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This paper implements efficient numerical methods in Maple to solve index-1 nonlinear Differential 

Algebraic Equations (DAEs) and stiff Ordinary Differential Equations (ODEs) systems. Single-step 

methods (like Trapezoid (TR), Implicit mid-point (IMP), Euler-Backward (EB), Radau IIA (Rad) methods, 

TRBDF2, TRX2) and Backward-Difference Formula (BDF) of order 2 are implemented with adaptive time-

stepping methods in Maple to solve index-1 nonlinear DAEs. Maple’s robust and efficient ability to search 

within a list/set is exploited to identify the sparsity pattern and automatically calculate the analytic Jacobian. 

The algorithm and implementation are robust and efficient for index-1 DAE problems and scale well for 

finite difference/finite element discretization of two-dimensional models with system size up to 10,000 

nonlinear DAEs and solve the same in a few seconds. The computational efficiency of the proposed 

algorithm (provided as an open-access code) compares favorably with the commercial solver gPROMs, one 

of the most commonly used sparse DAE solvers in the industry. 
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1 Introduction 
 

Several physical phenomena are represented by partial differential equations (PDEs) equations that describe 

the changes in space and time. Today, solvers such as IDA (Hindmarsh et al., 2005) in SUNDIALS’s 

implementation of the BDF, DASKR (Brown, Hindmarsh, & Petzold, 1994), Hairer’s FORTRAN 

implementation of RADAU (Hairer & Wanner, 1999), MATLAB’s ode15s (Vie & Miller, 1986), Cash’s 

MEBDFDAE (Cash & Considine, 1992), Julia’s wide range of in-house solvers (Rackauckas & Nie, 2017), 

Maple’s inbuilt solvers are all good solvers for small scale index 1- DAEs. (“Maplesoft Website,” n.d.) 

There are two popular approaches for solving index-1 DAEs – (1) Backward and modified-backward 

difference methods (IDA, DASKR, DASSL (Petzold, 1982), MEBDFDAE), and (2) Implicit Runge-Kutta 

methods (RADAU). Both approaches involve solving a system of nonlinear algebraic equations at every 

time step with a Newton-type approach which involves calling linear solvers until convergence within the 

Newton step. 

Most DAE solvers provide options for different linear solvers (iterative, banded, and dense). Few solvers 

provide the option to call sparse linear solvers, particularly parallel sparse linear solvers. Solvers benefit 

from using analytical Jacobians and sparse solvers to improve computational speed and memory usage 

when solving a system of DAEs. Typically, the user provides the analytical Jacobian and the sparsity 

pattern.  

gPROMs (“gPROMS ModelBuilder,” n.d.) and DAEPACK (“DAEPACK,” n.d.) are likely the only solvers 

that automatically calculate the Jacobian analytically in symbolic form and use the same with a sparse linear 

solver. This paper demonstrates that Maple is competitive in identifying the sparsity pattern and using the 
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analytic Jacobian. Including robust-time stepping methods and sparse linear solvers for Newton-Raphson 

iteration helps us arrive at a robust DAE solver that scales well for large systems.  

The efficiency of a code strongly depends on multiple testing and tuning of adaptive-solver parameters, 

choice of Jacobian updates, and linear solvers, to name a few. We observe that the developed solver and its 

implementation are competitive compared to many existing solvers for the various cases we tested. The 

current implementation can be further optimized by compiling many steps to C language and tuning the 

solver parameters. 

This paper and the code are built on the strengths of Maple and its ability to quickly search variables in a 

list/set, perform symbolic differentiation, and provide the analytic Jacobian. As the system size increases, 

it is necessary to use sparse linear algebra. The code developed can solve a wide range of index-1 DAEs 

with a minimal set of user inputs and is released under an MIT license without any restrictions. The 

following section describes various methods implemented using Maple for solving DAEs. 
 

2 Algorithm Description 

 

The objective of this work is to develop an algorithm to solve the Hessenberg index-1 DAEs of the form: 

 

 
( , )

0 ( , )

=

=

dy
f y z

dt

g y z

 (1) 

 
where y is a vector of differential variables, and z is a vector of algebraic variables. f and g are assumed to 

be differentiable functions. Note that only autonomous systems are considered in this paper. If the time t 

explicitly occurs in a system, it can be converted to the form in equation (1) using a dummy variable y 

defined by dy/dt = 1.  

 

Maple does not have a direct DAE solver. Its inbuilt DAE solver differentiates the algebraic constraints and 

converts the system to explicit ODEs. This restricts the usability to only a small number of DAEs. In 

addition, using a dense linear solver means that Maple’s inbuilt DAE solver cannot handle a large number 

of DAEs (typically more than 200). The proposed solver enables the solution of greater than 100,000 DAEs 

in Maple. Seven different algorithms are considered in this paper. 

