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Abstract

The battery is an electrochemical system that may be
considered a black box with no practical way of observing
processes occurring within in a nondestructive manner at an
affordable cost. Fortunately, most physical and chemical pro-
cesses in electrochemical systems can be distinguished by
their distinct characteristic time constants. Electrochemical
impedance spectroscopy (EIS) is a powerful technique to
distinguish internal processes within batteries based on their
frequency response. EIS has been successful at identifying
relevant electrochemical mechanisms and battery parameters
and therefore can be integrated with model-based battery
management systems (BMS) which are critical for improving
the battery life and performance. In this article, we provide our
perspective on different simulation strategies for modeling the
impedance response of lithium-ion batteries, implementation of
EIS models in BMS, and some challenges associated with
achieving a computationally efficient approach.
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Introduction
The lithium-ion battery is a pivotal technology in the
emerging sustainable energy landscape. Having domi-
nated the electronics industry as a power source, it is
now advancing toward the automobile and trans-
portation sector. The optimization of a battery’s design
for a given application requires a fundamental under-
standing of the processes occurring inside it as precisely
as possible. Electrochemical impedance spectroscopy
(EIS) being a non-invasive technique [1] (due to the
small amplitude input modulation) is a powerful diag-
nostic and prognostic tool for batteries. EIS deconvo-

lutes electrochemical processes occurring
simultaneously based on their characteristics phenom-
enological time scales [2]. In batteries, EIS has been
used to measure the kinetics and transport properties of
electrode materials [3,4] and evaluate degradation and
capacitive loss mechanisms [5,6]. Several other studies
reported the use of impedance spectra as a prediction
and simulation tool for the estimation of state parame-
ters, viz., state-of-charge (SOC) [7], state-of-health
(SOH) [8], etc. The measured impedance data are
influenced by physically distinct processes, including

porous electrode effects [9], transient and nonlinear
responses [10], and superposition of impedance
response of different battery components [11]. Apart
from these effects, there are additional data artifacts
originating because of current collectors, battery ter-
minals, and other peripheral components [12,13]. The
major challenge associated with the use of EIS in a
battery management system is the development of
battery models that are computationally efficient,
robust, and sufficiently accurate to predict and analyze
the measured impedance response. This review first

summarizes some of the recent research efforts that
have been proposed to develop battery impedance
models and then discusses different simulation strate-
gies in the light of EIS’s integration into model-based
battery management systems (BMS).
Models for batteries
This section summarizes various impedance models
available for lithium-ion batteries, evaluating the
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Figure 1

Schematic representation of impedance models for lithium-ion batteries.
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research efforts that have been introduced to improve
these models. Figure 1 depicts the ways in which
impedance models differ with respect to mathematical

complexity, computational efficiency, and accuracy of
their predictions.

Empirical models
Empirical models are based on a heuristic approach
where the internal behavior of the battery is predicted
by fitting sets of experimental data without considering
physicochemical principles. Periodical measurement of
impedance spectra of lithium-ion cells at different
cycles, temperatures, and states of charge results in a
vast amount of data that can be employed to find ma-
terial parameters for implementation in a BMS. Sama-
dani et al. [14] developed a Laplace transfer time-based
model to predict the voltage of a Li-ion cell by fitting

the impedance data with equivalent circuits (EC)
considering each circuit element to be a function of
SOCs and internal battery temperatures. Andre et al.
[15] developed two empirical electrical models based on
the parameters estimated by fitting impedance data
recorded for a high-power 6.5 Ah lithium-ion cell in the
temperature range from �30 �C to 50 �C for the entire
SOC range. Several other empirical models have been
developed based on EIS data to predict the remaining
Current Opinion in Electrochemistry 2022, 36:101140
useful life [16], capacity fade [17], influence of different
temperatures, C-rates on the chargeedischarge profiles
[18], etc. The lowmathematical complexity of empirical

models makes them computationally efficient. Howev-
er, these models are constrained by their low accuracy
and limited physical insights. Further, these models are
based on fitting experimental data obtained under spe-
cific conditions; therefore, a high degree of empiricism
is involved.

