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inuum modeling of lithium–sulfur
batteries
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and Venkat R. Subramanian *b

While lithium–sulfur batteries are a promising next-generation chemistry devices due to their high

theoretical energy density, commercialization has been slow due to low coulombic efficiency and poor

cycle life. This review explores the ways in which continuum modeling contributes to the understanding

of lithium–sulfur (LiS) battery mechanisms and cell-level performance through the lens of micro- and

macroscale phenomena. We examine different approaches to modeling important physical phenomena

such as reaction mechanisms, cathode microstructure, shuttling, nucleation and precipitation, and

transport limitations. This paper also emphasizes the significance and challenge of connecting typical

modeling parameters and assumptions to systems-level metrics of a standard state-of-art high

performing lithium–sulfur cell. Particularly important, the considerations for high energy density cells and

the areas where continuum models can facilitate better collaboration are discussed. We also summarize

a few selected works to highlight experimentally-driven modeling, use of electroanalytical techniques,

and parameter identification approaches to enable model-based design and advanced battery

management systems.
Introduction

Research on lithium–sulfur (LiS) batteries has increased as
electric transportation scales up, with a push for higher energy
density chemistries and elimination of costly, low abundance,
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or insecure commodity materials from the battery supply chain.
Lithium–sulfur batteries are projected to have about 3 times the
energy density of lithium-ion batteries. Sulfur as a cathode
material is cheap and abundant, two important considerations
for both cost and supply chain availability.1 Despite their
promise, many challenges have slowed the commercialization
of these batteries. Development of the lithium anode has been
fraught with safety concerns and poor capacity retention.2

During cycling, the sulfur cathode produces soluble polysulde
species that can travel to the anode and participate in delete-
rious side reactions, called polysulde shuttling.3 Efforts to
control speciation and mitigate this parasitic shuttle
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Fig. 1 A spectrum of modeling scales that can inform and be validated by different types of experiments for various applications in the lithium–
sulfur field.
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phenomena have focused both on electrolyte engineering and
protection of the lithium anode.1,4 Additionally, the sulfur solid
species within the cathode are insulating, which can lead to
passivation and overall poor sulfur utilization.5 Tomitigate this,
carbon and other additives are included to improve conduc-
tivity, but which decreases overall energy density. Work on
nano-structured cathodes that can anchor polysulde species to
the surface have been developed to overcome this. Carbon-to-
sulfur (C/S) and electrolyte-to-sulfur (E/S) ratios are important
metrics for development of practical high energy density cells as
calculations show that “lean” cell conditions are vital to reach
these goals.6,7

Modeling can be useful to accelerate the progress of lithium–

sulfur battery development. Battery models span a wide range of
scales from atomistic simulations on the angstrom scale all the
way to packs of battery used in a vehicle on the scale of meters.
The focus of this paper is on continuum modeling which lies in
Daniel T. Schwartz is Boeing-
Sutter Professor of Chemical
Engineering and director of the
University of Washington Clean
Energy Institute. His electro-
chemical engineering research
explores the performance of
energy storage, conversion, and
electrodeposition systems. A
2016 recipient of the Presiden-
tial Award for Excellence in
Science, Mathematics and Engi-
neering Mentoring from the

White House, he is also a Fellow of the Electrochemical Society and
member of the Washington State Academy of Sciences. He serves on
State energy and climate policy committees, as an advisor to Chief
Leschi Schools, and on the board and executive committee of the
CleanTech Alliance.
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between these two extremes (see Fig. 1). We can further split
continuum modeling into the microscale and macroscale.
Taking traditional chemical engineering reaction kinetics as an
analog, there are also two scales of modeling. Microkinetic
modeling focuses on breaking down reactions to elementary
steps with individual activation energies and species, whereas
macroscale chemical reaction modeling takes the bulk reaction
rate constants and rate limiting steps to design a chemical
reactor where an engineer is concerned about ow rate and
product yield. Similarly, we will structure this paper by
describing continuum modeling of lithium–sulfur batteries
using microscale and macroscale terminology. Microscale
modeling is about representing key physical phenomena in
a mechanistic manner to elucidate underlying mechanisms.
Besides microkinetics, this can be looking at the cathode
structure in greater morphological detail, modeling sub-micron
level internal transport into a particle, or nucleation and growth
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of precipitates for example. This kind of modeling on the
microscale can be aided by electroanalytical experiments (e.g.,
cyclic voltammetry (CV), galvanostatic or potentiostatic inter-
mittent titration techniques (GITT/PITT), electrochemical
impedance spectroscopy (EIS)) to identify physical constants
and speciation, specialized setups like rotating disc electrodes,
or microscopy to probe surface and structure evolution.
Macroscale modeling is on the scale of whole cell and device
level and is focused on modeling effective properties to relate to
overall cell performance such as voltage curves. Macroscale
models are typically used to explore experimentally-relevant
conditions by revealing how important cell parameters like
thickness, porosity, and sulfur loading impact the internal
states of the battery, such as the speciation, kinetics, and
transport, without the time and cost of traditional experiments.
Modeling can explore design space and optimize for multiple
metrics at once, which can point experimentalists in a new
direction.

Continuum modeling covers a broad range of possible
applications and is an exciting eld as it can tie in with the
opposite two ends of the modeling spectrum. Atomistic simu-
lations such as ab initio molecular dynamics (AIMD), density
functional theory (DFT), and kinetic Monte Carlo (KMC) tech-
niques can perform rst principles calculations and simula-
tions on fundamental interactions to determine molecular
properties like surface and absorption energies, transport
properties, or reaction pathways that can be used as a parameter
to be varied in continuum modeling to aid solvent engineering,
for example. On a systems/stack level, for applications like
a battery management system (BMS) in a vehicle's battery pack,
continuum models are used for monitoring and control,
computationally efficient macroscale continuum models for
a cell can be extended to more extensive module and pack level
systems. In this review, we highlight the areas where continuum
models have collaboratively improved understanding of
lithium–sulfur batteries and touch on other areas where further
model development is key.
Fig. 2 Schematic of lithium–sulfur sandwich layer with lithium anode
particles, black conductive carbon, and binder. The reaction scheme in th
best formulation. Other processes that can occur is Li2S film formation
polysulfides across the cell, and the resulting surface passivation at the a

5948 | Sustainable Energy Fuels, 2021, 5, 5946–5966
In continuum modeling, the lithium–sulfur cell can be
thought of as having three domains to be modeled as a cell
sandwich – the lithium anode, porous separator, and composite
cathode – as seen in Fig. 2. For a fully charged cell, the cathode
starts off as a composite of solid S8(s) and carbon particles with
assumed uniform porosity (more complex cathode morphology
will be discussed in the Cathode structure section). The solid
sulfur dissolves and is electrochemically reduced through
a series of cascading steps to lower order polysuldes. The 5-
step reduction mechanism shown in Fig. 2 is a popular
proposed scheme and simplications/variations are discussed
later. The higher order polysuldes are typically soluble in
conventional electrolytes while the lower order polysuldes
such as Li2S and sometimes Li2S2 are insoluble products. Solid
products such as Li2S form as a lm on the cathode and surface
passivation of the carbon structure occurs towards the end of
discharge. Shuttling also occurs which is when the dissolved
polysuldes are transported back and forth between the two
electrodes and can be reduced at both. A resulting phenomenon
of shuttling is surface passivation at the anode which results in
irreversible capacity loss. In this work, we will review papers that
model cathode structure, nucleation and growth of solid prod-
ucts, shuttling, and degradation processes such as anode
passivation. We will also relate models with experimental
trends observed, and importantly, experimental design and
metrics. For macroscale models to be deemed useful, simulated
voltage discharge curves are typically compared to that of high-
performance experimental cells, where the three key features
are: two voltage plateaus and a voltage dip and recovery as
a transition between the two plateaus (refer to Fig. 3b and 4 for
examples). This dip, or negative differential resistance, is nor-
mally attributed to solid nucleation processes which we will
describe further in the Precipitation section. This review will
cover both lumped/zero-dimensional (0D) models, and one-
dimensional (1D) models, where 1D models capture the
spatial variation in each domain, and 0D models generally only
model the cathode as a singular point. The typical equation set
, porous separator, and composite cathode with yellow solid sulfur
e cathode is a commonly proposed formulation but is by no means the
in the cathode through a nucleation and growth process, shuttling of
node.

This journal is © The Royal Society of Chemistry 2021
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Fig. 3 Nucleation and growth models can reproduce the rate-dependent (a) charge and (b) discharge voltage curves. (c) For lower discharge
rates, fewer Li2S nuclei form, leading to more uneven distribution of and larger particle sizes; at higher discharge rates, the nucleation rate is
higher and particle growth is more uniform. (a) is reprinted from ref. 37 with permission from Electrochimica Acta. (b) and (c) are reprinted from
ref. 38 with permission from the Journal of Power Sources.
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for the 1D model is shown in Table 1, which describes the
thermodynamics, kinetics, and transport detailed by Kumar-
esan et al.8 Included within Table 1 are degradative redox
reactions from polysulde shuttle, taken from Mistry and
Mukherjee (detailed within Shuttling, degradation, and lithium
anode dynamics).9
Cathode reaction scheme

There are two different commonly employed reduction schemes
for the sulfur cathode. The rst scheme employs the two reac-
tions shown below.

S8(l) + 4e�# 2S4
2� (1)

S4
2� + 4e�# 2S2� + S2

2� (2)

This simple reduction scheme was rst shown in the work by
Mikhaylik and Akridge in a lumped model.10 Other lumped or
simplied 1D models11–13 employed the same reaction scheme
but included chemical reactions of S8 dissolution or precipita-
tion of Li2S. In general, the relatively simple reaction scheme is
used for the express purpose of predicting trends and ease of
parameterization. The voltage curve only qualitatively matches
the relevant features, like the two plateaus and voltage dip.
Work by Erisen et al.13 concluded that modeling the rst plateau
with a single reaction does not adequately describe the behavior
and that the presence of several long-chain polysuldes are
needed to replicate the rst plateau more quantitatively. Using
This journal is © The Royal Society of Chemistry 2021
this simple reduction scheme inadequately describes the
complexity of the chemistry at play but can be very useful to
understand trends due to the low computational footprint. This
is an example of macroscale continuum modeling where
deliberate approximations are made to simply match key
experimental traits of a voltage curve.

