ≤ P and 0 ≤ F k ≤ P , k ∈ N t , s ∈ S . 

3.2.3. Implementation 

The problem at time t uses data over the prediction horizon

αN t , π
f 
N t , and π e 

N t . The problem solved at time t is denoted as

P t (αN t , π
f 
N t , π

e 
N t , x t,S ) . For convenience, we simplify notation and

state the problem as P t (x t,S ) . The solution of this problem yields

the optimal commitments P N t , O N t and L N t . Only the commitments

of the next hour P t+1 , O t+1 and L t+1 are implemented, the horizon

is shifted by one hour and the problem is solved again. The MPC

scheme runs over a two-year period Y = [1 , . . . , Y ] (with Y = 17,520

hours) or until the battery end of life (EOL), which is defined as

the elapsed time before capacity fade reaches 20%. The implemen-

tation is summarized as follows: 

• START at t = 0 with x 0 corresponding to a new half-charged

battery. 
• SOLVE P t (x t,S ) by using the data αN t , π

f 
N t , and π e 

N t to obtain

commitments F t+1 , O t+1 and L t+1 . 
• INJECT decisions over (t, t + 1) . COMPUTE the net bat-

tery charge/discharge rate P t+1 ,s = αt+1 ,s F 
b 

t+1 
+ O t+1 − L t+1 . With

P t+1 ,s and x t , simulate the battery dynamics using a high-

fidelity DAE simulator to obtain the UPDATED state x t+1 and

C 
f 

t+1 ,S 
. 

• If C 
f 

t+1 ,S 
≥ 0 . 2 , set EOL = t, BREAK. 

• Set t ← t + 1 , RETURN to Step 3.2.3 

We compare different battery management strategies based on

the total amount of profit earned before the end of life: 

� = 

EOL ∑ 

k =1 

π f 

k 
F b k − π e 

k O k . (3.17)

Every closed-loop MPC simulation requires the solution of tens

of thousands of nonlinear programs (which embed the battery

model). This task is computationally expensive and requires effi-

cient solvers. 

3.3. Low-fidelity MPC strategy 

To establish a comparison, we also consider a simplified MPC

formulation based on a low-fidelity battery model. We call this

strategy low-fidelity MPC (LF-MPC). Here, the battery model is

solely based on the energy balance (assuming an efficiency of

100%). The capacity fade penalty in the objective function is re-

moved and the battery dynamics are given by E k,s +1 = E k,s + P k,s .

Because of the simplicity of the model, the computational cost of

this MPC strategy is small. The limitation of this approach is that it
oes not consider detailed states of the battery (e.g. current, volt-

ge, capacity fade). Consequently, it cannot explicitly impose ca-

acity fade and safety constraints. This type of model has been

idely used in the literature [10] . A reason for this is that the

roblem is a linear programming problem that is easier to solve. 

.4. Heuristic strategy 

We considered a heuristic approach to guide battery market

articipation using simple decision-making logic. This is motivated

y the observation that, if the prediction horizon is just one hour,

he number of degrees of freedom in the problem is small (these

orrespond to the three commitment variables F t+1 , O t+1 , L t+1 ).

onsequently, it is possible to perform an exhaustive search of the

pace. This simulation-based approach provides sensitivity infor-

ation on how profit and degradation change with the decision

ariables. Moreover, this approach does not require solving opti-

ization problems. However, a large number of simulations will

e needed to span the entire decision space and the method is

ot scalable. Consequently, we reduce the number of decision vari-

bles by using the following logic: we assume that the energy

fficiency is 100% and we set ηl = ηu in the terminal constraint.

