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Abstract— Lithium-ion batteries have emerged as the primary
power source for electric mobilities. Accurate remaining useful
lifetime (RUL) prediction is required to ensure the safe operation
of the batteries throughout their lifespan. This article proposes
combination strategies that integrate two different Gaussian
process regression (GPR) methods and model-based methods
to enhance the robustness of the prediction. The first GPR is
based on the forward extrapolation of the measured capacity
sequence. The second GPR is based on the extrapolation of the
measured feature and then inputs the predicted feature into a
capacity estimation model. The first ensemble strategy is the
weighted ensemble method, which uses the least squares method
to determine the weighted coefficients. The second strategy is a
more conservative method, which chooses the fastest degradation
path between two basic methods at each prediction step. The
third strategy is particle filter (PF), which combines the predicted
data from different methods. The batteries aged by a real
forklift aging profile and open access dataset are used to verify
the proposed methods. The results of all methods based on
different percentages of data are analyzed. The results show that
individual methods may obtain different prediction results, while
ensemble strategies have accurate and robust predictions. The
PF for capacity-based and feature-based methods has the best
performance with the absolute error of RUL less than 23 full
equivalent cycles (FECs), error of prediction steps less than 1,
and negligible simulation time for the forklift dataset.

Index Terms— Ensemble learning, Gaussian process regression
(GPR), lithium-ion batteries, remaining useful lifetime (RUL)
prediction.
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I. INTRODUCTION

ELECTRIC mobility applications, including electric
vehicles, electric forklifts, and electric vertical take-

off and landing vehicles, are emerging as replacements
for internal combustion vehicles due to improvements in
battery performance and reduced cost [1], [2], [3]. Lithium-
ion batteries are the mainstream power sources in these
applications because of their high power and energy density,
high efficiency, and mature manufacturing process [4]. The
capacity and power of lithium-ion batteries will, however,
degrade under storage and operation conditions due to the
loss of active material, and lithium inventory [5]; thus, state
monitoring and management of batteries are essential to ensure
their safe operation. Remaining useful lifetime (RUL) is an
index used to evaluate the amount of time or number of cycles
that the battery can operate from the present until it reaches
the predefined end of life (EOL) criteria. Accurate, robust,
and reliable RUL prediction can offer maintenance and/or
replacement instructions and reduce the occurrence of battery
accidents.

RUL prediction methods are usually divided into model-
based, data-driven methods, and hybrid methods. The model-
based methods include electrochemical models, equivalent
circuit models, and empirical models. The key to the
electrochemical model lies in coupling aging mechanisms,
such as solid-electrolyte interphase and cathode-electrolyte
interphase film growth [6], with electrochemical models like
the pseudo two dimensions model [7], quasi-3-D model [8],
and their reduced order models [9] to describe degradation
trajectory. The challenges are to identify a lot of parameters
by complex tests and be solved by a stable and fast solver.
The computation of this method is intensive, and the result is
unstable. Equivalent circuit models use electronic components
to approximately describe the electrochemical characteristics
of batteries [10]. It is simpler than electrochemical models. Its
accuracy, however, is not higher, and parameter identification
and coupling with the aging model are still inevitable.
Empirical models usually build the relationship between the
capacity and cycles according to the degradation trajectory,
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and their parameters can be obtained by fitting methods [11],
[12] or updated by filter algorithms [13], [14]. The common
empirical models include the polynomial, dual exponential,
and logarithmic models [15]; however, empirical models
rely heavily on prior knowledge. The model accuracy
will be very low when the measured aging trajectory is
significantly different from the future trajectory [16]. Data-
driven methods for RUL prediction have been extensively
researched and can be broadly classified into EOL point
prediction methods and sequence extrapolation methods [17].
EOL point prediction methods directly establish a mapping
between features extracted from sampled data at the current
cycle and the corresponding RUL using machine learning
(ML) methods. For example, the difference in discharge
capacity curves against voltage across different cycles was
extracted from 124 batteries in [18] to predict the cycle life
using a linear model, achieving a test error of 9.1% with the
first 100 cycles. Yang et al. [19] investigated the importance
of features related to RUL across different state of charge
(SOC) ranges using random forest. These methods, however,
require a large amount of test data to validate the effectiveness
of the trained mapping. In contrast, sequence extrapolation
methods are suitable for predicting the RUL of individual
batteries or a limited number of batteries. These methods can
be further categorized into sequence-to-sequence prediction
and iterative sequence-to-point prediction. The input sequences
can be either capacity sequences or feature sequences.
In the sequence-to-sequence approach, past capacity or feature
sequences are used as inputs to predict future capacity or
feature sequences up until EOL using ML methods. When
the output sequence consists of all the capacity or feature
values from the current cycle to EOL, it is referred to as a
one-shot prediction, as the prediction is performed in a single
iteration, reducing computational time. A typical example of
one-shot prediction was proposed by Li et al. [20], where the
long short-term memory (LSTM) network with autoencoder
and decoder methods was employed. The sequence-to-point
prediction iteratively uses past capacity or feature sequences
to predict a single capacity or feature value at each step until
the EOL point is reached. The advantages of sequence-to-point
methods include ease of implementation and reduced training
data requirements; furthermore, capacity extrapolation means
using the measured capacities to predict future capacity until
reaching the EOL, where ML methods are used to learn the
degradation trend in measured data. Liu et al. [21] proposed
the LSTM optimized by an improved sparrow search algorithm
to predict RUL, where the input was the capacity of the
1 − n cycles and the output was the capacity of n + 1 cycle.
The feature extrapolation methods use the measured features
to predict future features first and then input the predicted
features into the capacity estimation model. The estimated
capacity will be used for RUL calculation. Yao et al. [22]
trained an extreme learning machine to map the relationship
between cycle numbers and features, and the capacity was
estimated by the relevance vector machine. The estimated
capacity was compared with the failure threshold to obtain
the final RUL results. Li et al. [23] fit the polynomial function