On the other hand, microscale modeling aims to break down
this reaction scheme to the most accurate representation. A
more complex reduction scheme was proposed in the model by
Kumaresan et al.8 In contrast to the earlier work by Mikhaylik,
the reaction scheme included a 5-step reduction of sulfur from
dissolved S8 to S2�. This 5-step reduction is a step towards
a more microscale understanding of the reaction scheme by
breaking down the lumped steps further. The electrochemical
reaction steps are shown in Fig. 2. For each of the charged
polysuldes, the model includes precipitation of Li2Sn(s). Other
models have tweaked this reaction scheme. For example, some
models only consider Li2S(s) and occasionally Li2S2(s) because
there is still debate about the presence of other solid
precipitates.12,14,15

This more complex reduction scheme is able to reproduce
the important features of the discharge curve, but even so, it is
a simplication of the complicated schemes that have been
proposed, which include disproportionation and dissociation
reactions with multiple pathways.16–19 Elucidating the reaction
scheme is an important step to identifying the underlying
phenomena that contribute to performance limitations. We can
go even further to the le of the microscale spectrum by using
electroanalytical techniques and spectroscopic methods to
Sustainable Energy Fuels, 2021, 5, 5946–5966 | 5949
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Table 1 Standard 1D equations for lithium–sulfur batteries, modified from ref. 8 with anode expressions from ref. 9

Governing equations Boundary conditions

Positive electrode (region 1)
v31C1;i

vt
¼ �vN1;i

vx
þ ri � R1;i

N1,ijx¼0 ¼ 0

N1;i ¼ �D1;i
vC1;i

vx
� zi

D1;i

RT
FC1;i

vf1;e

vx
�s vfs

vx

����
x¼0
¼ iapp

is ¼ �s vfs

vx

i1,ejx¼0 ¼ 0

i1;e ¼ F
P
i

ziN1;i

v31;k

vt
¼ ~VkR

0
k

v31

vt
¼
X
k

~VkR
0
k

Separator (region 2)
v32C2;i

vt
¼ �vN2;i

vx
� R2;i

C1,ijx¼L1 ¼ C2,ijx¼L1

N2;i ¼ �D2;i
vC2;i

vx
� zi

D2;i

RT
FC2;i

vf2;e

vx

i1,ejx¼L1 ¼ i2,ejx¼L1
i2;e ¼ F

P
i

ziN2;i N1,ijx¼L1 ¼ N2,ijx¼L1
v32;k

vt
¼ ~VkR

0
k �s vfs

vx

����
x¼L1

¼ 0

v32

vt
¼
X
k

~VkR
0
k

Anode/separator interface with shuttle equations
i2;e
��
x¼L1þL2

¼ F
P
i

ziN2;i N2;Liþ
��
x¼L1þL2

¼ ii;app

F
þ r

0
i

N2;i

��
x¼L1þL2

¼ r
0
i

fsjx¼L1+L2 ¼ 0

r
0
i ¼

P
j

si;jk
0
j

 
Ci

Cref
i

!si;j

k
0
j ¼

i0;j

F
exp
�
� Fh

2RT

�

Other expressions

ri ¼ �a
P
j

si;j ij

njF
a ¼ a0

�
3

3initial

�x

vis

vx
þ vie

vx
¼ 0

vie

vx
¼ a
X
j

ij

hj ¼ fs � fe � Uj,ref
Uj;ref ¼ Uq

j �
RT

njF

X
i

sij ln
�
Ci;ref

1000

�
Ri ¼

P
k

gi;kR
0
k R

0
k ¼ kk31;k

�Q
i

C
gi;k

1;i � Ksp;k

�
Di ¼ 3xDi,0

ij ¼ i0;j;ref

(�
Ci;anodic

Ci;ref

�sa;j

exp
�
aa;jF

RT
hj

�
�
�
Ci;cathodic

Ci;ref

��sc;j
exp
�
� ac;jF

RT
hj

�)
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gure out detailed speciation. CV experiments give a wealth of
information about the redox behavior of electrochemical
systems, and some studies have combined CV experiments with
modeling to analyze the reaction scheme.

Work by Schön and Krewer20 coupled identication of
species via high performance liquid chromatography and CV
experiments and modeling to analyze two proposed reaction
mechanisms. The electrolyte system consisted of 1 M LiTFSI
and a 1 : 1 mixture of 1,3-dioxolan (DOL) : DME. The simplied
reaction mechanism, originally proposed by Lu et al.,21 is made
of two electrochemical reactions and an irreversible chemical
reaction (EEC); the sulfur species are le unidentied (written
as X and Y) since it is empirically derived.
5950 | Sustainable Energy Fuels, 2021, 5, 5946–5966
X%. ����! �����5:4e�
X5:4� (3)

X5:4�%. ���! ����2e�
X7:4� (4)

X7:4�/. ���!þ7:4Liþ
Y (5)

When modeling CV with the EEC mechanism, the reduction
and oxidation peaks are reproduced, but within the diffusion
limited regime, the model predictions missed a second
cathodic peak and exhibited a cathodic current not seen
experimentally. The authors recommended using the EEC
reduction scheme when the electrolyte composition is not
This journal is © The Royal Society of Chemistry 2021
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relevant, such as reproducing voltage trends. In order to match
the variety of species seen in high performance liquid chro-
matography (HPLC), the other reaction mechanism (E3C4)
included three electrochemical reactions and four chemical
reactions with both dissociation and disproportionation.

S8 + 2e�# S8
2� (6)

S8
2� + 2e�# S8

4� (7)

S4
2� + 2e�# 2S2

2� (8)

S8
4�# 2S4

2� (9)

3S4
2�# S8 + S2

2� + 2S2� (10)

2S3
2�# S4

2� + S2
2� (11)

2S2
2�# S3

2� + S2� (12)

The E3C4 kinetic model is able to reproduce both kinetic and
transport limited behavior shown in CV experiments. The
authors noted that the redox behavior varies with both SOC and
direction of the current, and the disproportionation reactions
were necessary to reproduce a circular conversion of shorter
polysuldes to S8(l). This work suggests that the oxidation and
reduction behavior for charge and discharge is different, and to
reproduce full-cell charging behavior it may be necessary to
include more complex chemistry than previously modeled. The
E3C4 kinetic model is well-suited to more detailed modeling of
the interplay of the electrolyte system and the speciation on the
cell limitations, such as polysulde shuttle or surface passiv-
ation by sulfur precipitates.

Recent work by Thangavel et al.22 studied the CV behavior of
a three electrode cell with a planar glassy carbon working
electrode in a tetraethylene glycol dimethyl ether:dioxolane
(TEGDME:DOL) electrolyte with 1 M lithium bis(tri-
uoromethanesulfonyl)imide (LiTFSI) and with S8, Li2S8, and
Li2S6 as the starting electroactive species. With a 1D model of
the working electrode and adjacent electrolyte diffusion layer,
the model was unable to model all the features of the redox
behavior with the standard 5-step reduction scheme described
previously. Aer the addition of an alternative reaction pathway
including S3c

� and S2c
� radical species, the CV results were

successfully reproduced, and reasonable estimates for the new
reaction parameters were obtained. The added pathway
includes:

S8
2�# 2S4c

� (13)

S4c
� + e�# S4

2� (14)

S6
2�# 2S3c

� (15)

The CV modeling represents a promising step forward in
improving the proposed reaction scheme for lithium–sulfur
batteries and extracting meaningful parameter values that can
be further analyzed in a battery setup with sparse electrolyte
amounts and high surface area electrodes.
This journal is © The Royal Society of Chemistry 2021
Studies have shown that the speciation is dependent on the
electrolyte system, additives, and solvent.23 Here we highlight
another example of macroscale modeling where reaction rates
are adjusted to match experimentally observed cell voltage for
a system with additives. Work by Shim et al.24 combined
experimental and modeling work to explore the effects of the
LiNO3 additive. LiNO3 has been used to mitigate polysulde
shuttling by promoting a benecial anode protective layer, thus
preventing side reactions with polysuldes at the anode.
However, LiNO3 has been reported as negatively impacting the
reduction of Li2S2 at the cathode and causing a distortion of the
voltage curve and creating a third plateau. Their work found
that the cells with high concentrations of LiNO3 exhibited
a third plateau. By controlling the exchange current density for
the reduction of S2

2� to S2� and decreasing the reduction rate
with excess LiNO3 present, the model was able to reproduce the
results seen experimentally. In the presence of excess LiNO3, the
model attributed the middle plateau to production of Li2S2(s)
and the third plateau as a further reduction to Li2S(s). The nal
two reduction reactions (S4

2� to S2
2� and S2

2� to S2�) usually
occur simultaneously; with excess LiNO3, the two reactions
occur one at a time, causing the distinctive separation of the
second plateau.

Electrolyte engineering is another important area of study as
different electrolytes have been shown to stabilize different
species and affect the reduction scheme. A simple experiment
by the Manthiram group25 mixed Li2S6(s) with DOL : DME and 3
other promising electrolytes and measured the UV-vis spectra.
Each of the electrolytes stabilized different species, including
a commonly reported radical anion S3c

�. Parke et al.26 explored
the effects of the S3c

� radical formation on the cell-level
behavior of a battery for the rst time. The reaction scheme in
Fig. 2, an E5C2 mechanism, was modied by including an
additional chemical dissociation step (eqn (15)) that formed
S3c
�, creating a E5C3 model that matches experimentally

observed speciation better. Both the thermodynamics and
kinetics of radical anion formation was shown to have
a dramatic effect on the voltage curve. With instantaneous
kinetics, the low depth-of-discharge voltage actually increased
while the rest of the curve was depressed compared to no S3c

�

chemistry. With slower kinetics, the dissociation reaction
served as a sink of sulfur and resulted in reversible capacity loss.
This work represents an important step in understanding the
effects of electrolyte stabilization on the full-cell behavior and
underlies the need for accurate thermodynamic and kinetic
parameters. Such parameters could be obtained by using
molecular simulations to study polysulde stability.27,28
Reversibility of cathode for charging models

Most models have been able to simulate discharge voltage
curves that match experimental features well. However, simu-
lating charge curves using the same set of governing equations
have proven to be challenging. Each of the electrochemical and
precipitation reactions proposed in the Kumaresan model have
reversible terms (see Table 1), which indicates that the model
should be intrinsically reversible and be able to discharge and
Sustainable Energy Fuels, 2021, 5, 5946–5966 | 5951
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charge. However, Ghaznavi and Chen29 found that the Kumar-
esan model8 was unable to charge due to a low saturation
concentration of Li2S. In a later paper, Ghaznavi and Chen30

varied the solubility product of Li2S, Ksp,Li2S, and showed that
increasing that by seven orders of magnitude, i.e., a factor of
107, from the commonly assumed value of 9.95 � 10�4 mol3

m�9, allowed for charging to be simulated at a low 0.02C rate.
There have been no reported values of experimentally measured
Ksp,Li2S beyond the assertion of it being highly insoluble. The
range of values of Ksp,Li2S used in the modeling literature8,31 is
large and range from 10�5 to 107 mol3 m�9. There is a need for
careful measurement of precipitation related parameters in
conventionally used electrolytes for more accurate models.
Perhaps, atomistic-scale simulations, such as quantum chem-
istry calculations or MD,32 can inform solubility and rate
constants, at least to an order of magnitude range. Li2S
precipitation determines the S2� concentration, hence shiing
the reduction potential. This shi in reduction potential has
been observed in GITT experiments33 and Zhang et al.34 sug-
gested that GITT might be useful to estimate precipitation rate
constants and solubility products.