 

2.1 Euler-Backward Method 

 

The Euler-Backward (EB) method can be written for equation (1) as 
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(2)(Butcher, 2003) 

 

where y0 is the initial condition for y, h is the time step, y1 and z1 are differential and algebraic variables 

after the first step, t = h, Though the time step is a constant, later it will be considered variable using error 

control. Note that the initial condition for algebraic variables z0 does not appear in (2), so any Backward-

Difference method (BDF) method should ideally not need an exact initial condition for z, but code failures 

can happen if h is too large and initial guess is far off from the expected value when performing a Newton-

Raphson iteration to solve equation (2). Typically, f and g are nonlinear functions of y and z. Equation (2) 

is a system of nonlinear equations of size Node + Nae, where Node is the number of ODE variables, and Nae is 

the number of algebraic variables. 
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2.2 Trapezoid Method 

 

Trapezoid Method (TR), also called Crank Nicolson (CN) method, is used for solving semi-discretized 

systems of parabolic partial differential equations (PDEs) and will be referred to as CN in this paper and 

code. This method can be written as follows: 
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(3)(Iserles, 1996) 

 

 

     

For the CN method, there is a need to solve g(y0,z0) to find a consistent initial condition at t = 0. The code 

is written such that z0 is found for all the algorithms before marching in time, as small errors in z can affect 

the results in future times. This is particularly important for state estimation problems such as Battery-

Management Systems (BMS).  

 

2.3 Implicit Mid-Point-Trapezoid Method 

 

The implicit mid-point-trapezoid method (IMPTRAP) is given by 
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(4) (Hairer & Wanner, 1999) 

    

In the implicit mid-point method, residues are evaluated at the mid-point of the time interval h/2. Since the 

method is not stiffly accurate, there is a need to find z1 by solving g(y1,z1) after finding ymid and zmid. ymid can 

be approximated using linear interpolation as ymid = (y1+y0)/2. This does not introduce additional errors.  
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Equation (5) still requires a nonlinear solution for z1 at the end of each step. In this paper, zmid is 

approximated to be zmid = (z0+z1)/2 for the efficiency of implementation and g(y1,z1) is forced to be zero (as 

a projected step). This method can be viewed as a hybridization of the implicit mid-point method for ODE 

variables and the trapezoid method for algebraic variables. This hybridization approach seems to work well 

for smooth DAEs, and it might fail for problems in which z is discontinuous with time or for very stiff 

DAEs that require L-stable schemes. (Ascher, 1989)  
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2.4 Radau IIA Method 

 

The third-order Radau IIA (Rad) method for equation (1) can be written as follows: 
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where yint and zint are ODE and algebraic variables at t = h/3. The system size is doubled for the Newton-

Raphson solver for this method. 

Equation (7) can be rewritten (by using the inverse of Runge-Kutta coefficient matrix A) as 
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This change makes a significant difference in computational efficiency. For finite difference discretization 

of a single PDE in 2D with a five-point stencil, equation (7) will have 10 non-zero entries in the Jacobian 

for a particular row instead of only 6 non-zero entries in equation (8). 

 

2.5 Trapezoid-Backward Difference 

 

Trapezoid-Backward Difference (TRBDF2) is a single-step method that uses a Trapezoid step followed by 

second-order backward difference formula, providing an L-stable method (Hosea & Shampine, 1996). This 

can be written for index-1 DAEs as: 
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where yint and zint are the ODE and algebraic variables at g = h γ, and γ=2-√2. The trapezoid step is followed 

by the backward difference formula.  
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The Trapezoid and BDF steps have the same coefficients for implicitly evaluating the slopes. This belongs 

to singly Diagonally implicit Runge-Kutta methods. (Kennedy & Carpenter, 2016) The same Jacobian and 

a single LU decomposition can be used for the Trapezoid and BDF steps. 

 

2.6 TRX2 

 

Two half-steps of the Trapezoid method can be used to arrive at this algorithm. The main advantage is the 

higher-order embedded error estimate and lower error constant compared to TRBDF2 for non-stiff and 

mildly-stiff systems that do not require L-stability. (Hosea & Shampine, 1996) 

 

The method can be written for index-1 DAEs as 
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where yint and zint are the ODE and algebraic variables at t = h/2. The trapezoid step is followed by a 

second trapezoid step.  
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The Trapezoid steps have the same coefficient for the implicit evaluation of the slopes. This method also 

belongs to singly Diagonally implicit Runge-Kutta methods.  

 

2.7 Adaptive Backward Difference Formula 

 

Variable time step adaptive backward difference formula (BDF2) for index 1 DAE is given by: 

 

 ( ) ( )
( )

( )
2 2 2

0

2 2

n n-1 n-2

n

n n n

n

α+1 h α+1α
y + y ,= y - y f

α+ α
z

 =

+

 g

1 1 +

y

α

,z

1  
    (13)  

(Hairer & Nørsett, Syvert P. 