for features and cycles and then input the predicted features
into a Gaussian process regression (GPR) model to obtain
the predicted capacity and the relevant RUL results. Strictly
speaking, neither of the above two research belongs to the
feature extrapolation method. Feature extrapolation method
means using measured features to predict future features by
ML directly; further, the performance difference, like the
accuracy of the two methods is not clear. It is still difficult
to decide which prediction results from the two methods
are better and should be used. Hybrid methods leverage the
strengths of both model-based and data-driven approaches.
Typically, the process begins by decomposing the capacity
series. Next, model-based and data-driven methods are applied
to predict the different decomposed components, and finally,
the prediction results are combined [24].

To improve the robustness of predicted RULs, some
researchers chose to group batteries based on similarity
criterion first and then use the transfer learning method to
predict degradation trajectory for each subgroup [25], [26].
Others adopted ensemble strategies. Wang et al. [27] proposed
a two-phase degradation model according to the change point,
and the particle filter (PF) was used to update the parameters
of two models. Their work implemented an ensemble from
the time domain. Liu et al. [28] used the empirical mode
decomposition method to decompose capacity data into mode
functions and a residual, then applied LSTM and GPR models
to predict the RUL from two kinds of data, respectively,
and ensembled the results finally. A more common ensemble
method is to use filter methods to integrate the predicted results
from the empirical model and ML model. Yan et al. [29]
used the Kalman filter to fuse the results by the polynomial
model and support vector machine. Chen et al. [13] used PF to
combine the estimated capacities from fifth-order polynomials
and GPR. For this ensemble method, one model is regarded as
a state variable, and another result is used as an observation
variable [30]. The choice of observation variable is, however,
not reliable and requires prior knowledge. Besides, the current
research data are based on the full charging and discharging
and take the discharge amount of each cycle as capacity. For
example, the NASA dataset has around 175 capacity points,
and the CALCE dataset has 800 capacity points [31]. In real
life, it is difficult to obtain the capacity in each cycle and use
it to predict RULs.

From the above introduction, it can be concluded that
the research on RUL prediction considering feature sequence
extrapolation is limited. The prediction performance com-
parison and ensemble of capacity and feature extrapolation
have rarely been reported. Most research is based on a large
amount of sample points. This article, therefore, proposes and
compares capacity and feature-based GPR prediction methods
based on the different percentages of limited data from the
forklift aging profile. Then, the ensemble strategies for these
two kinds of methods are introduced, i.e., the weighted least
squares method, the conservative method, and the PF methods.
Finally, the prediction accuracies of different single methods
and ensemble strategies are compared, and the robust method
is given.
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The remainder of this article is organized as follows.
Section II introduces the forklift aging data. Then, the
two individual RUL prediction methods and the ensemble
strategies are proposed in Section III. Next, Section IV
presents and discusses the obtained results. Finally, the
conclusions are summarized in Section V.