In terms of capturing specic features of charging curves,
Ghaznavi and Chen30 compared their simulated charging
voltage curves to experimental curves and reported inability of
the model to reproduce the experimentally observed sharp
voltage peak at the start of charge. Their simulated charging
curve also has an additional peak in the middle of charging,
that can be attributed to sulfur precipitation, but is not seen
experimentally. Additionally, Kumaresan model's precipitation
rate expression includes the solid volume fraction of the
precipitate to account for the slow nucleation process at the
start of precipitation. This has been reported to be numerically
unstable for precipitation when the volume fractions are close
to zero. Yoo et al.35 introduced the addition of extra aphysical
terms for the precipitation reactions of S8 and Li2S to overcome
this challenge of numerical instability. Using the rate of change
of the volume fraction of Li2S, 3Li2S(s), as an example,

v3Li2SðsÞ

vt
¼ VLi2SðsÞ

"
kLi2SðsÞ;1

�
CLiþ

2CS2� � Ksp;Li2S

	

þ kLi2SðsÞ;2
CLiþ

2CS2�

3Li2SðsÞ

#
(16)

where V, k, C, are the molar volume, precipitation/dissolution
rate constant, and concentration respectively, the rst term on
the right-hand side of eqn (16) describes the precipitation rate
and is the same as in Table 1, while the second is the additional
aphysical term. They were able to simulate a charging curve but
were not able to capture all features well.

Better parameterization of the models mentioned above
might solve some of the charging challenges and numerical
instabilities observed. Another possibility might be due to the
proposed models having inaccurate or missing mechanisms.
This can be due to the limiting phenomena being mass transfer
rather than charge transfer, for example. Zhang et al.36 used
a simple 0D model with transport-limited kinetics and was the
rst to demonstrate the voltage kink at the start of charge (more
5952 | Sustainable Energy Fuels, 2021, 5, 5946–5966
details about this model in Transport section). It is clear that
macroscale modeling is unable to fully resolve the inconsis-
tences in charging and a deeper dive into microscale mecha-
nistic models is necessary.

On a microscale level, for example, missing mechanisms
that might help solve the charging challenge are reactions and
species that are unaccounted for such as the radical species S3c

�

highlighted by Parke26 and the fact that dissolution/
precipitation phenomena are not well captured in earlier
models. As discussed earlier within the Cathode reaction
scheme section, CV modeling by Schön and Krewer20 indicated
different redox behavior for charge and discharge, which was
replicated only with additional chemical dissociation and
disproportionation reactions providing parallel pathways. With
the addition of nucleation and growth phenomena to describe
the precipitation process, Xiong et al.37 were able to replicate the
charging curves well (see Fig. 3a) but they did not explore
discharge. Danner et al.31 explored both charging and dis-
charging, but even with the addition of detailed nucleation and
growth phenomena, were still unable to capture charging
features well (discussed in more detail in Precipitation section).
Having a comprehensive model that captures both discharge
and charge features remains a major challenge. We recommend
sustained efforts in developing more accurate and validated
charging models, including thoughtful coordination of analyt-
ical, electroanalytical, and engineering approaches to deter-
mine trustworthy physicochemical parameters, so that
continuum modeling may impact development of LiS batteries
by both model-based design and performance optimization.
Precipitation phenomena in the
cathode

In macroscale modeling, the voltage dip during discharge is
usually described by having initially slow precipitation kinetics
mimicking a nucleation overpotential where supersaturation
occurs (see other expressions in Table 1). The precipitation rate
is a function of the volume fraction of precipitate which is slow
at rst and as the volume fraction increases, so does the rate of
precipitation. Therefore, precipitation phenomena is described
macroscopically using a balance of the precipitation rate
constant and solubility limit (as demonstrated in the Ghaznavi
and Chen30 parameter study mentioned in the Charging
section).

This section will highlight papers that have focused on
capturing the precipitation/dissolution phenomena with more
detailed microscale models. Microscale continuummodels that
couple bulk transport and electrochemical kinetic processes
with particle-level nucleation and growth theory might resolve
some of the discrepancies seen between experiments and
macroscale continuum models that model only model precipi-
tation as a bulk process.

The rst model to incorporate nucleation and growth to
describe the precipitation reactions in a 1D lithium–sulfur
model is by Ren et al.,38 who modeled Li2S precipitation as an
electrochemical reaction between Li+ and S4

2� (eqn (17)) using
This journal is © The Royal Society of Chemistry 2021
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Tafel kinetics (eqn (18)), which is typically used for irreversible
reactions:

4

3
Liþ þ 1

6
S4

2� þ e�/
2

3
Li2S (17)

iL ¼ i0;Lð1� qÞexp
�
ahLF

RT

�
(18)

where iL is the current density describing the lower voltage
plateau, i0,L is a rate constant, q is the fraction of surface covered
by Li2S, a is the charge transfer coefficient, hL is the over-
potential, F is Faraday's constant, R is the molar gas constant,
and T is temperature.

They specically assumed Li2S dissolution does not occur
and hence there is no backward dissolution reaction modeled,
rendering the model only applicable for discharge. In their
model, the equation for nucleation rate is based on electrolytic
nucleation of metals and considers overpotential for S4

2�

adsorption, where the nucleation rate, P, expressed as:

P ¼ P0



~CLiþ

�4
3


~CS4

2�

�1
6ð1� qÞexp

�
ahLF

RT

�
(19)

where P0 is the initial nucleation rate and ~C are dimensionless
concentrations. For the growth portion, Ren et al. assumed
hemispherical particles, used Kolmogorov phase trans-
formation theory to account for overlap, and presented
expressions for surface coverage and radial growth rate. They
were able to simulate discharge curves from 0.5C to 5C and
show that both plateaus are shortened, and hence higher
capacity loss is seen, with increased C-rate, as shown in Fig. 3b.
In comparison with experimental data, average errors found are
less than 3%. Additionally, they showed the distributions of Li2S
particle radius with C-rate (Fig. 3c). They found that at higher
rates, larger overpotentials enable higher nuclei density,
resulting in uniform morphology of small particles. At lower
rates, growth of particles is the dominating process, which
results in fewer but larger particles. This description of particle
size matched SEM images of surface coverage. Analysis of the
impact of initial nuclei density on specic capacity showed
a non-monotonic trend, which indicates the need for optimi-
zation to balance between a high average particle size and
a uniform particle distribution. By incorporating the relation
between overpotential and surface coverage, Ren et al. was able
to relate rate-dependent morphology of Li2S precipitation to
show rate-dependent capacity trends.

Similar to Ren et al., Andrei et al.39 used a standard set of
multispecies cell-level charge and transport equations to
describe the bulk and coupled that to nucleation and growth of
polysulde precipitates. They used classical nucleation theory
to derive and relate the driving force of nucleation to over-
saturation instead of using electrolytic nucleation that Ren et al.
adopted. However, Andrei et al. demonstrated how both
nucleation rate equations are mathematically similar. There
were a few approximations made to reduce the number of tting
parameters and also a linear diffusive concentration gradient of
polysuldes away from the carbon surface was assumed. To
keep track of nuclei size distribution spatially across the cell,
This journal is © The Royal Society of Chemistry 2021
Andrei et al. used the differential form of Kolmogrov equation
to describe surface coverage.

Upon qualitative comparison to experimental data, simula-
tions by Andrei et al. were able to match the trend of discharge
capacity decreasing with increasing rate for 0.1C to 1C. They
were able to attribute this trend to cathode passivation due to
solid products by showing surface coverage and number of Li2S
nuclei changing during discharge, with complete surface
coverage occurring earlier for higher rates. They also explored
supersaturation trends during discharge and advised for the
use of an electrolyte that enables high solubility of intermediate
polysuldes to prevent intermediate products from forming on
the cathode surface and taking a long time to dissolve (though
this might contribute to higher degradation from shuttling
phenomena). Through a variable discharge rate experiment,
they found that different dynamics of nuclei growth occur at
different C-rates. Their simulations matched their experiment
qualitatively, and they were able to ascribe the difference in rate
of surface coverage to different starting points of nucleation.

The previous two models look at the impact of adding more
detailed precipitation expressions to describe discharge, while
Xiong et al.37 focused on modeling the charging process. Their
model introduced the concept of a redox mediation phenom-
enon during rate-dependent Li2S dissolution based on experi-
mental evidence.16,40 They start with an assumption of
a bimodal particle size distribution where small and large Li2S
particles are distributed evenly at the beginning of charge.
Dissolution of the Li2S particles is modeled as an electro-
chemical oxidation process to Li2S4, which is further oxidized to
Li2S8.

4

3
Li2S# 2Liþ þ 2e� þ 1

3
Li2S4 (20)

2Li2S4 # 2Li+ + 2e� + Li2S8 (21)

Li2S8 is further oxidized and eventually precipitates out as S8
solid.

Li2S8 # 2Li+ + 2e� + S8(l) (22)

Since the small particles have a larger specic surface area,
the dissolution process is faster than the larger particles. A
second dissolution reaction is modeled and termed as a redox
mediation reaction where the oxidized Li2S8 in solution reacts
with and promotes the dissolution of Li2S solids.

Li2S8 þ 4

3
Li2S#

7

3
Li2S4 (23)

This second dissolution mechanism only occurs for the
larger Li2S particles and is independent of cell potential. Similar
to the previous two models, this additional precipitation/
dissolution phenomenon is coupled with 1D bulk transport in
dilute solution with standard mass and charge conservation
expressions. They have an additional equation to track Li2S
particle size growth and growth is assumed to be the same
across the cathode.
Sustainable Energy Fuels, 2021, 5, 5946–5966 | 5953
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Xiong et al. were able to simulate charging curves that mostly
match experimental curves from 1C to 2C, shown in Fig. 3.
Specically, they were able to simulate the charging curve with
a spike at the beginning that they attribute to higher activation
overpotentials due to limited surface area from the large parti-
cles. They varied the redox mediation reaction rate to show the
effect on voltage and particle size. They also performed simu-
lations with the redox mediation reaction and without. Without
this reaction, there are two voltage plateaus seen with the high
voltage plateau duration correlated to the volume fraction of
large particles. In experimental charging curves with only one
voltage plateau observed, they conclude that the charging
process differs from the discharge process, where two plateaus
are commonly observed, as the large particles dissolve through
a redox mediation reaction instead of oxidation.

Danner et al.31 explored fully reversible nucleation and
growth through both charging and discharging while keeping
track of the particle size distribution of S8 and Li2S. They used
a two-step classical theory of nucleation and growth to model
precipitation/dissolution with the diffusion-limited nucleation
rate based on free energy of formation. The nucleation rate is
also dependent on the number of nucleation sites, affinity of
nucleation to different material surfaces, and specic surface
area. The growth step is radial and described as a two-step
diffusion to and reaction on the particle surface. Again, the
nucleation and growth mechanisms are coupled to 1D bulk
mass and charge transport governing expressions through
species concentrations and active surface area. This model also
includes electrochemical double layer charging at the solid–
electrolyte interface and uses an empirical correlation relating
electrolyte viscosity to total sulfur concentration. It is worth
noting that Danner et al. made a good attempt at explaining
where each set of parameters comes from.