Wanner, 1993) 

                               

The first step is taken to be a Euler-backward step. 

 

All the methods discussed in this work require a nonlinear solver to update and find y1 and z1. The difference 

between y and z is defined as uu to facilitate this. 
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y1 and z1 are stacked together in vector form as Y1 

 

 

1 0Y  = Y + uu
 

(15) 
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Table 1 summarizes the residual form for all the different methods.  

 

All the methods involve finding the uu vector for a given Y0 vector as input and can be implemented with 

h = 0 to find the consistent initial condition for z at t = 0 without creating a new set of equations just for 

initialization. 

 

Table 1. Residual form of the different numerical methods. 
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3 Error Control and Time-Stepping 

 

Error control in the code is achieved based on the absolute tolerance requirement. In this paper, relative 

tolerance is taken to be a scalar quantity and set to be 10 times the absolute tolerance. This is achieved for 

the first four algorithms by running a single step of the algorithm with time step = h and two-half steps 

(t=h/2 twice to complete the same step) and finding the error using two different estimates for the first four 

algorithms. 
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(16) 

 

 

    

In equation (16), yh2 and yh are solutions after two half steps h/2, and one single time step h, respectively 

and atol and rtol represent the absolute and relative tolerance, while p is the order of accuracy and is 1, 2, 2, 

3 for EB, CN, IMPTRAP and Rad methods, respectively, considered in this paper. Both the ODE and 

algebraic variables are included in the error estimates. After the error calculation, the new step size hnew is 

chosen between the maximum step size hmax and previous step size hold with correction. This approach also 

provides a higher-order accuracy at the end of each time step with Richardson extrapolation as: 

 

 ( )2
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2
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h h

R p

y -y
y  = 

-1  
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For certain stiff problems, this might cause stability issues, and the code can be modified to use yh2 at the 

end of each step. Also, ODE and algebraic variables are extrapolated using this formula at the end of each 

step. 

While the number of Newton-Raphson iterations required for convergence can be used to find a criterion 

for updating the Jacobian, in this code, if err is greater than 0.1, the Jacobian is updated. If err is greater 

than 1, the step is rejected, and the time step is reduced by 4. Also, the Jacobian obtained at a particular 

time t is used for all the linear solves for the Newton-Raphson method for every iteration for both the 

calculation with t = h and two repeated steps with t = h/2. This means the code will not perform LU 

Decomposition more than once for a given time step. For both TRBDF and TRX2, an embedded error 

estimate is used to arrive at the error and identify the next step. For the adaptive BDF2, a predictor based 

on past values were used to estimate the errors. The backward difference formula of order greater than 2 is 

not A-stable and is not considered in this paper. 
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4 Symbolic Math and Use of Search Tools 

 

One of the unique aspects of the developed code is the analytic Jacobian found using search tools in Maple. 

When a wide range of spatial discretization methods is used to convert PDEs to DAEs (finite difference, 

collocation, spectral, and finite volume methods), the sparsity pattern is hard to identify and code for general 

PDEs and boundary conditions for different spatial discretization approaches. In this code, for a given 

system of DAEs, Maple’s search (ListTools:-Search) and symbolic capabilities are exploited to arrive at a 

robust and efficient way to (1) search, sort and label variables and indices, (2) differentiate expressions for 

analytic Jacobian (3) create sparse Jacobian and procedures for the same. 

 

The code implemented scales well for two-dimensional PDEs and takes very little time (seconds) to find 

the analytic sparse Jacobian even for >100,000 DAEs resulting from the semi-discretization of two-

dimensional PDEs. 

 
Figure 1. Schematic of the search algorithm to evaluate the sparse analytical Jacobian. 

 

5 Code Implementation with Examples 

 

The solver can be easily called from Maple to solve index-1 DAEs. This section goes over implementing 

the proposed solver to solve some examples of problems of index-1 DAEs. Examples 1-3 show the 
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capabilities of the DAE solver to find initial conditions and solve stiff problems. Examples 4-6 demonstrate 

the solver’s ability to solve complex problems resulting in a large system of DAEs. 

 

5.1 Example 1: 

 

Consider the DAE system: 

 

 

2 2

  

 1

(0) 0; (0) 0.95

dy
z

dt

y z

y z

=

+ =

= =  

(18) 

     

The exact initial condition for z is 1.0, but 0.95 is provided as an approximate value for z to test the code’s 

ability to initialize algebraic variables. First, the solver is called from Maple, and then the equations are 

called and solved as below. 

 
Figure 2. a) y(t) vs t and b) z(t) vs t plot using the data obtained with the implemented DAE solver with 

the IMP algorithm. The code can initialize z correctly and then solve the DAE model. 

 

The solver took only 29 time steps to simulate this example. The user has to stack all the ODEs in “eqodes” 

and all the AEs in “eqaes”. If there are no algebraic variables, the users should provide an empty list [] for 

eqaes. 