II. DESCRIPTION OF FORKLIFT AGING DATA

A dataset for lithium-ion battery degradation based on a
forklift mission profile, published recently by our group [32],
was used to validate the proposed ensemble strategies for
RUL prediction. Three prismatic lithium iron phosphate cells
with a nominal capacity of 180 Ah were aged through the
realistic and dynamic forklift mission profile at 35 ◦C, 40 ◦C,
and 45 ◦C, corresponding to Cell 1, Cell 2, and Cell 3,
respectively. The temperatures mentioned refer to the surface
temperatures of the cells, measured by the thermocouples,
which represent the actual operation temperatures. The thermal
chambers were also set to 35 ◦C, 40 ◦C, and 45 ◦C (ambient
temperatures). Because of the batteries’ high thermal capacity,
limited SOC variations, and precise control of the thermal
chambers, temperature fluctuations within the cells were,
however, minimal. The forklift mission profile was distilled
from a four-month forklift field operation, and the whole
current and voltage profiles are shown in Fig. 1(a) and (b),
respectively. The whole profile accounts for approximately
23 full equivalent cycles (FECs) based on the initial capacity,
and its SOC variation was the same as the real operation.
The profile consists of multiple discharging and recharging
steps. A sample of the current and voltage signals during
the first discharging and subsequent recharging is shown in
Fig. 1(c) and (d), respectively. The discharging part was
random and not easy to control; however, the recharging
current of each step was fixed to 24 A.

The whole forklift profile was repeated over 50 rounds.
After each round, a reference performance test (RPT) at 25 ◦C
was conducted to measure the real capacity. The capacity
degradation curves of three cells are shown in Fig. 2. Missing
values were filled using interpolation and marked with solid
circles in Fig. 2. The number of interpolated points in Cell 1,
Cell 2, and Cell 3 is 2, 2, and 3, respectively. The degradation
trajectories of three cells during the initial 600 FECs were
close. After that, Cell 3 degraded faster due to the higher
operation temperature, while Cell 1 and Cell 2 degraded
slowly, following very close degradation trajectories. More
information about the battery parameters, test devices, and
procedures can be found in [32] and [33].

III. FRAMEWORK FOR DUAL GPR-BASED
ENSEMBLE STRATEGIES

This section introduces the framework for dual GPR-
based ensemble RUL prediction. The key to the proposed
method is to ensemble RUL prediction results derived from
forward-predicted RUL values based on capacity and feature
sequence, respectively. The capacity-based and feature-based
GPR RUL predictions will be presented in detail first.
Then different strategies to ensemble prediction results from
different methods will be elucidated.

Fig. 1. Load profile of forklift used in Cell 1. (a) Current profile of one
round of aging. (b) Voltage profile of one round of aging. (c) Current profile
of Step 1 marked in (a). (d) Voltage profile of Step 1 marked in (b).

Fig. 2. Capacity degradation curves of three cells.

A. Capacity-Based GPR RUL Prediction

The capacity-based RUL prediction belongs to the
sequence-to-point prediction method, which iteratively uses
the measured capacity sequence to predict the capacity at the
next FEC until the capacity reaches the EOL. The RUL is the
difference between the FEC at EOL and the current FEC as

RUL = FECEOL − FECnow (1)

where FECEOL is the FEC at EOL. The capacity of FECEOL
reaches the predetermined lower limit. FECnow is the current
FEC. In practice, the interval of FEC between two RPT sample
points is usually not one, so the final RUL value is the
multiplication of FEC interval (1FEC) between two RPTs and
the number of forward prediction steps to EOL.
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Fig. 3. Framework of capacity-based and feature-based prediction methods. (a) Capacity-based RUL prediction. (b) Feature-based RUL prediction.