The simulations from Danner et al.'s model for discharge
curves and particle size distributions only match Yu et al.'s
experimental cycling and operando XRD data41 in a qualitative
manner (at C/5 and C/10). Surface energy was found to be the
most important parameter in a sensitivity analysis with respect
to cell capacity. Ability to model the surface energy through
atomistic simulations, and to model the impact of changing
this surface energy parameter in the above continuum model,
can help in selection of electrolyte additives which can modify
surface energy. Danner et al. also carried out a PITT simulation
and found that almost all the Li2S particles nucleate and form in
a short time period aer the maximum supersaturation is
reached. This time period occurs during a long constant voltage
period slightly above 2.1 V, and similar voltage/current behavior
has been observed in the experimental literature.42 PITT
experiments, and also simulations, can be useful to look at the
minimum overpotential for nucleation initiation that might
vary with surface or E/S ratio.

Danner et al. then used the same parameters t from the
discharge curves to simulate charge curves, which do not match
experimental voltage data well, thus highlighting a parameter or
mechanism discrepancy. However, the nal particle distribu-
tion size of S8 match well with operando XRD,41 and most Li2S
dissolves before S8 precipitates. The simulated charging curves
5954 | Sustainable Energy Fuels, 2021, 5, 5946–5966
show two distinct plateaus at all C-rates with the rst voltage
plateau being most sensitive to Ksp,Li2S. The authors also simu-
lated a shallow cycling experiment – discharge to 2.2 V and
charge using varied C-rates – and found that the small S8
nucleation feature seen in the upper plateau disappears with
increased C-rate due to high overpotentials. Also, at increased
C-rates, there is less time to grow and so the S8 particles are
smaller, which agrees with the XRD literature.

All the above models are able to show a decrease in specic
capacity with increased rate and attribute ability to predict rate-
dependent capacity to the addition of more descriptive nucle-
ation and growth mechanisms. Ren et al. and Xiong et al., both
papers from the Zhao group, are able to t their models to
experimental data well as opposed to in a qualitative manner.
They also model dissolution/precipitation of Li2S as an elec-
trochemical step while Andrei et al. and Danner et al. use
chemical reactions. A common idea proposed that could utilize
these precipitation models to maximize capacity is to seed the
carbon electrode surface with preferential adsorption sites or
nucleation seeds. This can be done by adding doped sites with
high affinity towards Li2S31 or catalyst particles.39 Modeling can
be used to optimize the number of initial nucleation sites by
striking a balance between size and number of nuclei to
promote uniform growth, maximize specic surface area, and
prevent large surface oversaturation. Clearly, we still lack
a unied model that is able to explain charge and discharge
with a relevant set of parameters. The knowledge gap can be
alleviated through insights from molecular simulations on
kinetic rate parameters and nucleation phenomena. Out of all
the charging models in the literature, Xiong et al.'s proposed
model does the best job of capturing experimental charge
features.

An alternative to the nucleation and radial growth theory is
modeling precipitation phenomena as 2D vs. 3D growth. This
can be done through mesoscale modeling as the morphology of
the precipitate affects pore space evolution in the cathode. An
example of this is Mistry and Mukherjee's work43 which
assumes that there are different energetic interactions between
the carbon substrate and the Li2S precipitate. Because of this,
precipitate morphology can range from depositing at the
carbon–pore interface, leading to more lm-like structures (2D)
or precipitates self-depositing at the precipitate–pore interface,
leading to more nger-like structures (3D). Mistry and
Mukherjee vary this morphology factor in a coarse-grain
mesoscale model based on deposition energy involving
surface affinity. They found that low-order morphologies lead to
surface passivation, and high-order morphologies lead to pore
blockage. These two events lead to cathode starvation – no
active reaction area – and no further reaction can happen,
causing the cell voltage to drop. Importantly, they showed the
effect of microstructure evolution on electrochemical perfor-
mance by relating mesoscale level variables (morphology factor,
porosity, precipitation amount) as effective microstructural
properties (tortuosity, conductivity, active area) that are used in
a continuum-level electrochemical model. This meant that they
could show the effect of morphology or porosity on cell oper-
ating condition trends such as capacity dependence on C-rate.
This journal is © The Royal Society of Chemistry 2021
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This is a good example of multiscale modeling where modeled
mesoscale interfacial phenomena is coupled with macroscopic
cell-level performance. Note that pretty much all the existing
meso/micro-scale models have not reported on mesh
convergence/simulation efficiency and error. For a recent paper
on the importance of mesh convergence, in particular in the
presence of corner singularities, see ref. 44.

We can borrow insights from models at a smaller atomistic
scale too. First-principles DFT calculations can show the
strength of interaction between Li2S in solution and an adsor-
bed solid Li2S site.45 Liu and Mukherjee created a coarse-
grained lattice-based mesoscale model and used KMC to
simulate Li2S adsorption, desorption, and diffusion on the
surface. Since the nature of growth is related to fundamental
interactions (pore/solvent structure etc.) that manifest as
surface energetics, engineering of carbon structure and elec-
trolyte to make it unfavorable for 2D lm formation is an area of
research with plenty of opportunity to be driven by a combina-
tion of atomistic, mesoscale, and continuum models.

Cathode structure

The development and optimization of structured cathodes46,47

has gained a lot of attention as a strategy to mitigate low sulfur
utilization. Because both S8 and Li2S solids are insulating,
strategies to overcome poor electronic conduction are impor-
tant in achieving high sulfur utilization. Cathode structure is
also important for polysulde entrapment to mitigate shuttling
and to combat volume expansion during lithiation. However,
most of the continuum modeling literature assume a macro-
scale composite carbon/sulfur cathode with effective properties,
captured by the electronic conductivity, carbon fraction, and
active surface area. More sophisticated microscale models are
needed to understand the complex behavior and structure of
the cathode. A study by Danner et al.11 explored the implications
of a nanostructured cathode with meso- and micro-porous
carbon particles. Their work employed a simplied reaction
scheme with a 1 + 1D model, where all the polysuldes remain
trapped within the particles; their modeled cathode is similar to
the porous electrode pseudo two-dimensional (P2D) model,
where transport through the cathode and into the particle is
considered. Comparing with experimental data, the model
captured trends but missed the plateau transition and end of
discharge regions, most likely due to the simplied 2-step
reaction mechanism. Their work explored the effect of sulfur
loading and salt concentration on the voltage and the simulated
pore volume fraction. With lithium-ion as the sole charge
carrier, the transport overpotential is signicant to overcome
the concentration gradient.

Work by Thangavel48 describes a structured cathode with
mesoporous carbon particles. The model includes transport on
two different scales, within inter-particular pores (between
carbon particles) and lling the mesopores of the carbon
particle. The model also captures Li2S lm passivation on the
surface of the particles and within the mesopores. The work
explored the sensitivity of microstructural properties on the
discharge capacity. The predictions were able to reproduce rate
This journal is © The Royal Society of Chemistry 2021
capability seen experimentally.49–51 When considering particle
and mesopore sizes, the discharge capacities of larger particles
were lower than small particles due to decreased surface area.
The large particles showed faster Li2S lm thickness growth,
which led to earlier choking of the mesopores within the carbon
particle and leaving unutilized sulfur. The Li2S lm passivated
the cathode, resulting in lower voltage. Meanwhile, the smaller
particles had a higher discharge capacity overall; the clogging of
the inter-particular pores signaled the end of discharge because
the Li2S lm did not reach the threshold thickness for choking
the mesopores. The effect of C/S ratio was also explored by
varying the sulfur loading; the highest sulfur loadings also
exhibited the lowest capacities. The results from this work
suggest that the microstructural properties can be tuned to
delay the negative effects of Li2S(s) precipitation; the highest
surface area for particles is recommended to alleviate clogging
and lm growth that leads to passivation of the cathode and
poor sulfur utilization. Microscale models more accurately
represent the competing phenomena of pore clogging and
surface passivation and can guide design of the cathode.
Furthermore, continuum models may need guidance from
statistical-based models, such as KMC, or molecular dynamics
to further understand evolution of the cathode dynamics and
derive experimentally relevant parameters. The structure and
material of the cathode is also highly engineered to suppress
shuttle, and with guidance from DFT, adsorption and diffusion
of polysuldes can be found,52 and these values can be
expressed as continuum level transport properties.
Shuttling, degradation, and lithium
anode dynamics

Continuum modeling papers focused on lithium–sulfur have
traditionally modeled the anode as a ux boundary condition
(lithium foil that supplies unlimited lithium ions), as a pro-
tected anode domain with Butler–Volmer kinetics describing
the lithium redox reaction (although the anode overpotential is
commonly taken to be negligible due to evidence that the
cathode overpotential is dominant13), or as an active participant
in the reduction of polysuldes that have shuttled over and in
passivation reactions involving polysuldes at the anode
surface. A few papers have modeled the effects of shuttle on the
anode surface by approximating passivation with decreasing
electrochemical active surface area, which changes the reac-
tivity of the surface and affects the overpotential of lithium
oxidation; this represents a rst step towards understanding the
impact of the lithiummetal anode and consequent degradation
and side reactions on cell operation. For high specic capacity
batteries, we anticipate that future models will include both
electrodes with experimentally-derived mechanisms, using
a suitable electrolyte, to best represent a state-of-art cell. In all
the models reviewed in this paper, SEI and dendrite formation
on the lithium metal anode are not considered although they
are important phenomena that remain hurdles for commer-
cialization of lithium metal batteries. Models with detailed
dendrite growth modes to describe lithium metal
Sustainable Energy Fuels, 2021, 5, 5946–5966 | 5955
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electrodeposition and stripping53–55 can be coupled with 1D
electrochemical models56,57 to describe the lithium metal
system. Understanding the behavior of the lithiummetal anode
in tandem with the complex polysulde speciation behavior will
give insights into cell design and operation to overcome current
cycle life limitations. First-principles calculations and atomistic
simulations can also shed light on electrolyte decomposition58

and lm formation59 on the anode; the calculated molecular-
level reaction and surface energies can be incorporated as
side reaction rate constants and passivation rates in continuum
models.

The main degradation mechanism for lithium–sulfur
batteries is the shuttle phenomena. During charge, lithium ions
that are liberated from the cathode travel to the anode to be
reduced to lithium metal to store the incoming charge. Since
the polysuldes are also soluble in the electrolyte, they diffuse
to the anode and are reduced as well, consuming the electrons
meant to be stored there. The reduced polysuldes then travel
back to the cathode and can be oxidized, only to repeat the
process. Additionally, lower-order polysuldes may react with
lithium at the anode to produce Li2S(s) that can further
contribute to passivation of the anode and cell resistance.33

Understanding the shuttle phenomena is key to development
and operation of long-life high energy density lithium–sulfur
batteries. The modeling literature has approached the study of
shuttle with both 0D and 1D models using macro- and micro-
scale mechanisms.