 

The solver options include the following inputs: 

tf = total time of simulation 

atol = absolute tolerance expected for the simulation 

hinit = starting time step for simulation, expected to be less than tf. Suggested value is hinit = min(10-6, tf, atol) 

hmax = maximum value of the time step. Having a large hmax value may result in not having enough points 

for plots and may also result in code failure for some problems. The suggested value in the code is hmax = 

tf/20 

Ntot = maximum number of time steps taken to be 1000. 
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The initial conditions for ODE and algebraic variables are listed in “ICs”. This should follow the order 

specified in eqodes (list of ODEs) and then eqaes (list of AEs). The initial conditions are provided for 

algebraic variables as well. These can be approximate values for the algebraic variables as the solver does 

the initialization. While Maple can automatically find and separate ODEs and AEs from a given system, 

this is avoided in the solver for efficiency purposes. The solver can be called to provide the CPU time as 

well. 

 

5.2 Example 2: 

 

Van der Pol’s system is considered (Van der Pol, 1926) as a test case for stiff solvers. The developed solver 

can simulate this model, as shown in Figure 2.  
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= − −

=

= = =
 

(19) 

 

     

 
Figure 3: a) x(t) vs. t and b) y(t) vs. t plot using the data obtained with the implemented DAE solver with 

the IMP algorithm. The code can solve the stiff system of ODEs. 

 

5.3 Example 3: 

 

Next, a simple DAE system that fails with Maple’s default DAE solver (because of an unknown initial 

condition for the algebraic variable) is solved. The solver can find the exact initial condition for the 

algebraic variable z and solve the system, as shown in Figure 4. 
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Figure 4. a) y(t) vs. t and b) z(t) vs. t plot using the data obtained with the implemented DAE solver with 

the IMP algorithm. The code can initialize z correctly and then solve the DAE model. 

 

5.4 Example 4: 

 

Next, a system of partial differential equations in one dimension is considered: 
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Discretized form of equation (21) with the cell-centered finite difference approach in x can be written as  

 

( )

( )

1 1

2

21 1

2

1 0 1 0

1 1

2
  1 , 1..

( )

2
0 1 exp( ), 1..

( )

(0) 1; (0) 0, 1..

0; 0

1; 0
2 2

i i i i
i i

i i i
i i

i i

N N N N

dc c c c
c z i N

dt x

z z z
c z i N

x

c z i N

c c z z

x x

c c z z

+ −

+ −

+ +

− +
= − + =



− +
= − − − =



= = =

− −
= =

 

+ +
= =

 

(22) 
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where N is the number of elements in x.  

 

The code is written so N can be changed from 2, 4, 8, or 16 until satisfactory results are obtained. It is noted 

that the code works even for N = 10,000 node points in x in very few seconds. For this problem, c and z at 

x = 0 and t = 1 (given by (c0+c1)/2 and (z0+z1)/2) converge with increasing values of N = 4, 8, 16, 32, 64 

for IMP as given in Table 2. For N = 128 and N = 256, the hmax value was reduced to tf/45.  

 

Table 2. Convergence analysis of DAE variables in Example 4. 

Number of  

node points 
( )c 0,1

 
( )z 0,1

 

2 0.721262011548187 -0.277562804790677 

4 0.714227915206798 -0.270426518683985 

8 0.712469481991088 -0.268555018896386 

16 0.712030211180292 -0.268083125242616 

32 0.711920430403511 -0.267964915226396 

64 0.711917661490991 -0.267911284467792 

128 0.711892311529726 -0.267921896322330 

256 0.711886155827820 -0.267927929302667 

 

The CPU time for all the examples is tabulated in Table 2 for all the methods using Intel® Core™ i9–

12900K CPU and 32 GB RAM. 

 

5.5 Example 5: 

 

A 2-Dimensional problem is next considered: 

   

 

2 2
2 2

2 2
  

( , ,0) 1  ,   1  0,1

(0,1,0) 0

(0, , ) 0; ( ,0, ) 0

( ,1, ) 1; (1, , ) 1

c c c
c

t x y

c x y x y except y and x

c

c c
y t x t

x y

c x t c y t

  
= + −

  

=  = 

=

 
= =

 

= =



 

 (23) 

 

  

 

f can be varied as 0.1, 1, and 10 to see the need for a different number of node points in x. Typically, 

method of lines is useful for parabolic PDEs and elliptic PDEs. For hyperbolic PDEs, spatial 

discretization should be done carefully. Upwind (Osher & Sethian, 1988) and WENO (Jiang & Peng, 

2000) methods are recommended for the same. A cell-centered finite difference (FD) was used to 

simulate this model for f = 0.5. Since the Maple code is provided and the FD scheme for a more detailed 

model is provided for example 6, the FD scheme is not provided for this model. 
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5.5 Example 6: 

 

Next, the concentration and potential distributions (tertiary current distribution) in an electrolyte 