In this case, the GPR method is used to map the relationship
between the measured capacity sequence and the output point.
The GPR is one nonparametric and Bayesian method that can
provide predicted mean value and covariance simultaneously
and can be expressed as

f (x) ∼ G P
(
m(x), k

(
x, x ′

))
(2)

where f (x) is the predicted output, m(x) is the mean function
about FEC, k(x, x ′) is the covariance function to reflect the
variance of current FEC and covariance between different
FECs. The covariance function is also called the “kernel
function,” which is the key to GPR and plays an important
role in the prediction trajectory. The procedure of GPR is to
use the observed samples to update and obtain the optimal
parameters for the posterior mean and covariance function
based on the prior mean and covariance function. The negative
log marginal likelihood method is a common method. After
preliminary trials, the linear kernel function was chosen in this
work as

klinear
(
x, x ′

)
= xT x ′. (3)

For the detailed mathematical derivation process of GPR, the
reader is referred to [33].

In this work, the input sequence was composed of nine
capacity values, and the output was the next capacity
value. The sliding window size was one. Here, the two
adjacent capacity values represented the value of two
rounds of aging, and the FEC interval between them was

approximately 23 FECs. The input and output data were fed
into GPR to obtain the prediction model. N random numbers
were generated to obtain the uncertainty in the prediction of
the test dataset to represent the possible capacity values based
on the predicted mean and covariance at each step. In the next
prediction, one random number was drawn as the last value of
the input sequence. The above procedure was repeated until the
predicted capacity was less than the capacity at EOL. Finally,
N possible capacity can be obtained in each step, and their
mean values were regarded as the predicted capacities of this
method. The flowchart of this method is described in Fig. 3(a).

B. Feature-Based GPR RUL Prediction

The approach of this method is to forward predict features
based on the known data first, and then input the predicted
feature into the capacity estimation model to obtain the future
capacity and the RUL subsequently.

Specifically, one feature, i.e., the standard deviation of
voltage curves during the first battery recharging, shown in
Fig. 1(d), was first extracted. The recharging voltage curves
of all rounds of Cell 1 are shown in Fig. 4.

The extracted features of the three cells are shown by
dotted lines in Fig. 5(a). From Fig. 4, it can be seen that
not all parts of the curve show the obvious aging evolution
trend, and the voltage differences of Part II, is the most
distinct. Nonuniform evolution trends of voltage curves led
to the fluctuation and noise of the original extracted feature,
which has a negative influence on the next feature prediction.
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Fig. 4. Recharging voltage curves of Cell 1 in all rounds for feature
extraction.

Fig. 5. Normalized features of three cells. (a) Original features and its MA
filtered value. (b) Filtered features against the SOH.

The moving average (MA) method was, therefore, used to
smooth the original feature for a better reflection of the
degradation trend as shown by the solid line in Fig. 5(a).
The Spearman coefficients between filtered and normalized
features and capacity were −0.9987, −0.9948, and −0.9877,
which show the strong monotonic relationship between them.
Fig. 5(b) shows the relationship between the normalized
feature and the state of health (SOH) of the three cells. The
normalized feature decreases with the battery degradation. The
three curves overlap when the SOH is larger than 85%, which
makes it possible to use the aging data of Cell 2 and Cell
3 as the training set of the capacity estimation model for
Cell 1. Additionally, the temperature for Cell 1 corresponds
to the recommended operating temperature provided by the
manufacturer.

Then, the known features were reconstructed as input and
output sequences to train the GPR feature prediction model.
The input sequence of the prediction model was the MA-
smoothed and normalized feature extracted from the training
dataset. Besides, the GPR estimation model mapping feature
and capacity were built based on the known aging data. In the
case of RUL prediction, the available data were only about
the aging of the initial few cycles, where the degradation
characteristics of the full cycle life cannot be fully described.
Other similar cells with full cycle life data were, therefore,
used to train the offline estimation model. Based on the trained
feature prediction GPR model and capacity estimation GPR
model, the feature of Cell 1 was predicted and then input
into the estimation model to obtain the future capacity until
EOL. The RUL was calculated by multiplying the FEC interval
between each prediction step and the prediction steps to EOL.
The method to generate uncertainty and possible predicted

values in capacity-based GPR RUL prediction was also used
to generate the possible features at each step. The mean of
features at each step was input into the capacity estimation
model to obtain the estimated capacity of this method. The
flowchart of this method is described in Fig. 3(b).