The rst 0D model by Mikhaylik and Akridge10 included the
shuttle degradation as consumption of the higher-order poly-
suldes at the anode during the higher plateau. The rate of
shuttling is proportional to the concentration of higher-order
polysuldes multiplied by the shuttle reaction rate (second
term of eqn (24)) and is included in a mass conservation
differential equation:

d½SH�
dt
¼ I

qH
� ks½SH� (24)

where [SH] is concentration of higher-order polysuldes
normalized to specic volume or surface, I is the normalized
charge/discharge current, qH is the sulfur specic capacity for
the higher voltage plateau, and ks is the shuttle rate constant.
Shuttling only occurs during charging and is assumed to start
during the second cycle. The model also included self-heating
from the shuttle current and an Arrhenius expression to
describe the temperature dependence of the shuttle rate. Their
model also focused on overcharge protection due to innite
charging. This happens when the shuttle current is equal to or
greater than the applied current, and the voltage curve levels off
into a plateau ad innitum with no increase in the stored
charge.

Another 0D model with the shuttle mechanism is the study
by Marinescu et al.60 In their work, a fraction of the shuttled
polysuldes becomes permanently inactive, described by
a dimensionless loss rate, fs. The rate of shuttle or loss sulfur, Sl,
is proportional to the mass of dissolved sulfur, S08, the shuttle
rate constant, ks, and the sulfur that has already been shuttled,
Ss, which means that the shuttle rate increases with aging.
5956 | Sustainable Energy Fuels, 2021, 5, 5946–5966
dSl

dt
¼ fs

ms

SsksS
0
8 (25)

where ms is the mass of active sulfur per cell. The authors relate
the increased rate of shuttle to increased surface area available
for precipitation as more solids precipitate on the anode
although in a lumped model the sulfur loss is area nonspecic.
The model is used to explore experimentally seen voltage dri
with cycling, and the authors attributed it to SOC dri. There-
fore, traditional SOC estimation techniques like coulomb
counting or voltage reading are not adequate for cycling of LiS
batteries. The model also classied capacity loss as either
reversible or irreversible, depending on the conditions.
Predictions from the model indicated that reversible capacity
loss is due to the bottleneck of slow dissolution of solids from
high charging rates while irreversible capacity is due to shuttle
at low charging rates.

The description of the shuttle phenomena with a 0D model
inherently ignores the transport of the polysuldes from the
cathode to the anode. Several 1D models have incorporated the
shuttle as a microscale mechanism to understand the role that
transport plays in degradation. Hofmann et al.61 explored the
polysulde shuttle mechanism with the simplied 2-step
reduction scheme. Their mechanism included the reduction of
S8 to S4

2� and precipitation of Li2S at the anode; furthermore,
the Li2S at the anode is classied as either active or passivating
the surface. The passivating Li2S decreases the anode reactive
surface through a heuristic expression

f ð3SÞ ¼
�
3pore � 3Li2S

3pore

�3:5

(26)

where f(3S) approximates the active surface on the anode, 3pore is
the volume fraction of usable anode, and 3Li2S is the volume
fraction of passivating Li2S on the anode surface. This heuristic
approximates the degradation of the anode surface through loss
of electrochemical active area. As the cell degrades, resulting in
both loss of active material and less reactive surface area on the
anode, the anode overpotential increases, decreasing the
voltage plateaus. The model predicts higher capacity loss per
cycle initially, which levels off; this is in agreement with
experimental studies that show high capacity loss during the
initial cycles.62

Another study by Yoo et al.35 uses the 5-step reduction
scheme with the shuttle mechanism at the anode. During
charge, the polysuldes are able to travel to the anode, where
they are reduced at a rate proportional to their concentration
and their individual shuttle constant; this represents lost
charge due to shuttle.

vCi

vt

����
x¼L1þL2

¼ �kps;iCi þ kps;i�1Ci�1 (27)

where kps is the shuttle rate constant. The rst term is the sink
while the second term is the source from a higher-order sulfur
species denoted with i � 1. The model does not include
precipitation of solids on the anode surface. This work explored
cycling performance of cells with various diffusivities and
reduction rates; predictably, the degradation worsened for high
This journal is © The Royal Society of Chemistry 2021
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diffusivities of polysuldes and increased reduction rates.
Kamyab et al.63 followed a similar approach to including shuttle
on the anode, where the rate of precipitation is proportional to
the shuttle rate and concentration.

Mistry and Mukherjee9 extended their previous work using
concentrated solution theory to study the effects of speciation
and lean electrolyte conditions on polysulde shuttle and
degradation. The shuttle is modeled as an interfacial ux due to
the redox reaction at the anode/separator interface, shown in
Table 1 (when modeling without shuttle, ux at the interface is
zero for all species except lithium). The capacity loss is char-
acterized as either reversible or irreversible, due to reduction of
higher-order polysuldes at the anode or precipitation of Li2S
on the anode surface, respectively. With increasing C-rate, the
overall capacity loss due to shuttle decreases due to decreased
operation time. However, the limitations from the cathode and
electrolyte have the largest contribution at high C-rates, indi-
cating an optimum intermediate rate to balance degradation
phenomena. This is in contrast to the macroscale/0D modeling
of shuttle, where capacity loss increases with rate. Taking
a closer look at electrode conditions, E/S ratio and porosity
show a nonlinear relationship with limiting phenomena. At
lower E/S ratios and porosity, the transport limitations domi-
nate while increasing these parameters leads to capacity loss
from polysulde shuttle. Incorporating a detailed model for
lithium metal morphology will allow a closer look at the rela-
tionship between shuttle, speciation, and high energy cell
conditions.

The study by Danner et al.11 explored degradation with
nanostructured cathodes where all of the polysuldes except for
S2� are assumed to be trapped within the carbon particles. Aer
S2� diffuses out of the particle, the model assumes that it is now
electrochemically inactive representing the maximum amount
of irreversible loss of sulfur; realistically, the diffused S2� could
still participate in reactions as long as it is within the cathode
matrix. The capacity loss is linear initially and then increases
steeply with more cycles. This work also explored the effect of
Li2S solubility product and salt concentration on the cycling
capacity loss. With higher Ksp for Li2S, more of the S2� is able to
leave the particle resulting in increased loss. The cycling study
shows that increasing the salt concentration increases capacity
retention; however, high salt concentrations will have a negative
effect on both ionic conductivity and the energy density of a cell.
This work highlights the importance of modeling to optimize
multiple variables simultaneously for practical high energy
cells.

Polysulde shuttle can also occur in the absence of current
and can lead to self-discharge. This is due to the lithium anode
being strongly reducing. To understand the self-discharge
behavior due to shuttling, Al-Mahmoud et al.64 fabricated LiS
cells with varying numbers of separators between the elec-
trodes, and measured the voltage signal measured from a fully
charged state. The 1D model considers transport through the
separator and redox reactions at the electrodes as boundary
conditions; the only species in the model are S8 and S8

2� that
continuously oxidize or reduce at the electrodes. The net
current is zero, and the current that oxidizes S8

2� is equal to the
This journal is © The Royal Society of Chemistry 2021
change in potential multiplied by the capacitance of the carbon.
Mahmoud et al. found that including the capacitive behavior of
the carbon within the sulfur cathode was necessary to repro-
duce the open circuit potential of a battery with 5 separators.
Without including the capacitance, the voltage sharply drops,
leveling off within 30 minutes, while the model with capaci-
tance predicts a gentler slope to the nal voltage at around 2
hours, matching the experimental curve. Their simple model
can predict the evolution of the open circuit potential of
batteries well with 2 to 5 separators. The model was also able to
capture the difference between the self-discharge behavior of
a cell with no initial dissolved sulfur and a cell with saturated
electrolyte by altering the initial conditions of sulfur in the
electrolyte.

Another approach of measuring and modeling the shuttle
current during self-discharge was demonstrated by Moy et al.65

They measured the shuttle current by holding the electrode
potential constant and waiting till the current reaches a steady
state value. The steady state current is equal to the diffusional
ux of polysuldes between the electrodes. They found that the
shuttle current decreases to zero with depth of discharge since
insoluble products are present at the end of discharge. They
also found that with the addition of LiNO3, the shuttle current is
reduced to almost zero due to LiNO3 forming a passivation layer
on the anode. With a simple model based on algebraic equa-
tions of ux balances, and the assumption that the anode is
strongly reducing such that all higher order polysuldes are
reduced to S4

2� at the anode, Moy et al. were able to model the
shuttle current as a function of SOC that match experimental
values well. They also assumed linear concentration gradients
from diffusive uxes and that the conversion of S4

2� to Li2S2
and Li2S solids at the anode is 100–3000 times slower than the
interconversion of polysuldes and hence do not model this
process in their calculations of shuttle current. However, this
phenomenon is observed in their experiments in the form of the
slow decay of shuttle current at long timescales. Moy et al. used
an average value of this decay rate over a discharge cycle and
calculated irreversible capacity fade as a function of cycle life.
Being able to quantify the shuttling rate with SOC and shuttle
decay is important to help predict the effectiveness of modi-
cations without excessive cycling.

Research by Wen et al.66 modeled self-discharge in a 1D LiS
sandwich cell to explore reversible versus irreversible capacity
loss. The self-discharge behavior of coin cells at different cycles
was explored, and the cells underwent ex situ X-ray diffraction
experiments to analyze precipitation. The relationship among
self-discharge, polysulde shuttle, and the resting voltage was
proven to be important and rate-dependent. Self-discharge was
more rapid at higher voltages due to higher-order polysulde
reduction at the anode; the capacity loss was highest at high
SOCs. Resting during the lower voltage plateau leads to
formation of precipitate andminimal capacity loss. The authors
recommend resting at 2.10 V to minimize capacity loss, and the
model results indicate that the focus should be on anode
protection to mitigate degradation.

Multiple phenomena, such as intermediate polysulde
transport and lithium metal passivation, play an important and
Sustainable Energy Fuels, 2021, 5, 5946–5966 | 5957
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complex role in both calendar and cycle life, and continuum
modeling has furthered our understanding of degradation
through incorporating these mechanisms. Moving forward,
models should include more detailed dynamics of the lithium
metal surface evolution for a full cell view of these issues.
Transport properties, limitations, and
solution phase dynamics at low E/S
ratios for a cell

It is important for a model to capture transport limitations in
a cell to mimic conditions such as a battery with low E/S ratio
undergoing fast charging. In the 1D literature, the resistance
within the electrolyte is not adequately captured.34 Experimen-
tally, ohmic resistance as a function of state-of-charge (SOC) can
be measured using EIS (the high frequency real-value limit). In
the case where electronic conductivity is high, electrolyte
resistance can be assumed to be the bulk of ohmic resistance.
To adequately capture electrolyte effects, both micro and
macroscale liquid phase dynamics have been incorporated.