(electrochemical system) are considered. With the dilute solution theory and the electroneutrality 

assumption, the model considered is: 

 

 2 2

2 2

0

x y

x y

c c c
D D

t x y

D c D c
x x y y

 

  
= +

  

     
+ =  

        

   (24) 

 

with the boundary conditions 

 

 

0 0

0 0

0 0

 0,   0

 0,   0

 ,   

 ,  , 0
2

 0,  0 ,
2 2

y y

y H y H

x x

x L x L

x x

x x

x x

c

y y

c

y y

c
D D c

x x

c H
D Da c D Da y

x x

c H H
y H

x x






 


 



= =

= =

= =

= =

= =

 
= =

 

 
= =

 

 
= =

 

  
=   =   =  


  = =  =

  

 (25) 

 

The initial condition for c was taken to be 1 everywhere. Equation (23) is the final form of the model for 

transporting a binary electrolyte based on the Nernst-Planck equation for diffusive and migrative flux 

coupled with electroneutrality. Equal diffusivities were assumed for both the cation and anion, and the 

model assumes different constant diffusivities in the x and y direction (Newman & Thomas-Alyea, 2004). 

 

Discretized form of equation (23) with cell-centered finite difference method in x and y can be written as  

, 1, , 1, , 1 , , 1

2 2

1, , 1, , , 1, , 1,

, , 1 , 1 ,

2 2
  , 1.. , 1..
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y
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x x
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 
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+ + − −

+ +
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 − − + −  
−   

   = =

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 (26) 

 

 

In equation (26), Da is The Damkohler number andd is the applied current density in dimensionless form. 

Typically, Dx or Dy can be eliminated (with scaling), but we leave it as is in equation (26) and the code. 

 

 
Figure 5: Surface plot of concentration at short times for the electrochemical model. A boundary layer is 

formed near the electrode at x = 0, which then diffuses with time. 
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Figure 6: Current density (flux distribution) at x = 0 from the tertiary current distribution model at 

different times. Singularity is seen at y = 0.5, reducing the observed order spatial discretization accuracy. 

 

Results at x = 0.5, y =0 and x = 0, y = 0.5 are used to study the convergence of results for N with M = 2N, 

∆x = 0.1/N, ∆y = 1/M. Results obtained for different values of N are shown in Table 3.  

 

Table 3. Convergence analysis for the DAE variables in Example 5 using δ=0.26 and Da = 1.3. 

Number of  

node points 
( )0.5,0,1c  ( )0.5,0,1  ( )0,0.5,1c  ( )0,0.5,1  

4 0.73141595297221 0.90153716519290 0.82780338761445 1.00313359989368 

8 0.73856240938989 0.86892299701114 0.81787060876857 0.96255607933976 

16 0.74101529446961 0.85857149097091 0.81305008905655 0.94834350783886 

32 0.74181451287246 0.85533393255737 0.81101670965265 0.94350508469314 

64 0.74206266027357 0.85435092997272 0.81024158000760 0.94192291344425 

128 0.74213696509076 0.85406060115285 0.80996683223722 0.94142359307161 

256 0.74215861876193 0.85397678526279 0.80987438323878 0.94127046045326 

 

One can see that the code scales well for a large number of node points which are needed for this problem 

because of singularity at y = 0.5 and x = 0. Using variable grids in x and y and other numerical methods can 

help solve the problem more efficiently. Convergence analysis and finding the optimal method for spatial 

discretization are beyond the scope of this paper and the code developed. Surface plots at short times and 

current distribution at x = 0 are also plotted in Figures 5 and 6. 

 

6 Analysis of Algorithms and Results 

 

A comparison of properties of different algorithms considered in this paper is reported below in Table 4. 

Computational results are summarized in Table 5 and compared to the results obtained from gPROMs. For 

low tolerances (high accuracies), the Radau IIA method is recommended for a system with fewer DAEs. 
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For systems with a large number of DAEs, a linear solver dominates the total computational cost. For the 

PDE examples discussed in this paper, the IMPTRAP method was the most efficient for an absolute 

tolerance of 10-6. Both Euler-backward and Radau IIA methods are L-stable and are recommended for very 

stiff DAEs. For Hamiltonian DAEs, the IMPTRAP method offers symplecticity for the ODE variables only, 

as the Trapezoid method is only weakly symplectic (symmetric). For problems requiring monotonicity, 

only Euler-backward method is offered.  

 

Table 4. Properties of different time-stepping algorithms implemented in this paper. 

Method Order A Stability  L-Stability 
Extrapolated 

Order 

Euler Backward 1 Yes Yes 2 

Crank-Nicolson 2 Yes No 4 

Implicit mid-point-

Trapezoid 
2 Yes No 4 

Radau IIA 3 Yes Yes 4 

Trapezoid-Backward 

Difference 
2 Yes Yes NA 

TRX2 2 Yes No NA 

Adaptive BDF2 2 Yes Yes NA 

 

Additional comments about different examples are given below. 