C. Ensemble Strategies on Two Prediction Methods

The first ensemble strategy for the above two methods is
the weighted least squares method. The predicted capacities
from capacity-based and feature-based GPR methods were
integrated through the weighted coefficients. The weighted
coefficients were determined by the least squares method based
on the predicted result and error in the training dataset. The
principle was expressed as

Minimize
∑ (

w1∗Q̂Q + w2∗Q̂F − Q
)2

(4)

Subject to w1 + w2 = 1 (5)

where Q̂Q is the predicted capacity using the capacity-based
method in the training dataset, Q̂F is the predicted capacity
using feature-based capacity in the training dataset, Q is the
real capacity, w1 and w2 are the corresponding weighted
coefficients. Finally, the ensemble capacity is calculated as

Q̂weighted = w1∗Q̂Q + w2 ∗ Q̂F (6)

where Q̂weighted is the ensemble capacity. Through this
ensemble capacity, the robustness could be improved because
the advantages of the two methods are considered. Overfitting
is also more likely to occur because the weighted coefficients
are, however, determined based on the training dataset.

The second ensemble strategy is called the “conservative
method.” In this method, the predicted capacities from two
perspectives were compared at each prediction step, and the
smaller of the two was regarded as the ensemble capacity,
as expressed in

Q̂conservative,i = min
(
Q̂Q,i , Q̂F,i

)
. (7)

The smaller capacity means serious degradation and less RUL,
and the conservative RUL can be obtained by this method.

The third ensemble strategy is PF. For the first ensemble
strategy, the weighted coefficients are unchanged; however,
these coefficients should be dynamic based on the prediction
error at each step. PF can provide varying coefficients at
each step. The essence of PF lies in using particles through
Monto Carlo simulation to approximate recursive Bayesian
filtering. In Bayesian filtering, the posterior probability of the
state is calculated by multiplying the likelihood probability
and the prior probability. PF employs weighted particles to
represent the distribution of the posterior probability, making
it a powerful tool for data fusion in nonlinear systems.
The state-space equation of PF in this work is expressed
as {

Qk = f1(Qk−1, wk−1)

yk = f2(Qk, vk−1)
(8)

where Qk is the estimated capacity given by one method,
and where yk is the observed capacity, which is represented
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Fig. 6. All ensemble strategies in this work.

by another method. Through this method, two results are
combined for robust capacity estimation and RUL prediction.
The combined values are the mean of resampling particles. The
procedure of PF includes four steps: 1) importance sampling,
2) weight calculation, 3) resampling, and 4) posteriori state
approximation [34]. These steps are repeated until the EOL
conditions are met.

For comparing the accuracy of more combinations, common
empirical degradation models also acted as the base model.
The three-order polynomial model (M1), dual exponential
model (M2), and logarithmic model (M3) were expressed as

Qk = p1k3
+ p2k2

+ p3k + p4 (9)

Qk = aebk
+ cedk (10)

log(Qk) = a1 + b1k (11)

where k is the FEC number, Qk is the kth capacity.
p1, p2, p3, p4, a, b, c, d, a1, b1 are the parameters, which are
identified based on the known data. The empirical model,
which has the highest prediction accuracy, will be combined
with the ML model by PF for robustness. For the sake
of space constraints and simplicity, only the third ensemble
strategy was used to combine the empirical model and the
ML model. All ensemble strategies are summarized in Fig. 6.
After preliminary attempts, M2 has the highest accuracy in all
cases. More details will be presented in Section IV.

D. Evaluation Metric

The prediction performance of proposed models and
ensemble strategies was evaluated by the absolute error,
relative error of the RUL, and capacity root-mean-square error
(RMSE) as

AERUL = |RULreal − RULpre| (12)

RERUL =
|RULreal − RULpre|

RULreal
(13)

RMSE =

√∑i=N
i=1

(
Qi − Q̂i

)2

N
(14)

Fig. 7. RUL prediction results based on three empirical models using 25%
aging data.

where AERUL is the absolute error of RUL, RULreal is the real
RUL, RULpre is the predicted RUL. RERUL is the absolute
error of the predicted step. Qi is the i th real capacity, and
Q̂i is i th predicted capacity. The 1FEC at each prediction
step was 22.72. The error of the prediction steps of the model
(AERUL−step) can be obtained by dividing the AERUL by 1FEC

AERUL−step =
AERUL

1FEC
(15)

where AERUL−step reflects the error between the real rounds
number and predicted rounds number to EOL.