nder this assumption, the ideal remaining power at the end of

rediction horizon is E ∗
t+1 ,S 

= ηl (1 − C 
f 

t,S 
) E . If F t+1 is known, the

mount of energy from FR is 1 
S 

∑ 

s ∈S αt+1 ,s F t+1 . We further denote

E = E ∗
t+1 ,S 

− E t,S − 1 
S 

∑ 

s ∈S αt+1 ,s F t+1 . Therefore, if �E > 0, we set

 k = �E and L k = 0 to satisfy the terminal constraint. On the other

and, if �E < 0, we set O k = 0 and L k = −�E. In this way, the only

egree of freedom to optimize for at time t is the FR commitment

 t+1 . We reduce the search space for this variable by enforcing a

xed FR band policy (i.e., we search for a fixed FR band F ). At each

ime step, we try the fixed FR band value by setting F t+1 = F . If this

R band commitment results in an infeasible solution (over-charge

r over-discharge), the value of the FR band is adjusted. After ex-

loration of the entire feasible region, we determine the value that

aximizes profit. This simple logic gives insights into how FR mar-

et participation affects profit and battery degradation (it allows us

o navigate inherent trade-offs). 

. Computational experiments 

We consider a battery consisting of A123 Systems ANR26650M1

ells with lithium iron phosphate (LiFePO 4 ) cathodes. The param-

ters for each cell are estimated in [28] . The number of cells is

caled so that the battery has a total capacity of 1 MWh. We as-

ume that the maximum charging/discharging rate of the battery

s 10 MW. This is a conservative assumption because the maxi-

um continuous discharge rate of this cell is 20C, while the max-

mum pulse discharge rate (10s) is 48C [37] . The C-rate is defined

s the charge or discharge current divided by the battery capacity.

e also set τl = 0 . 1 , τu = 0 . 9 , and ηl = ηu = 0 . 5 . Because LF-MPC

nd the heuristic strategies cannot explicitly deal with safety con-

traints and a lithium iron phosphate battery has excellent safety

haracteristics, safety constraints are not considered in this paper.

e emphasize, however, that safety constraints can be explicitly

ccounted for in HF-MPC. It is possible that the market commit-

ent decisions ( F t+1 , O t+1 , P t+1 ) obtained with LF-MPC and the

euristic strategies are are not feasible; that is, the DAE simulator

nds that the battery is over-charged or over-discharged under the

omputed commitments. It is also possible that the market com-

itment decisions obtained with HF-MPC are not feasible because

he discretization time step used in the optimization formulation is

ifferent from that of the DAE simulator. In these cases, the value

f FR band is adjusted as F t+1 ← F t+1 − �F , where �F = 0 . 5 MW.

hen the values of O t+1 and P t+1 are re-computed. 
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Fig. 2. FR signal, capacity fade rate, cumulative capacity fade and revenue, and revenue per capacity fade for one hour of simulation and different FR bands offered. 
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Historical data for one year for energy prices, FR capacity prices,

nd FR signals from PJM are used in the study. Multi-year hori-

ons are considered by replicating the historical data. All optimiza-

ion problems are implemented in the modeling language JuMP .
onlinear programs arising in the HF-MPC strategy are solved us-

ng Ipopt , while linear programs (LPs) arising in LF-MPC are

olved using Gurobi . All computations were performed on a

ulti-core computing server with Intel(R) Xeon(R) CPU E5-2698

3 processors running at 2.30GHz. All scripts needed to reproduce

he results are available in https://github.com/zavalab/JuliaBox/

ree/master/Battery _ FP . The models developed in this work have

een tuned to achieve high computational efficiency (needed to

eal with fast FR signal dynamics and nonlinearity). 

.1. Revenue vs. capacity fade trade-offs 

We first used the heuristic strategy to assess inherent trade-

ffs between short-term revenue and long-term battery degrada-

ion. We consider a single hour with the FR signal shown in Fig. 2 .

ere, we can see that fast and abrupt fluctuations exist. We sim-

late the battery model with different committed FR band capac-

ties while O k and L k are both set to zero. Fig. 2 also illustrates

ow capacity fade grows over time as the committed FR band in-

reases. When the battery is charging (FR signal α > 0), increasing

he committed FR band significantly increases the capacity fade

ate. When the battery is discharging, capacity fade rate is rela-

ively low. This clearly illustrates how high FR revenue can lead to

aster degradation (due to the strong fluctuations of the FR signal).