 

Example 1: This is a simple index-1 DAE, but the profile is oscillatory. The code presented in this paper 

can meet the tolerances specified. For a set absolute tolerance of 10-6, the proposed solver can simulate this 

model in 33 time steps and a CPU time of 58 ms with the Radau method with 2 failed time steps. The 

maximum time step used was 0.05.  

 

Example 2: Van der Pol’s model is a stiff system of ODEs. So, an empty list is passed to the solver for the 

algebraic equations. For a set absolute tolerance of 10-6, the solver can simulate this model in 114 time steps 

and CPU time of 293 ms with the Radau method with 17 failed time steps. The maximum time step was 

chosen to be 0.1. One can see that the solver can adapt and use smaller time steps as needed. 

 

Example 3: This simple DAE system was chosen to show the importance of consistent initial conditions 

for the algebraic equations and variables. Maple’s inbuilt DAE solver fails to solve this DAE for the initial 

condition of z =1 for y =2. The implemented solver is able to simulate this model in 34 time steps and CPU 

time of 55 ms with the Radau method with 0 failed time steps. The maximum time step was chosen to be 

0.5. 

 

Example 4: This example was chosen to show the scalability of the solver for a large-scale system and 

highly nonlinear algebraic equations. The PDE system is simulated with a cell-centered finite difference 

method in x. Maple’s inbuilt DAE solver fails to solve the PDE system for N>5 elements in x. The 

implemented solver is able to simulate this model in 45 time steps and CPU time of 311 ms with the 

IMPTRAP method with 0 failed time steps with N = 128 elements (total of 260 DAEs). The maximum time 

step was chosen to be 0.05. 

 

Example 5: This example was chosen to show the scalability of the solver for two-dimensional PDEs. The 

PDE system is simulated with a cell-centered finite difference method in x. The implemented solver is able 

to simulate this model in 37 time steps and CPU time of 3.0 s with the IMPTRAP method with 0 failed time 

steps with N×M= 64×64 elements (total of 4352 DAEs). The maximum time step was chosen to be 0.25. 
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Example 6: This example was chosen to show the scalability of the solver for two-dimensional coupled 

PDEs resulting in large-scale DAEs and similarity of CPU time requirements with ODE models (example 

5). The model chosen has a singularity at x = 0 and y = 0.5, and the model needs a large number of grids 

for uniform node spacing. The model solves both concentration and potential in an electrolyte. The PDE 

system is simulated with a cell-centered finite difference method in x. The implemented solver is able to 

simulate this model in 38 time steps and CPU time of 16.65 s with the IMPTRAP method with 0 failed time 

steps with N×M= 64×128 grids (total of 17152 DAEs). Note that the maximum time step was chosen as 

0.05, and the maximum growth rate was restricted to 3 (in the solver). 

 

It is to be noted that restricting the value of the maximum time step will significantly slow down the solver.  

 

Table 5. Computational (CPU) time for different algorithms for different examples considered. For all the 

models chosen, the following solver parameters* were fixed hinit = 1e-6, atol = 1e-6, and the setup time did 

not include in CPU time. Three different CPU times from separate runs are reported to record the CPU 

time at three instances. The unit of CPU Time is in milliseconds (green), seconds (blue), or minutes (red).  

Example Methods 
CPU Time 

[ms, s, m] 

Number 

of DAEs 

Number of 

Time Steps 

Number of  

Rejected 

Steps 

1 

CN 33,31,26 

2 

31 0 

IMPTRAP 33,32,32 31 0 

EB 81,84,79 129 1 

Rad 31,30,31 31 0 

TRBDF2 24,23,25 34 0 

TRX2 16,16,15 32 0 

BDF2pred 27,27,26 74 1 

gPROMs 31,47,16 31 - 

IDA Dense 74,72,73 - 

2 

CN 169,165,206 

2 

299 9 

IMPTRAP 153,158,160 278 17 

EB 1.26,1.32,1.27 2687 3 

Rad 97,131,94 114 17 

TRBDF2 285,243,289 369 6 

TRX2 165,141,146 301 8 

BDF2pred 370,393,374 1044 7 

gPROMs 31,31,47 231 - 

IDA Dense  69,72,71 - 

3 

CN 49,47,49 

2 

55 0 

IMPTRAP 39,47,56 55 0 

EB 158,157,166 321 0 

Rad 41,32,34 34 0 

TRBDF2 51,46,46 76 0 

TRX2 31,30,28 65 0 

BDF2pred 69,55,67 196 1 

gPROMs 16,31,31 52 - 

IDA Dense 72,75,71 - 

4 CN 167,161,170 260 36 0 
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(N=128) IMPTRAP 112,161,165 36 0 

EB 266,276,314 74 4 

Rad 273,312,264 40 4 

TRBDF2 188,181,185 33 0 

TRX2 178,142,177 32 0 

BDF2pred 215,216,214 62 2 

gPROMs 62,47,31 54 - 

IDA Dense 143,144,165 - 

4 

(N=256) 