Single particle models
The single particle model (SPM) is considered a
reasonable approach for understanding the battery
impedance response. The basic SPM model considers
intercalation kinetics and solid phase diffusion of elec-
troactive species and ignores the diffusion of electro-
active species in the solution phase for simplification. Li

et al. [19] developed an impedance model based on a
modified SPM with the inclusion of capacitance
dispersion and growth of an insulating film on the anode.
Impedance tests were conducted on two lithium-ion
battery cells at two SOC levels (50% and 100%) at
ambient temperature to study aging effects. It was
observed that the faradaic impedance increases with
cycles. The impedance of batteries at 50% SOC was
smaller than at 100% SOC. Fang and Li [20] developed
www.sciencedirect.com
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Impedance response simulation strategies for LiBs Telmasre et al. 3
an analytical mechanics-modified impedance model
considering the electro-chemo-mechanics of a single
particle in lithium-ion batteries to include the stress
effects. A control-oriented model was proposed by
Riemann et al. [21] where the SPM and EC models
were combined to describe the dynamics for a wider
frequency range (10^-4 rad/s to 10^4 rad/s). This
model was validated with experimental data of half cell

(LMO cathode) and compared to pseudo-two-
dimensional (P2D) simulation data. Howey et al. [22]
investigated the identifiability and estimation of pa-
rameters of the SPM for lithium-ion battery simulation.
It was demonstrated that only six independent param-
eters are necessary for full parameterization of a SPM
model. An estimation algorithm (least square method)
was implemented to obtain the transfer function of the
linearized SPM model from experimental impedance
data. Vivier et al. [23] derived an analytical expression
for the impedance of a single insertion particle consid-

ering the insertion of lithium-ion in the graphite elec-
trode and then extended the model for the porous
electrode. Although significant research efforts have
been made to improve the SPM, its utility remains
under-explored compared to empirical models.

Pseudo-two-dimensional model
The DoyleeFullereNewman model [24], alternatively
called the pseudo-two-dimensional (P2D) model, is by
far the most accepted physics-based model by battery
researchers. It offers a better illustration of battery
functioning, effects of different transport and kinetic
limitations, and physical insights compared to SPM and
empirical models. This model is characterized by

coupled partial differential equations (PDEs) describing
charge conservation and mass conservation in the solid
electrode and electrolyte. In addition, nonlinear alge-
braic equations describe the lithium-ion movement
between the solid electrode and electrolyte phases.
Solving these equations is time consuming and requires
substantial computational resources.

Researchers have made continuous efforts to establish
adequate models with enhanced computational effi-
ciency, either by using order reduction approaches or

formulating new numerical methods to solve P2D
models. Kim et al. [25] proposed a multi-scale multi-
domain (MSMD) model where spatial domains are
partitioned into three domains, viz., particle, electrode,
and cell domain in the ascending order of length scales.
This partitioning prevents solving a large set of differ-
ential equations simultaneously, therefore, reducing the
computational cost for each step. The computational
efficiency of the MSMD model is further enhanced by
using a separation of time scales principle to decompose
model field variables [26]. Pathak et al. [27] developed a

novel hybrid analytical-collocation approach to simulate
the impedance response of lithium-ion batteries using
www.sciencedirect.com
the P2D model. The results were compared to numer-
ical solutions obtained using the commercial solver
COMSOL Multiphysics, and it was established that the
proposed approach was superior in terms of accuracy,
robustness, and computational efficiency. Kong et al.
[28] established a modified P2D model to investigate
the macroscopic effects of micro-internal short circuits
(ISCr) by modifying the boundary condition for charge

conservation. An impedance identification method was
introduced to understand the impact of ISCr on cell
impedance. Rahimian et al. [29] presented a numeri-
cally efficient sequential full order model (SFOM) by
employing the finite volume method (FVM). Using the
proposed approach, PDEs for lithium-ion transport were
solved only once for each step instead of for each iter-
ation, thus, reducing the model’s computational
complexity. The proposed model showed better
computational efficiency over the same model imple-
mented in the commercial finite element software,

COMSOL. Teo et al. [30] developed a computationally
efficient approach to simulate the dynamic electro-
chemical impedance response of lithium-ion batteries
during charging and discharging using the P2D model.
The timescale of the slow DC chargeedischarge of a
battery was separated from the fast local time scale of
impedance measurement. This approach helps in un-
derstanding the physical processes that drive the dif-
ference between the stationary and dynamic response of
the battery. Dynamic EIS can be used as an SOC indi-
cator for diagnostic and control as DEIS signals are more

sensitive to the states and parameters compared to
standard EIS.

The need for more fundamental models emerges from
the contemporary push toward functional and design
improvements, such as modeling SEI growth and mate-
rial loss [31], fast-charging protocols [32], and new age
systems, such as solid-state batteries [33]. Kant et al.
[34] developed a modular theoretical approach for the
impedance response of solid electrolytes describing the
dynamics of various processes in grain and grain bound-
aries. The system was partitioned into various interfacial

modules, and the constitutive equation for each module
was derived through the phenomenological ab-initio
approach. The overall impedance of the system was ob-
tained by the superposition of the dynamic impedance of
the individual modules. The proposed theory was vali-
dated with the measured impedance data of cubic Ta-
doped and Al-doped lithium lanthanum zirconium
oxide (LLZO) [35]. Yuan et al. [36] presented a
simplified P2D model by employing modified boundary
conditions for the electrolyte diffusion equations. A
reduced-order transfer function was obtained by simpli-

fying the transcendental impedance solution using Padé
approximation method. Their approach reported good
accuracy for the prediction of electrolyte phase concen-
trations, with 0.8% and 0.24% modeling error,
Current Opinion in Electrochemistry 2022, 36:101140
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respectively, when compared to rigorous model under
1C-rate and urban dynamometer driving schedule.