e can also observe how the cumulative capacity fade and rev-

nue change over one hour as the committed FR band increases.

n particular, we can observe that the cumulative capacity fade is

ositive when the FR band is zero, and it increases in a nonlin-

ar manner. As a result, the ratio of revenue and capacity fade

eaches its peak when the FR band is 3 MW. This result is impor-

ant because it indicates that an optimum FR capacity indeed ex-

sts. Moreover, as we will see, the heuristic and LF-MPC strategies
end to maximize FR band capacity to maximize revenue (well above

he optimum trade-off that balances revenue and degradation). In

ther words, those strategies lead to aggressive market participa-

ion strategies that lead to fast degradation of the battery. We will

lso see that HF-MPC can correctly identify the optimal trade-off

oint between revenue and degradation. 

.2. Low-fidelity vs. high-fidelity MPC 

The key advantage of MPC is that it can adapt committed ca-

acity based on market conditions and the battery internal state.

o accurately capture the FR signals, we have found that it is nec-

ssary to discretize the model using timesteps of two seconds, giv-

ng rise to 1,800 time steps per hour. We consider a time horizon

f one hour and 24-h for the LF-MPC strategy and a time horizon

f one hour for the HF-MPC strategy. 

The optimization problem solved at each step for the LF-MPC

trategy is an LP, which contains 86,0 0 0 variables with a time hori-

on of 24-h. Gurobi can solve each optimization problem in about

5s. A closed-loop simulation for two years of operation requires

round 14h of wall-clock computing time. 

The optimization problem solved in the HF-MPC strategy is a

ighly nonlinear NLP with 34,0 0 0 variables. On average, Ipopt re-

uires 70s to solve each optimization problem. Despite the fast so-

ution (relative to the commitment time of one hour), a closed-

oop simulation for two years requires six days of wall-clock time .

xtending the horizon of HF-MPC to 24-h would result in an NLP

ith 816,0 0 0 variables. A single instance of this problem can be

olved, but the closed-loop simulation would require weeks of

omputing time. Addressing the tractability of such formulation is

n important topic of future work. Despite these limitations, we

ow proceed to show that dramatic improvements in economic

erformance and capacity fade can be achieved with HF-MPC (even

ith a short prediction horizon of one hour). 

Fig. 3 shows how profit and SEI film thickness evolve over time

nder the different control strategies. Here, we compare the fixed

https://github.com/zavalab/JuliaBox/tree/master/Battery_FP
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Fig. 3. Profit and SEI film thickness for different strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Time profiles for commitment variables for the first month using HF-MPC. 

Fig. 5. Time profiles for battery internal state variables for the first month using 

HF-MPC. 
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FR capacity policy, the LF-MPC policy, and the HF-MPC policy. The

SEI film thickness for LF-MPC grows faster than that of the fixed

band policy at 10 MW (but slower than the fixed band policy at 3

MW). In contrast, HF-MPC is more strategic and offers an FR band

in such a way that the SEI film thickness grows at a slower rate. As

a result, the remaining capacity for this MPC policy is significantly

higher. For instance, at day 100, the heuristic policy at 10 MW has

reached its end of life, LF-MPC has a remaining capacity of 83%,

and HF-MPC has a remaining capacity of 92%. The profit of HF-MPC

is not significantly higher than that of other strategies for the first

several months but, because the lifetime is extended significantly,

the overall profit is much higher. This illustrates the ability of MPC

to trade-off short-term and long-term economic performance. 

Fig. 4 shows time profiles for commitment variables including

FR capacity committed and the amount of power purchased in the

day-ahead-market for the first month. The corresponding price and

FR signal data are shown in Fig. 1 . Overall, we can see that HF-MPC

allocates the FR band more conservatively. Specifically, only 20%

of the FR band committed is larger or equal to 3 MW. This MPC

formulation only allocates the FR band aggressively when the FR

price is favorable (e.g., between hours 150 and 200). Fig. 5 shows

the profiles of selected state variables (including capacity fade and

state of charge). When the committed FR band is large (e.g., be-

tween hours 150 and 200) capacity fade increases at a high rate.
his illustrates how aggressive FR market participation affects bat-

ery internal states . 