CN 259,253,289 

516 

35 0 

IMPTRAP 244,283,292 35 0 

EB 480,488,484 64 3 

Rad 626,642,645 44 6 

TRBDF2 319,308,309 32 0 

TRX2 302,303,333 32 0 

BDF2pred 556,538,559 88 10 

gPROMs 62,78,62 54 - 

IDA Dense 298,295,312 - 

5 

(N=64, 

M=64) 

Phi = 0.5 

UMFPACK 

PARDISO 

CN 
2.35,2.33,2.48 

3.52,3.66,3.62 

4352 

37 0 

IMPTRAP 
2.12,2.09,2.10 

2.96,2.48,3.00 
37 0 

EB 
2.44,2.43,2.47 

3.61,3.72,3.55 
40 3 

Rad 
5.07,5.10,5.11 

7.03,6.91,7.08 
41 4 

TRBDF2 2.88,2.86,2.87 

3.97,3.95,3.90 
33 0 

TRX2 2.88,2.88,2.90 

3.94,3.91,3.81 
33 0 

BDF2pred 3.25,3.25,3.24 

4.47,4.51,4.47 
53 2 

gPROMs 1.297,1.312,1.297 126 - 

IDA Dense 14.533,14.552,14.490 - 

5 

(N=128, 

M=128) 

Phi = 0.5 

UMFPACK 

PARDISO 

CN 
12.39,12.11,12.23 

15.98,16.26,15.90 

16896 

40 2 

IMPTRAP 
11.60,11.58,11.60 

14.12,14.59,14.48 
40 2 

EB 
12.73,12.68,12.48 

16.82,16.61,16.57 
43 6 

Rad 
25.78,25.95,25.70 

32.26,32.16,31.95 
42 5 

TRBDF2 13.30,13.29,13.29 

17.33,17.88,17.65 
33 0 

TRX2 13.37,13.30,13.33 

17.45,17.71,17.71 
33 0 

BDF2pred 12.84,12.86,12.86 

17.55,17.70,17.47 
46 1 

gPROMs 6.328,6.328,6.359 126 - 
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6 

(N=128, 

M=256) 

 

UMFPACK 

PARDISO 

CN 
83.21,84.50,84.98 

79.99,85.22,90.16 

67072 

38 1 

IMPTRAP 
83.59,84.11,83.02 

88.93,82.38,83.37 
38 1 

EB 
102.27,100.84,108.84 

105.47,105.06,102.44 
43 6 

Rad 
3.98,4.01,4.19 

3.40,3.38,3.35 
43 4 

TRBDF2 105.48,105.01,105.38 

92.22,91.76,92.00 
34 0 

TRX2 101.40,102.26,102.04 

88.59,87.45,87.99 
33 0 

BDF2pred 123.02,113.69,112.92 

88.29,87.88,87.64 
54 0 

gPROMs 198.922,191.172,202.391 107 - 

6 

(N=256, 

M=512) 

 

UMFPACK 

PARDISO 

CN 
8.68,9.14,8.65 

7.79,7.84,7.80 

265216 

36 0 

IMPTRAP 
8.13,9.15,8.17 

7.46,7.65,7.31 
36 0 

EB 
10.35,10.75,10.29 

9.21,8.95,8.97 
42 6 

Rad 
41.33,43.56,41.37 

23.48,22.73,22.50 
42 4 

TRBDF2 11.77,11.78,11.80 

8.67,8.74,8.68 
33 0 

TRX2 11.95,11.64,11.89 

8.49,8.49,8.49 
32 0 

BDF2pred 11.76,11.54,11.51 

7.97,7.92,7.96 
48 0 

gPROMs 42.64,50.26,54.89 109 - 

 

*The solver parameters for gPROMs atol = 1e-6, rtol = 1e-5, hmax = 0.05 for all examples except example 

5, where hmax = 0.25. 

 

While it is not a fair comparison, MATLAB’s ode15i was also used to benchmark the results obtained and 

the CPU time for different models. MATLAB’s ode15i was run with a maximum order of 2 to ensure A-

stability and with the same solver parameters for absolute tolerance, relative tolerance, and maximum time 

step. This was done without providing the sparsity pattern or analytic Jacobian, forcing MATLAB to find 

the numerical Jacobian. MATLAB’s ode15i had similar efficiency (often more efficient) compared to the 

developed solvers for the same solver parameters, even though it calculates the numerical Jacobian for 

examples 1-3. The developed solvers are more efficient when the problem size increases to more than 1000 

DAEs (examples 4-6). In particular, for example 6, MATLAB’s ode15i cannot handle more than 40 × 80 

grid points (requiring more than one hour of simulation time). Of course, optimizing the MATLAB code 

and providing the sparse analytic Jacobian can alleviate this. However, to use the developed DAE solver in 

Maple, the user has to provide only the DAEs, neither the sparsity pattern nor the analytic Jacobian. 