An extension to linear EIS is the use of current or
voltage perturbations with moderately larger amplitude
driving the battery into a weakly nonlinear regimes.
These nonlinear EIS (NLEIS) measurements are com-
plementary to EIS, but they are more exhaustive in their

ability to sense internal processes occuring in the bat-
tery. A recent review summarizing the research efforts in
this domain was published earlier [37]. Notable research
includes work by Murbach et al. [38] who reported
second harmonic nonlinear impedance spectra for a
commercial lithium-ion cell (1.5 Ah LiNMC|C).
NLEIS experiments were corroborated with a NLEIS
P2D impedance battery model [39] to analyze cell
aging. It was shown that the nonlinear response of aged
batteries (capacity loss <1%) exhibits a fundamentally
different signature due to asymmetric charge transfer

kinetics. This variation in transfer coefficients is not
identifiable with standard EIS which is mainly sensitive
to changes in charge transfer rates. Wolff et al. [40]
conducted a SPM-based investigation to study the
transient and steady-state behavior of a battery by
applying nonlinear frequency response analysis.

Mesoscale models
Understanding the mesoscale phenomena, viz., chemi-
cal and electrochemical reactions, structural stability,
degradation, etc., is critical to improve the performance
of electrochemical devices. The physicochemical pro-
cesses occurring within the porous media and at the
electrode/electrolyte interface at very small length

scales, typically in the range of microns to millimeters,
are considered mesoscale phenomena. Several experi-
mental and theoretical studies have been conducted to
understand the mesoscale phenomena in the context of
Li-ion batteries.

Sangaranarayanan et al. [41] investigated the shape-
dependent electrocatalytic performance of rose, splin-
tery, chrysanthemum flower, and thorn-like structures of
palladium deposited on indium-tin-oxide substrates
using cyclic voltammetry and impedance spectroscopy.

Kant et al. [42] proposed a method to estimate the
surface roughness and morphological convexity based on
in situ EIS method. Ansah et al. [43] developed a
pseudo-mesoscale finite element model to study the
effect of particle size and porosity considering the
impedance and chargeedischarge profile of an NMC622
cathode. Hein et al. [44] combined microstructure
resolved simulations with impedance measurements on
symmetrical cells to identify the influence of the carbon
binder domain (CBD) distribution in Li-ion batteries.
Al-Zubaidi et al. [45] worked on investigating aging

mechanisms by combining impedance spectroscopy and
finite element modeling, complemented by microscopy
Current Opinion in Electrochemistry 2022, 36:101140
data [45]. Precision and accuracy are very important for
meso-scale models, and a recent paper from our group
shows the need for 1000x1000 grids for precise phase-
field models for lithium-metal batteries [46].

Analysis of impedance data using battery models to
identify parameters and electrochemical mechanisms
that describes the internal states of the battery under

different operating condition is imperative to under-
stand the overall dynamics of the battery. In the section,
we discuss the integration of EIS data in a proposed
model-based BMS.
BMS and state/parameter estimation
Model-based BMS provides essential life cycle moni-
toring and control for safe operation and improved per-
formance of batteries/battery packs. The key job of a
BMS is to monitor temperature and predict SOC, SOH,
and level of degradation. Being a nondestructive battery
characterization technique, EIS has a great potential to
be integrated into a BMS. Data from EIS measurements
can be readily interpreted using battery models to
obtain key parameters, such as diffusivity, conductivity,
activation energy, and reaction rate constants which are

useful to obtain relevant battery metrics [47]. Figure 2
shows a proposed BMS architecture with integrated
EIS measurement.

Critical components of the model-based BMS
include the model, its efficient simulation, and param-
eter and state estimation approaches based on optimi-
zation. As discussed earlier, EC models are simple and
computationally inexpensive which is ideal for a BMS.
Some of the recent efforts have focused on the use of
the distribution of relaxation time (DRT) technique
that deconvolutes EIS measurements by magnifying the

polarization effects overlapped in the frequency domain
by a peak-based representation for analyzing EIS data
[49,50]. Fractional order EC modeling has proven to be
better than integer order EC modeling in accurately
describing charge transfer, double layer, and mass
transfer of species in the battery [51,52]. Recent efforts
have reported low error margins as low as 1% in SOH
estimation using this technique [53,54]. Physics-based
models can be reformulated to reduce the computa-
tional complexities and cost by using fast numerical
techniques [29] as well as reducing the full order models