Zhang et al.34 calculated the variation of the electrolyte
resistance with SOC using the Kumaresan model and found
that this variation does not match experimentally measured
electrolyte resistance. To accurately represent the electrolyte
transport in a macroscale manner, Zhang et al. expressed elec-
trolyte conductivity as a linear function of Li+ concentration,
which represents the sum of anion concentrations since
measurement of transport properties of each individual poly-
sulde anion is challenging. With this expression of ionic
conductivity,

k ¼ 31.5(k0 � bjCLi+ � CLi+,0j) (28)

where 3 is porosity, k0 and b are tted parameters, and CLi+ is the
concentration of lithium-ion with CLi+,0 being the initial
concentration, they introduced two new parameters and were
able to reproduce both the trend and magnitude of the elec-
trolyte resistance during discharge from experimental data.
This result is shown in Fig. 4. We note that they used a 0D
Fig. 4 Discrepancy between experimental and modeled electrolyte resi
a commercial LiS pouch cell measured using EIS. (b) Simulated electro
permission from the PCCP Owner Societies.

5958 | Sustainable Energy Fuels, 2021, 5, 5946–5966
lumped model without mass transport (reactions modeled off
Kumaresan et al.) and incorporated the electrolyte resistance as
an ohmic potential drop contribution in the overall cell voltage.
Zhang et al. found that the voltage dip during the transition
between the two plateaus occurs not only due to supersatura-
tion of S2� but also due to a peak in electrolyte resistance,
consistent with modeling results from the concentrated solu-
tion model by Mistry et al. (reviewed later in this section).67

Other papers have also used expressions of ionic conductivity as
a function of lithium ion concentration and these are empirical
expressions found using ts to experimental conductivity
data.38,39 These papers represent a macroscale view of modeling
effective transport properties.

For a high energy density cell, the E/S mass ratio should be
less than 5 mL mg�1,5 hence a lean and concentrated electrolyte
would mean solubility and transport limits sulfur utilization.
Also in line with macroscale modeling, Zhang et al.14 reduced
the diffusion coefficients of all species by two orders of
magnitudes to demonstrate a transport-limited cell. They use
a 1D Kumaresan-type model with the only precipitate being
Li2S. They are able to match experimental discharge curves
qualitatively, with the ability to capture the reduction of the low
plateau capacity at higher currents which has not been shown
previously. However, they were unable to capture curvature of
the rst plateau and some features at higher rates. To test their
theory of the cell being transport-limited, they carried out an
experiment and corresponding simulation where the cell is
discharged, relaxed, and allowed to be discharged further. Since
some capacity is recovered aer relaxation, Zhang et al.
concluded that for a high energy density LiS cell, the discharge
capacity reduction due to higher current can be attributed to
transport limitations, and less so due to surface passivation or
pore blockage from precipitates. If transport is indeed
a limiting factor for LiS cells, models might need to move away
from the macroscale dilute solution theory towards a concen-
trated solution theory to better capture diffusive effects.

For a microscale approach, using recent nucleation and
growth models that are able to predict reduction in capacity of
the lower plateau with increasing rate, Andrei et al.39 repeated
stance as a function of depth of discharge. (a) Electrolyte resistance of
lyte resistance from the ref. 8 model. Reproduced from ref. 34 with

This journal is © The Royal Society of Chemistry 2021
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an experiment by another Zhang et al.36 paper. Andrei et al. used
a 0.2C–1C–0.2C variable discharge rate and compared the
specic capacity of certain portions to a standard 1C discharge.
Their results did not match Zhang et al.'s conclusion that rate-
dependent discharge capacity is due to slow transport (here,
Andrei et al. are unable to recover all capacity at a slower rate),
but rather found that different dynamics of nuclei growth
occurs at different C-rates. There is a disagreement between the
nucleation papers38,39 and the Zhang et al.14,36 papers about
whether capacity reduction at high discharge rates is due to
rate-dependent surface coverage or rate-dependent transport
limitations. Furthermore, Zhang et al. used EIS to show that
charge transfer resistance, commonly associated with surface
coverage, is SOC-dependent and rate-independent. The
discrepancy in experimental results is likely due to Andrei et al.
using coin cells with low loading while Zhang et al. used OXIS
pouch cells with presumably low E/S ratio. There needs to be
a clear understanding that a single model will not be able to
capture different limiting phenomena due to differently engi-
neered cells. Comparing their simulations to an experimental
cell with lean electrolyte, Zhang et al.36 used a simple 0D model
with a modied transport-limited Butler–Volmer kinetics
expression (includes limiting current):

Ij

avVij
¼
�
1� Ij

I lim

�
exp

��Fhj

2RT

�
�
�
1þ Ij

I lim

�
exp

�
Fhj

2RT

�
(29)

where Ij is the current of reaction j, ij is the exchange current
density, av is the specic surface area of the cathode, V is cell
volume, Ilim is the limiting current due to mass transfer. Not
only were they able to match their variable discharge rate
experiment very well, but they are also the rst model to
demonstrate the kink at the start of charging. Review of these
two papers demonstrate the complicated nature of lithium–

sulfur systems and the existence of competing phenomena. We
want to highlight that the cell conditions dictate the limitations
and ultimately there should be a model that can accurately
predict both precipitation phenomena and transport limita-
tions in line with experimental work.

An improvement to prevent shuttling is to use gel polymer or
gelled liquid electrolytes to trap polysuldes by limiting their
transport and solubility. Gel electrolytes are also less ammable
and help suppress dendrites at the lithium anode. Shebert et al.68

effectively combined experiment and simulation to explore mass
transport limitations introduced by gel electrolytes. Through
experimental work, they showed that the specic capacity of
a liquid electrolyte system is still better than the gel electrolyte
systems, though the cycling performances of the gel electrolyte
systems are better. They also showed that for an LiS cell with gel
electrolyte, the rst discharge voltage plateau is extended while
the second plateau is shortened, relative to a conventional elec-
trolyte. The former effect suggests that the gel electrolyte system
promotes entrapment of polysuldes and improved sulfur utili-
zation. This latter effect implies slow conversion of soluble to
insoluble polysuldes and could be due to slow transport of
intermediate polysuldes or passivation of reaction sites. To
investigate this, Shebert et al. conducted an experiment where
they discharged a cell to 1.8 V, let it rest for an hour, and
This journal is © The Royal Society of Chemistry 2021
discharged it further. They showed ability to recover more
capacity in the second discharge, which indicates that this effect
could not be due to all polysuldes being reduced or all sites
being passivated, but rather due to mass transport limitations.
The gel electrolyte system had greater capacity recovery than the
liquid electrolyte system. Shebert et al. also varied the pause time
and measured capacity recovery as a function of C-rate. Then,
they were able to match their experimental results qualitatively
using a continuum model with a fast and slow diffusion rate of
S4

2� (slower diffusion represents the gel system). Similar to
Zhang et al.,36 they used a mass-transport limited Butler–Volmer
expression to model kinetics of the electrochemical reactions;
however, this is a 1D instead of a 0D model. In this model, the
limiting reaction rate has two extra tting parameters with the
assumption that the maximum mass transport rate to reaction
sites decrease as solid deposits clog the pores in the cathode and
the bulk concentrations of reactants decrease. For the discharge–
pause–discharge experiment, during the pause, S4

2� has time to
diffuse back to the cathode to get additional capacity. Mass
transport limitations are only seen at the end of discharge when
there is low concentration of S4

2� and a lot of surface passivation
from Li2S deposits. Since the discharge capacity of LiS cells with
gel electrolytes is still smaller compared to conventional elec-
trolytes, this investigation shows that the capacity can be
improved by limiting the polysulde ux out of the cathode or
speeding their return to the cathode.

Transport properties can also be modeled in a microscale
manner to consider the effects of complex solvent interactions.
Mistry et al.67 developed a 1D model based on concentrated
solution theory that describes the complex transport behavior
during discharge. Concentrated solution theory, derived from
nonequilibrium thermodynamics, captures interactions among
the polysuldes by accounting for the self- and inter-species
transport at high concentrations. The uxes are dened by
the following:

Ni ¼ �DiiVCi �
X
jsi

DijVCj þ ti
I

ziF
þ CiV0 (30)

where Ni is the ux for species i. The rst term is the self-
gradient ux where Dii is the diffusion and Ci is the concen-
tration of species i. The second term is the contribution of
dissimilar species to the diffusion where Dij is the cross-
diffusivity and Cj is the concentration of species j. The third
term describes the migrational contribution to ux, where ti is
the transference number and zi is the charge number. The nal
term is due to advection of the bulk ow of the species due to
solvent motion where V0 is the velocity of the solvent. Within
this model, the limitations due to surface passivation from
insulating precipitates, pore blockage, and electrolyte resis-
tances are calculated and compared. The work uses a micro-
structurally resolved model to describe the changing
morphology during discharge. They attributed part of the
voltage recovery before the second plateau to ionic conduction
of medium chain polysuldes, in agreement with Zhang et al.34

The dominant species that contribute the most to high
concentrations and consequent transport limitations are Li+
Sustainable Energy Fuels, 2021, 5, 5946–5966 | 5959
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Fig. 5 Electrolyte transport regimes, (a) porosity versus S/E (sulfur to electrolyte) ratio with green showing acceptable conductivity and higher
values in the rate limiting ionic conduction, (b) potential curves within the rate limiting regime, (c) plot showing the limitingmechanismwith sulfur
utilization, (d) potential curves with acceptable conductivity, (e) solid species with sulfur utilization, (f) shows the sulfur utilization with C-rate for
both regimes. Reprinted with permission from ref. 67. Copyright 2018 American Chemical Society.
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ions due to accumulation until Li2S precipitation, and medium-
chain polysuldes (S4

2�) due to solubility and higher produc-
tion rate compared to the higher-order polysuldes. The model
is able to capture competing dynamics, like the rate dependence
of passivation, pore blockage, and ionic conduction. Their work
classies E/S ratio in two regimes, rate-limiting and acceptable,
shown in Fig. 5. When considering the rate-limiting ionic
conduction with low E/S ratios (or high S/E ratios), the sulfur
utilization is highly C-rate dependent (Fig. 5f). At low rates, the
ionic conductivity increases with an increased rate due to
overlap in the speciation; consequently, there is a lower
concentration of medium-chain polysuldes, resulting in less
transport resistances. This is balanced with increased potential
drop due to transport limitations of higher rates. For the
increase from C/10 to C/5, shown in Fig. 5b, there is an increase
in sulfur utilization. However, at higher rates, the increased
ionic conductivity is not enough to overcome the resistance due
to transport at higher rates (Fig. 5c). For acceptable conductivity
behavior (Fig. 5d and e), the sulfur utilization is fairly constant
with C-rate, and there is a decrease in the voltage for increasing
rate. Within a practical high energy density cell, the conditions
are expected to cause high concentrations and viscous electro-
lyte conditions, highlighting the importance of studying elec-
trolyte transport limitations through this lens.
Considerations for scale-up and high
energy density cells