Table 1 summarizes the performance of the different strate-

ies. We observe that LF-MPC improves the revenue of the fixed

and policy by $62,0 0 0. Most of the improvement is due to the re-

uction in cost (less power is purchased). Remarkably, HF-MPC in-

reases the lifetime of the battery by 143% (compared with LF-MPC),

ncreases the cumulative FR band by 10%, and increases profit by

5% ($107,0 0 0). From this table we also observe that increasing the

rediction horizon of LF-MPC decreases profit (this is inconsistent

ith typical MPC formulations). We attribute this inconsistent be-
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Table 1 

Comparison of fixed band, low-fidelity MPC, and high-fidelity MPC strategies over two years of operation. 

Horizon Life time Revenue Cost Profit Cumulative Purchased power 

(h) (days) ( × $10 0 0) ( × $10 0 0) ( × $10 0 0) FR band (MW) (MWh) 

Fixed FR band (3MW) 1 156 358 118 240 8972 885 

Fixed FR band (10MW) 1 87 338 97 241 7803 702 

Low-Fidelity MPC 1 128 361 58 303 8273 447 

Low-Fidelity MPC 24 113 352 55 297 7900 423 

High-Fidelity MPC 1 312 474 64 410 9061 490 

Table 2 

Performance of a modification of low-fidelity MPC. 

Horizon Lifetime Revenue Cost Profit Cumulative Purchased power 

(h) (days) ( × $10 0 0) ( × $10 0 0) ( × $10 0 0) FR band (MW) (MWh) 

1 307 411 42 369 5472 287 

24 259 434 41 393 5708 288 

Table 3 

Effect of flexible load on performance of high-fidelity MPC. 

Lifetime Revenue Cost Profit Cumulative Purchased power 

(days) ( × $10 0 0) ( × $10 0 0) ( × $10 0 0) FR band (MW) (MWh) 

Constant load 312 474 64 410 9061 490 

Flexible load 271 572 126 446 11,444 1020 
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avior to long-term battery degradation effects that the LF-MPC

ontroller does not account for. 

.3. Modification of low-fidelity model 

The cumulative FR band is the total amount of FR band com-

itted throughout the battery lifetime and can be viewed as an

ffective lif etime . Our closed-loop simulations indicated that, com-

ared with LF-MPC with a one-hour prediction horizon, HF-MPC

mproves the cumulative FR band by 10% and improves profit by

5%. We hypothesize that these improvements are mainly due to

he long-term capacity fade effect (captured in the penalty term

n the objective function). This term forces HF-MPC to allocate FR

apacity only when short-term market conditions are favorable rel-

tive to the long-term capacity effect . In other words, the penalty
C f in HF-MPC represents the long-term battery value. The heuris-

ic and LF-MPC strategies do not capture this long-term economic

ehavior. To verify our hypothesis, we modified the LF-MPC for-

ulation; here, we assumed that capacity fade is a function of

he FR band committed and we thus introduce a dynamic equa-

ion of the form C 
f 

t+1 , 1 
− C 

f 
t, 1 

= λ · F b t , where λ is the percentage

f capacity fade per MW of FR band. This function is introduced in

he objective function (3.13) to capture long-term capacity fade ex-

licitly. Although this strategy is simple and neglects the dynam-

cs of the FR signals and of the SEI, we will see that the perfor-

ance of LF-MPC drastically improves. This is because the effective

harging/discharging rate is moderate. Although we set the nomi-

al maximum charging/discharging rate to be 10 MW, the effective

harging/discharging rate P is bounded by the maximum FR band

imes the FR signal αt,s . Our closed-loop simulations show that the

harging/discharging rate remains below 3 MW for 99% of the time

hen HF-MPC is employed, and 92% of the time when the maxi-

um band policy (fixed policy at 10 MW) is used. Based on the

ominal cumulative FR band value of 8,200 MW, we estimate a

alue of λ = 

20 
8200 = 0 . 0024 MWh/MW. 