MATLAB codes that solve examples 1-6 using ode15i can be obtained upon request from the corresponding 

author. The table also lists the calculation time with IDA, a BDF solver implemented in C from SUNDIALS. 

(Hindmarsh et al., 2005) One can see that the default dense matrix linear solver in IDA enables very fast 

computation for smaller problems. But beyond example 5, the dense matrix algebra failed for this problem. 
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IDA coupled with sparse linear solver will enable faster computation for examples 6 and 7, but that requires 

the user to provide the analytic Jacobian and sparse matrix entries. That step is not needed in the newly 

developed DAE solver in this paper. IDA based on Krylov linear solvers (matrix-free methods) scale well 

for example 5. It should be noted that example 4 will fail with diagonal preconditioner-based Krylov 

methods in IDA. So, we report the CPU times only based on IDA’s default dense matrix solvers in Table 

5. 

 

In addition, all the examples were simulated with gPROMs with their default DASOLV solver settings 

(except for the solver parameters specified above). The solver uses the backward difference formula with 

varying time steps and varying order (1 to 5). For large problems (Examples 5 and 6), the developed solver 

can run the models faster than gPROMs, a commercial solver. Note that though both IDA and gPROMS 

used the BDF formula, the results from IDA were obtained with a maximum order of 2 (to guarantee A 

stability). gPROMS was run without adding this restriction. 

 

 

7 Future work, Perspectives, Code-dissemination, and Summary 

 

In this paper, a sparse DAE solver was developed and implemented in Maple. Some of the aspects of the 

solver and future work are summarized below: 

 

1. Seven different algorithms were considered and implemented in this paper. For large-scale 

problems from the discretization of PDEs in 2D, the IMPTRAP method was the most efficient for 

the tolerance specified. For extremely stiff problems, both Euler-backward and Radau methods 

might be more efficient. In particular, the Euler-backward method is recommended if unrealistic 

oscillations are observed. The code finds the analytic Jacobian by differentiating the functions in 

the model equations. If the function is not differentiable, then the code may not work. The solver 

has been found to work for some cases involving discontinuities. For example 1, replacing the right-

hand side in equation 1 with a piecewise function in z as given below works;  

 

 

( ) ( )
( )1 0.7

1

2

z t
d

y t z t
dt otherwise

  
 

=  
 
 

  (27) 

 

2. Continuous extension in time was not included in the current version of the solver. Maple’s spline 

functions can be used for this. Our experience suggests that interpolations and continuous 

extensions are not as accurate and stable for the algebraic variables as the predicted values at the 

terminals (end-of-time steps) in the algorithms. Also, when a particular spatial discretization is used 

in a model with singularities (as in example 6), not all the variables will converge at the same order 

of accuracy, requiring different orders for interpolation and continuous extension for different 

variables. 

3. Implicit DAEs and ODEs (problems with non-constant mass-matrix form) can be addressed by 

making small algorithm changes, particularly for the Radau method. Adaptive BDF2 was faster 

than other solvers reported in this paper for many of the examples, but and is available upon request 

from the authors. It was not included in this paper as the method is not A-stable. 

4. Future versions of the solver could include integration with Krylov-type linear solvers and parallel 

sparse direct solvers (Saad, 2003), event detection, etc. Reordering the equations and variables can 

reduce the bandwidth of the linear solver and reduce the computational time further. 

5. Hardware floats and compiled codes will make the codes run faster with minimal memory 

requirements. This is easily doable based on the Gauss elimination method already implemented in 

Maple for 100-200 DAEs. However, this will not scale for a large number of DAEs. Providing the 
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residues and the Jacobian in an efficient format might further speed up the code. This requires 

minor changes to the code to take the function F and Jacobian Jac as inputs to the solver. 

6. The code is developed and distributed under MIT license without any restrictions. Two versions of 

the developed DAE solver are provided. The UMFPACK version (the default solver 

DAESolver.txt) works in any version of Maple installation (after 2020) by directly calling from 

Maple. The user should have a valid Intel MKL license and the required binaries to use the 

PARDISO-based DAE solver (Alappat et al., 2020)-(Bollhöfer, Eftekhari, Scheidegger, & Schenk, 

2019), DAESolverP.txt which is also directly called from Maple. 

 

The results obtained from various algorithms were compared to those obtained from gPROMs. While 

gPROMs is faster than the developed DAE solver in terms of CPU time for smaller problems, the developed 

method performs better for large-scale DAE problems.   

 

8 Code 

 

The Maple code, developed using Maple (2022), for the solvers and the example problems have been posted 

online and may be accessed through this link: https://sites.utexas.edu/maple/sparsedaesolver/  
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