[36] as elucidated in section 2. Recent efforts in SPMs
include applying metaheuristic approaches such as ge-
netic algorithms to achieve lower computational cost
[55]. Reformulated P2D models have been applied to
simulate the EIS response of batteries in both linear and
nonlinear regime [27,30]. Figure 3 shows the ability of
the P2D model to replicate the charge-discharge
behaviour as well as the EIS spectrum of batteries at
different SOCs using robust and efficient parameter
estimation algorithms developed in our group. Several
www.sciencedirect.com
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Figure 2

Proposed BMS architecture with integrated EIS. Note that depending on the equipment used, the impedance signals can be embedded into simple
charge–discharge curves without the need for additional equipment. This requires more sophisticated model analysis and transient simulation of EIS.
Fast simulation and efficient reformulation of models enables faster estimation of identifiable parameters as illustrated in a recent paper by Kolluri et al.
[48].
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researchers have also worked on various experimental
approaches and fitting algorithms for accurate parame-
terization of P2D models [56e58].

An interesting experimental approach have used a
NewtoneRaphson-based algorithm to obtain the phase
of impedance at the zero-crossing frequency which was
shown to corresponds to the internal temperature of a Li-
ion battery [59,60]. Recently, Probabilistic machine
learning (ML) models have been coupled with EIS to
predict future capacities in batteries without prior

knowledge of cycling activity [61,62]. ML techniques,
such as Gaussian process regression [63], random forest
[64], and deep neural networks [65], have been applied
to the EIS data with varying degrees of accuracy in esti-
mating SOC and SOH of batteries.

Perspectives on future research and
challenges

1. If potential and concentration fields are solved
simultaneously, this requires careful calibration of RC

elements as described in a recent paper on ionic-
electronic conducting electrodes [66]. In general, a
more complicated model is required when there are
more than one diffusing species in the system. Most
binary electrolyte solutions can be recast as a
www.sciencedirect.com
standard model for the total electrolyte concentration
[67]. But beyond binary electrolytes, models get
more involved requiring a numerical simulation

approach.
2. When there is more than one dimension involved

with realistic boundary conditions, numerical ap-
proaches are needed. Challenges in moving to
multiscale and multidomain models involve strate-
gies for tackling local singularities, boundary layers,
and/or moving boundaries [68].

3. For the next-generation chemistries, such as Li-metal
and LiS, the development of mesoscale impedance
models is imperative to account for the effect of the
moving boundaries, phase separations, particle

cracking, and surface roughness. This brings new
challenges in terms of choice of the numerical ap-
proaches, parameters, underlying mechanisms, and
insufficient grid resolution in multi-dimensions
[46,69].

4. Future research will identify new hardware, software,
and algorithms that would enable cheap and real-time
simulations, robust parameter estimations, and online
feedbacks. Accuracy of experimental measurement is
important to correctly parameterize battery models
which would require considerable efforts in experi-

mental precision across a wide range of chemistries
and battery/battery pack sizes [56,58].
Current Opinion in Electrochemistry 2022, 36:101140
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Figure 3

Parameters estimation for (a) discharge curves and (b) impedance analysis. Parameters were estimated using the P2D model for the experimental data
obtained from commercial cells. The experimental data and the relevant model parameters used for simulations are available from Battgenie Inc.
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5. Nonlinear EIS in conjunction with EIS can prove to
be a more effective diagnostic tool for the batteries.
Nonlinear EIS can identify more information from
higher harmonics. However, simulating impedance
response in the nonlinear purturbation regimeinher-
ently requires more sophisticated numerical

approaches [30,37,40].
6. The emergence of data-driven predictive technique,

such as ML, is proving as another tool in interpreting
EIS data for estimating battery parameters. With
increasing computational power, these techniques
can potentially drive the future direction of EIS
research in batteries [62].

7. EIS measurements are presently conducted in labo-
ratories requiring significantly expensive equipment.
Therefore, development of a low cost, power efficient
chip-level technology that makes in-situ, real-time

EIS measurements possible at the cell, module, and
pack level is pivotal. A potential path forward is
manufacturing of an EIS chip with strong noise
rejection and the ability to measure AC mVolt excur-
sions in real time.
Summary
EIS is a powerful, non-invasive technique to investigate a
battery’s electrochemical behavior. A significant research
effort is being concentrated toward developing reduced-
order multiphysics and multiscale models that are
Current Opinion in Electrochemistry 2022, 36:101140
discussed in the present work. BMS is an indispensable
part of modern battery systems in energy and storage
applications, and EIS is expected to play a critical role

either offline with a separate experiment/hardware or
onlinewith an integratedBMSarchitecture that ismodel-
based and is built on real-time simulation and estimation
of chargeedischarge curves and impedance data.
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