Table 2 summarizes the performance of LF-MPC using a penalty

erm on capacity fade. We can see that this approach significantly

mproves the lifetime (by 119%) and improves profit (by 26%) over

he original LF-MPC policy. The cumulative FR band is decreased by

8%, which means that the battery allocates FR capacity more con-
ervatively. For the modified LF-MPC formulation, increasing the

rediction horizon from one to 24-h improves the operational rev-

nue (which is consistent with behavior of typical MPC formula-

ions). This consistency reinforces our observation that long-term

conomic effects of degradation indeed drive the policy of the con-

roller and that such effects can be captured using a simple model.

lthough the performance of the modified LF-MPC formulation is

till inferior to that of HF-MPC (in terms of profit), the performance

ap is significantly reduced. These results highlight how one can

se insights from detailed physical models to create improved MPC

ormulations of low computational complexity. In particular, the

mproved LF-MPC formulation is still a linear program that can be

olved over a horizon of 24-h and at high time resolutions (while

he HF-MPC counterpart can only be solved for a 1-h horizon). 

.4. Impact of flexible load and capacity fade value 

We have also used HF-MPC to explore effects of flexibility

ained by adjusting the load every 2-s (instead of every hour).

his provides more degrees of freedom to the control formulation.

able 3 shows that using a flexible load makes HF-MPC more ag-

ressive in allocating FR capacities, which translates into a shorter

ifetime and a higher cumulative FR band. The cost doubles due

o more power ordered from the DAM, which is justified because

he increase in revenue exceeds the rise in cost. Overall, however,

 flexible load can improve operational profit by $36,0 0 0 (8.8%).

his illustrates how strategic manipulation of loads can help bal-

nce battery lifetime and overall profit. 

The parameter πC f represents the long-term valuation of battery

apacity. As expected, the choice of this parameter is essential as it

rades-off short-term and long-term economics. If the value of πC f 

s too small, the effect of capacity fade is neglected and the HF-

PC controller will be more aggressive in allocating FR capacity.

n the other hand, if πC f is too large, the controller will become

onservative in participating in the market. In the previous results,

e set πC f to $12,0 0 0. This value was estimated as the profit of

he fixed band policy ($240,0 0 0) divided by 20% (the remaining ca-

acity at the end of life). Using this value, the HF-MPC controller

chieved a profit of $410,0 0 0. To analyze the effect of πC f , we

ncreased its value to $20,500 (obtained by dividing $410,0 0 0 by
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Table 4 

Effect of capacity fade value on high-fidelity MPC. 

πC f Lifetime Revenue Cost Profit Cumulative Purchased power 

( × $10 0 0) (days) ( × $10 0 0) ( × $10 0 0) ( × $10 0 0) FR band (MW) (MWh) 

12 312 474 64 410 9061 490 

20.5 410 510 58 452 8771 440 

22.6 426 563 59 504 8502 422 
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20%). Table 4 summarizes the results. We see that a larger value

of πC f makes HF-MPC more conservative in allocating FR capaci-

ties. Specifically, a longer lifetime and a smaller cumulative FR ca-

pacity are obtained. For this case, the controller increases profit

by $42,0 0 0 (10%). A more rigorous determination of the long-term

value of capacity fade is an interesting topic of future work. 

5. Conclusions 

We have presented a multiscale MPC framework to manage

short-term economic value obtained from market transactions (en-

ergy and frequency regulation) and long-term economic value due

to battery degradation. Insights gained from detailed closed-loop

simulations provided insights to construct a low-complexity MPC

formulation that can capture multiscale effects. We believe that

our proof-of-concept results can be of industrial relevance, as ven-

dors are seeking to use batteries to participate in fast-changing

electricity markets while maintaining asset integrity [10,38] . As

part of future work, we will seek to incorporate more detailed

battery models such as the Doyle-Fuller-Newman model, stochas-

tic MPC formulations to capture market uncertainty, and we will

seek to accelerate simulations using parallel computers and ma-

chine learning techniques. 
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