Testing and development of new battery materials rst occur on
the coin cell scale. Many times, the results from coin cell
5960 | Sustainable Energy Fuels, 2021, 5, 5946–5966
experiments fail to scale up for larger-format cells.69 Coin cells
oen have excess electrolyte resulting in ooded cell conditions.
In a ooded cell, the excess electrolyte masks limitations and is
not practical for high energy cells. In particular, the negative
effects of electrolyte consumption are delayed, and issues
surrounding cell wetting or transport limitations due to viscous
solutions and high concentrations of polysuldes are masked by
the excess electrolyte. Flooded cells mean higher cost and lower
energy density. There has been a concerted effort to set standards
for cell conditions to test high energy format cell conditions.70

The E/S ratio is an important metric that describes the volume of
electrolyte to the mass of sulfur. It has been calculated that high
energy cells should have an E/S ratio of less than 5 mL mg�1.5

Modeling tools can help explore the effect of E/S ratio.
Previous work by our group26 explained that the original model
formulation from Kumaresan8 is not able to replicate appro-
priate E/S ratios for high energy density cells. For the 1D
lithium–sulfur model, the sulfur/carbon/porosity are all con-
strained, and the E/S ratio is simply a calculation based on the
ratio of the sulfur volume fraction to porosity within the cell.
The porosity is constrained by sulfur mass conservation while
the electrolyte volume is not explicitly conserved. However,
within a real cell, electrolyte amounts are not completely con-
strained by the porosity, sulfur loading, and ller fractions since
overlling or underlling can occur. The E/S ratio for the 1D
model work greatly underestimates the E/S ratio. Another aspect
that is not captured currently withinmodels is the wetting of the
cathode. The modeling literature assumes perfect wetting and
effective cathode properties. However, for E/S ratios for a prac-
tical high energy cell, the problem of cathode wetting is very
This journal is © The Royal Society of Chemistry 2021
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relevant as high carbon content reduces wettability due to sol-
vophobicity of carbon.5 Perhaps development of microscale
models that study the interactions among sulfur, carbon
infrastructure, and electrolyte would be insightful to optimizing
E/S ratio and other important metrics for high energy cells.
Modeling groups will facilitate better communication with
experimentalists by reporting and calculating important
metrics like E/S and C/S ratios in their work. Closer collabora-
tion with molecular simulation groups is recommended to help
model physical interactions and provide relevant parameters.

A series of papers by the Eroglu group13,71–74 have investigated
both E/S and C/S ratios in their macroscale modeling work. Their
work coupled cell-level predictions of voltage, overpotentials, and
area-specic-impedance with systems-level predictions of energy
densities from the publicly available soware called Battery
Performance and Cost (BatPaC). The 1D model is used to predict
the effect of E/S ratio on voltage and capacity trends. Coupling the
results with the calculations from BatPaC, the cell-level specic
energy and energy densities can be calculated for various sulfur
loadings and maximum thicknesses. This work extends opti-
mizing for capacity to systems-level parameters that are relevant
for commercialization. For example, increasing electrolyte
amount improves both voltage and capacity, but the excess
material comes at a specic energy penalty. With the electro-
chemical predictions feeding into the cell-level model, the
balance between improved performance and energy density can
be understood. The model predicts the best performance with an
E/S ratio of 20 mL mg�1, but E/S ¼ 13 mL mg�1 provides an
optimum for specic energy and energy density. This result is
surprising as the E/S ratio is higher than what is typically
considered desirable for state-of-art cells. For example, with high
E/S ratios of over 11 mL g�1, the pouch cell specic energy will be
below 140 W h kg�1, less than advanced Li-ion batteries.69,75 This
highlights the need to push for consistent and relevantmetrics to
relate models to high performing LiS cells.
Electroanalytical methods for whole
cells

Electroanalytical techniques can be useful to provide informa-
tion on mechanisms and physical processes beyond what we
can learn from standard charge/discharge voltage curves. For
example, we looked at work in the Cathode reaction scheme
section where CV was modeled as a means to propose reaction
pathways.20,22 There might be other ways to disaggregate phys-
ical processes from each other. For example GITT is commonly
used to nd diffusion parameters in lithium-ion systems but
has only been used experimentally in lithium–sulfur systems to
look at internal resistance76 and thermodynamic equilib-
rium.33,77,78 There has been work done to apply diffusive
concepts from GITT theory to a lithium–sulfur cell using
a simplied example system79 but no lithium–sulfur continuum
model has been applied to understand thermodynamics sepa-
rately from transport and kinetic processes. However, PITT has
been simulated by Danner & Latz31 (more detail in Precipitation
section) to explore nucleation overpotential.
This journal is © The Royal Society of Chemistry 2021
Another useful electroanalytical measurement is EIS, which
can separate processes occurring on different time scales. For
lithium–sulfur cells, EIS measurements are commonly tted to
equivalent circuit models and circuit elements that represent
physical processes, such as charge transfer resistance, are
quantitatively compared. For example, Lee et al.80 compared the
magnitude of the charge transfer resistance of a cell with and
without a coated separator to suppress shuttling. There have
been detailed studies81–83 using equivalent circuits to t to EIS
measurements at different SOCs, states-of-health (SOHs), and
temperatures, but it remains challenging to elucidate the
origins of each feature (e.g. multiple semi-circles). Physics-
based models can help improve diagnostics by attributing
specic features to physical processes compared to degenerate
equivalent circuit models. Fronczek and Bessler84 are the only
authors that have demonstrated the use of full physics-based
continuum models to simulate impedance of LiS cells. They
use a similar set of governing equations and reaction schemes
to Kumaresan8 except that the kinetic reactions are written as
elementary steps following Arrhenius law instead of Butler–
Volmer expressions.
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�
(32)

where _si is the rate of reaction i, v are stoichiometric coefficients,
k are forward and reverse rate constants, aj are activities of
species j, Eact is activation energy, z is number of electrons
transferred, and Df is the potential difference between solid
and electrolyte. They also included an electrochemical double
layer which is important for fast timescales. Fronczek and
Bessler simulated the impedance using a voltage step of 1 mV in
0.1 microsecond, and took the fast Fourier transform of the
current relaxation over 1000 s. They showed the ability to
simulate EIS spectra but with very limited discussion on the
results. Their simulated impedance also decreased in magni-
tude with SOC which does not agree with the experimental
literature listed above. This disconnect might be due to the
parameters used in their model, the concentration dependent
ionic conductivity highlighted by Zhang et al.,34 or other
missing mechanisms in the model.

The eld can greatly benet from using a variety of electro-
analytical techniques to validate a model to uncover underlying
physics that dominate behavior and cell performance. There is
also opportunity for the above continuum models to be applied
to electroanalytical methods and explore how they are analyzed
as functions of state of the cell such as SOCs.
Parameter identifiability and estimation
of cells

A natural next step aer model development is parameter
identication through estimation. If the purpose of a model is
to eventually be used in a BMS for control purposes such as
Sustainable Energy Fuels, 2021, 5, 5946–5966 | 5961
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optimal charging, then online state estimation is important for
identifying parameters that dene the most current state of the
battery. Parameter identication is a daunting optimization
task for a highly nonlinear system. Some strategies to approach
this would be conducting a sensitivity analysis to understand
the physical range and impact of varying parameters, careful
model reduction to improve computation efficiency (as tting
a model requires running it iteratively),and building frame-
works for online optimization.

Ghaznavi and Chen wrote a series of three papers covering
sensitivity analysis of the Kumaresan model with respect to
different sets of parameters. Their objective was to explore the
possible range of physical parameters and mathematical limits
of the model. In their rst paper,85 they studied the effect of
discharge rate and electronic conductivity on cell performance.
They found that at high rates and low conductivity, large
amounts of Li2S precipitate close to the cathode/current
collector interface and ll up the porous matrix, thus
reducing active surface area. This type of study might be useful
when looking at additives or binders to improve conductivity. In
their second paper,29 for the case where intermediate poly-
suldes precipitate and block pores, they found an upper limit
for the optimal sulfur content for greater capacity (only cells
with less than 20% sulfur content by cathode volume can be
fully discharged). They also varied the precipitation rates for
each reaction and found a “critical interval” for each rate
constant, where a small variation in rate constant results in
a large change in voltage response and capacity. These ndings
are only for this set of parameters and for the case where we are
considering intermediate polysuldes precipitating, which is
not typically considered since they are highly soluble. Although
in the context of low E/S ratios, it is possible the polysulde
species may precipitate out due to high concentrations. A
thorough study with physical parameters (such as solubility)
that are relevant for a state-of-art cell, and precipitation mech-
anisms that can be cross-referenced with experimentally
observed species might be more useful to build representative
models.

In their third paper, Ghaznavi and Chen30 rst looked at the
effect of exchange current densities. By changing the exchange
current densities relative to each other, they can determine the
dominant reaction and observe shis in the voltage plateau.
This might be useful for elucidating the rate-limiting steps to
engineer specic improvements for kinetics. The diffusion
coefficients were also varied where a decrease in an order of
magnitude showed no effect. They explored optimal cathode
thickness and also the need to increase the solubility product by
a factor of 108 for the model to charge. This set of papers was
useful to understand the impact of each physical parameter and
demonstrated the ability of models to predict and optimize cell
performance in relation to an engineered change. However, this
theoretical study based on assumed parameters needs to be
taken a step further to align with experimentally observed and
measured parameters, trends, and speciation.

Work by our group86 focused on reducing the computational
demand of the standard 1D model by considering each region
as a tank connected in series. The Tank-in-Series model has
5962 | Sustainable Energy Fuels, 2021, 5, 5946–5966
connected mass ow between the regions through continuity of
ux; a new tting parameter describes the fraction of each
region where gradients are assumed to be, usually 1

2 or 1
3. The

reduced model is able to reproduce the trends shown in the 1D
model under even transport-limited conditions. A parameter
study of rates (up to 1C), diffusion coefficients (as low as to 1 �
10�12 m2 s�1), and cathode thicknesses explored the suitability
of the model predictions under various conditions. A map of the
errors was calculated and shown to be under 25 mV for all
conditions with most errors falling below 15 mV. The Tank
model was calculated to run in under 1 second, representing
a speed increase of over 150� compared to the 1D model; the
model also implements a logarithmic scaling of the differential
variables, resulting in a more robust model that can simulate to
lower voltages at the end of discharge where the 1D model
sometimes experiences a singularity. This work bridges the gap
between computationally efficient 0D models and 1D models
with transport effects. With the improved computational effi-
ciency, the Tanks-in-Series model is promising for parameter
estimation, optimization, and battery management systems.

Two papers by Xu et al. demonstrate parameter identication
for 0D LiS models. The rst paper87 focuses on model selection
and a parameter sensitivity study to determine the important
parameters to be identied. They started by carrying out
a systematic comparison of four different 0D models to the
same experimental dataset. All four 0D models are based on ref.
12 and 34 where there is no diffusion or migration terms. The
four 0D models differ based on the number of electrochemical
reduction reactions, with a range of two reduction reactions to
the full set of ve reactions to describe the two plateaus. They
assumed that all S8 is dissolved at the start of discharge. Xu et al.
also carried out a sensitivity analysis by changing one parameter
at a time for the full model. Upon comparing the derivative of
voltage with respect to the varied parameter, they found that the
most signicant parameters are the standard potentials,
morphology factor (power of the relative porosity), porosity
change rate constant, and mass of initial sulfur. The porosity
change rate constant is treated as a tting parameter although it
should be a constant relating to density of the precipitated
solids. Then, they chose to identify these signicant parameters
by tting all four models to experimental data. They concluded
that the model with 4 electrochemical reactions (S4

2� is directly
reduced to S2�) performs the best in terms of computation time
and capturing features well. The full model with 5 reactions
does not capture the nucleation dip well. Since it is sufficient to
capture features well with a less complicated scheme and with
less parameters, Xu et al. used this model with 4 reactions in
their following paper about online state estimation. We point
out that this approach towards sensitivity analysis by varying
one parameter at a time is not useful when the base parameters
(initial guesses) change as this is a nonlinear model. Bayesian
estimation maybe be more useful for parameter estimation.88

In this second paper,89 the focus is on online estimation of
the mass of different sulfur species during a discharge. They
reformulated the model by converting the system of differential
algebraic equations to ordinary differential equations by
analytically solving the current equation and writing an
This journal is © The Royal Society of Chemistry 2021
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analytical expression for voltage. They found that the model is
locally observable. A model is locally observable if the estimated
initial states are close to the true value, it is possible to construct
an estimator/observer that converges to the true value. They also
found that the lowest estimation errors are at the voltage dip
while the greatest errors occur at the at low plateau region.
This means that the estimation of parameters is more chal-
lenging in the at region as the voltage is less sensitive to
parameters. The largest standard deviation of error is linked to
the mass of precipitated Li2S since the output voltage is not
sensitive to mass. Xu et al. proposed the use of mass conser-
vation to eliminate two of the seven state variables, mass of
solid Li2S and porosity, and thus improving observability. This
can be achieved by assuming that the total sulfur is known and
enforcing a mass balance constraint. They used an unscented
Kalman lter to perform state estimation during a constant
discharge. Based on their results, they recommend that esti-
mation is carried out in two steps: rst at the high plateau
region using the full model and estimating the total active
sulfur mass, then using the reduced model to estimate the low
plateau. Xu et al. laid out a framework and demonstrated ability
to perform online state estimation, showing a viable path for
incorporating physics-based models onto BMS for control
applications. It is important to note that since this is a 0D
model, it will have limited performance at higher rates or if the
system is transport-limited.

Conclusions

We reviewed and outlined the advancement of macroscale and
microscale continuum modeling literature for lithium–sulfur
batteries. Simplied reaction schemes typically employed in
lumpedmodels are useful for minimization of parameters while
enhancing computational efficiency. Microscale modeling
efforts have focused on incorporating insights from experi-
mental methods, such as high-performance liquid chromatog-
raphy and cyclic voltammetry, to further understand the
speciation and the impact of electrolyte engineering. A critical
area of research is the reversibility of models. Most models are
not able to reproduce all the charging features, and there is still
debate about whether the discrepancy is due to missing
mechanisms of precipitation phenomena or inaccuracies of the
reaction scheme. The presence of multiple phases and mixed
speciation within a lithium–sulfur battery means changing
conditions throughout a single cycle. Signicant progress has
been made to model the microscale precipitation within the
cathode, and particle-level nucleation and growth mechanisms
have been able to capture the rate-dependent dynamics.
Experimental efforts have focused on micro and nano-
structured cathodes to overcome issues like conductivity, pore
clogging, and active material loss due to the high solubility of
polysuldes while most models only consider the cathode as
a composite material. A microscale model for the cathode has
been implemented and considers a mesoporous structure that
captures effects of particle size; future modeling work should
adopt similarly resolved cathode models. The polysulde
shuttle has been modeled to understand degradation. While
This journal is © The Royal Society of Chemistry 2021
lumped macroscale models include shuttling proportional to
the current, macroscale modeling of shuttle predicts a more
complicated relationship between operating conditions and
other limiting phenomena, like transport limitations within the
cathode. Lithium metal morphology and reactivity have been
approximated by a passivation of the electrochemical active
surface with deposition of Li2S. As cells trend toward lean
electrolyte conditions for high energy density, solution phase
dynamics become more important due to increased transport
limitations. Microscale modeling is key to accurate predictions
of speciation and practical operating range; models have
focused on areas such as improving experimental agreement for
electrolyte resistance and utilizing concentrated solution
theory. For scale up and meeting high energy density targets,
work has focused on parameters like electrolyte to sulfur and
carbon to sulfur ratios for insight into performance under
relevant conditions. Electroanalytical methods like EIS and
GITT can greatly inform mechanisms and phenomena occur-
ring at different time scales, and the eld would benet from
further model development and collaboration in this area.
Another important aspect of modeling is alignment of model
parameters and predictions to experimental data. Efforts in this
area include parameter sensitivities, development of computa-
tionally efficient models, and parameter estimation. This
research area will become more important as the focus moves
from active development (electrolyte engineering, etc.) to cell
optimization.

Although the progress of continuum models is encouraging
and there are many studies that have used experimental data to
validate their models, to date, there is no study that utilizes
macroscale models to contribute directly to the development of
better lithium–sulfur cells. For experimentalists to use
modeling insights to engineer better cells, the modeling
community should focus on models that closely resemble state-
of-the-art high energy density lithium–sulfur cells. This would
require alignment of parameters that are physically meaningful
and reporting cell-level metrics that are relevant as there is
currently a disconnect between model parameters and cell-level
design. Also, models that pay attention to details like
concentration-dependent electrolyte resistance, concentration
solution theory, and transport limitations will be able to model
accurate cell performance under low E/S conditions.

Models can guide electrolyte engineering efforts as they can
help elucidate reaction schemes through validation with voltage
curves but also other electrochemical measurements like CV.
However, there is still a fundamental gap that exists due to the
inability of existing models to replicate voltage features for both
discharging and charging. Possible approaches to resolve this
charging challenge are to more thoroughly validate parameters
experimentally, understand parallel mechanisms that may
allow different pathways during charge versus discharge, or
include limiting phenomena that a cell undergoes when
charging. It is key to recognize that many parameters in LiS
modeling have been assumed without proper independent
validation. Creative electroanalytical approaches to measuring
these key parameters under realistic battery electrolyte condi-
tions is essential, e.g., solubility products. Likewise, continuum
Sustainable Energy Fuels, 2021, 5, 5946–5966 | 5963
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models can be coupled with DFT and AIMD simulations to
inform reaction rate constants and conductivities.2 Only then
should the remaining parameters be estimated through ts to
experimental data.

Shuttling remains one the major challenges for lithium–

sulfur as it is the main cause of irreversible capacity loss.
Experimental strategies like coatings, additives, and design of
cathode structure can help retain and trap polysuldes in the
cathode or preventing passivation on the anode can be
informed by modeling. Continuum-scale physics-based models
can go beyond describing experimental observations to helping
ensure these novel engineering strategies result in quantita-
tively optimal designs. An important aspect of this optimal
design will include more detailed morphological modeling of
the lithium anode to improve cycling performance. Note that
detailed meso-scale models should also be carefully studied
with proper boundary conditions for mass and charge conser-
vation,90 and numerical mesh/grid convergence studies should
be reported to make sure that the results have at least qualita-
tively converged. As cathode engineering becomes more
sophisticated, such as developing micro- and nano-structures
for improved conductivity while reducing surface passivation
and pore clogging effects, models that move beyond a typical
porous composite structure can help understand the evolution
of morphology under different conditions and can help opti-
mize engineering designs like particle and pore sizes.
List of symbols
a

5964
Specic surface area of cathode, m2 m�3
a0
 Initial value of a, m2 m�3
b
 Bruggeman coefficient

Ci,ref
 Reference concentration of species i, mol m�3
Cm,i
 Concentration of species i in region m, mol m�3
Di,0
 Diffusion coefficient of species i in the bulk medium, m2

s�1
Di
 Diffusion coefficient of species i in the porous medium,
m2 s�1
F
 Faraday constant, C mol�1
i0,j,ref
 Exchange current density of reaction j at reference
concentrations, A m�2
iapp
 Applied current density, A m�2
ij
 Current density from reaction j, A m�2
im,e
 Supercial current density in the electrolyte phase in
region m, A m�2
is
 Supercial current density in the solid phase, A m�2
kk
 Rate constant of precipitate k, varying units, see ref. 8

Ksp,k
 Solubility product of precipitate k, varying units, see ref. 8

l1
 Thickness of the cathode, m

l2
 Thickness of the separator, m

Nm,i
 Supercial ux of species i in region m, mol m2 s�1
nj
 Number of electrons transferred in electrochemical
reaction j
R
 Gas constant, J mol�1 K�1
ri
 Production rate of species i from electrochemical
reactions, mol m3 s�1
| Sustainable Energy Fuels, 2021, 5, 5946–5966
r
0
i
 Production rate of species i from electrochemical

reactions at the interface between the separator and
anode, mol m�2 s�1
R
0
k
 Rate of precipitation of solid species k, mol m3 s�1
Rm,i
 Production rate of species i due to precipitation reactions
in region m, mol m3 s�1
sa,j
 Stoichiometric coefficient of anodic species in
electrochemical j
sc,j
 Stoichiometric coefficient of cathodic species in
electrochemical j
si,j
 Stoichiometric coefficient of species i in electrochemical
reaction j
T
 Temperature, K

t
 Time, s

Uq
j
 Standard open circuit potential (OCP) of electrochemical

reaction j, V

Uj,ref
 OCP of electrochemical reaction j at reference

concentrations, V

~Vk
 Molar volume of the precipitate k, m3 mol�1
Zi
 Charge number of species i
Greek symbols
aa,j
 Anodic transfer coefficient of reaction j

ac,j
 Cathodic transfer coefficient of reaction j

gi,k
 Number of ionic species i produced by the dissociation of

precipitate k

3m
 Porosity of region m

3m,k
 Volume fraction of precipitate k in region m

hj
 Overpotential for electrochemical reaction j

x
 Morphology parameter

s
 Effective conductivity of solid phase of the cathode, S m�1
fm,e
 Potential in the liquid phase in region m, V

fs
 Potential in the solid phase, V
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R. Dominko, Electrochim. Acta, 2020, 363, 137227.
78 Y. Zhao, J. Zhang and J. Guo, ACS Appl. Mater. Interfaces,

2021, 13, 31749–31755.
79 J. W. Dibden, N. Meddings, J. R. Owen and N. Garcia-Araez,

ChemElectroChem, 2018, 5, 445–454.
80 J. H. Lee, J. Kang, S.-W. Kim, W. Halim, M. W. Frey and

Y. L. Joo, ACS Omega, 2018, 3, 16465–16471.
81 Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li and Y. Liu, J.

Electrochem. Soc., 2013, 160, A553–A558.
82 X. Qiu, Q. Hua, L. Zheng and Z. Dai, RSC Adv., 2020, 10,

5283–5293.
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