IV. RESULTS AND DISCUSSION

In this work, Cell 1 was used as an example and test dataset
to show the prediction results of the proposed methods. The
aging data of Cell 2 and Cell 3 were used to train the capacity
estimation model. 25%, 50%, and 75% of the aging data
collected in Cell 1 were used for training the prediction model,
individually. The RUL prediction results based on different
percentages of aging data are presented and evaluated in this
section.

A. RUL Prediction With 25% Aging Data

To research the RUL prediction performance of the
proposed methods based on a small amount of measured data,
25% of the aging data (the first 13 rounds) were used as input
for the prediction model. Fig. 7 shows the capacity prediction
results of three empirical models. The capacity trajectories
predicted by all three models deviated from the real value.
The results from the double exponential model were relatively
closer to the real values, so it was used to ensemble with GPR
models.

Fig. 8 illustrates the prediction outcome using the capacity-
based method. The results showed that this method was only
effective during the initial prediction steps. Subsequent steps,
however, revealed its limitation, characterized by a slow and
nearly flat degradation curve.

On the contrary, the feature-based method demonstrated
superior performance in this case, as shown in Fig. 9. The
predicted features fit the real value in most steps. The
uncertainty in most steps was narrow and gradually increased
with aging. The estimated capacity in the training dataset
was close to the real value with 1.3455 RMSE. Before the
first 1000 FEC, the predicted capacity degradation trend was
close to the real capacity degradation trend. After that, the
capacity trajectory presented a slow increase trend due to the
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Fig. 8. RUL prediction results based on the capacity-based GPR method
using 25% aging data.

Fig. 9. Prediction results based on the feature-based GPR method using 25%
aging data. (a) Feature prediction results with uncertainty. (b) Estimated and
predicted capacities with uncertainty.

increase of the predicted features. The uncertainty interval of
prediction also increased.

The ensemble prediction results using 25% of the aging
data are presented in Fig. 10(a). The results of all ensemble
strategies were far from the true values. The strategies that are
model-based can capture the general trend. The values of the
weighted method and PF for the capacity-based and feature-
based methods were between the predictions of the two single
methods and tended to lean toward the capacity-based method.
For the conservative method, the predicted capacity by the
capacity-based method was chosen before the first 600 FEC,
and then that was feature-based capacity with 2.0960 RMSE.
Fig. 10(b) shows the AERUL by strategies that can generate
effective RUL predictions. The single model-based method
has larger error. The PF strategies for model-based method
with capacity-based and feature-based methods can reduce the
AERUL.

B. RUL Prediction With 50% Aging Data

Only 50% of measured data (the first 26 rounds) were
known and used to predict future capacities and RUL in this
case. Fig. 11 shows the capacity prediction results by three
empirical models. Only the dual exponential model closely
fits the real value, where the corresponding predicted RUL
and AERUL were 522.72 FECs and 45.59 FECs; therefore,

Fig. 10. Prediction results based on the ensemble strategies and the
comparison of AERUL using 25% aging data. (a) Capacity prediction results
and (b) comparison of AERUL.

Fig. 11. RUL prediction results based on three empirical models using 50%
aging data.

the dual exponential model was further selected to combine
with ML methods by PF. Fig. 12 shows the prediction results
using the capacity-based GPR method. The mean of predicted
capacities at each step was close to the actual value, but
small fluctuations in actual values were not captured. The 95%
confidence interval was narrow and could cover most of the
real capacity. The real RUL and the mean of the predicted RUL
were 568.32 FEC and 545.45 FEC, respectively. The AERUL
and RERUL were 22.87% and 4%, respectively. The AERUL−step
based on the mean predicted RUL was 1.01. The distribution
of AERUL−step in 1000 randoms was counted and is shown
as inset in Fig. 12. The statistics of the AERUL−step less than
1 and 2 were 217 and 501, respectively, and the statics of the
AERUL−step less than 6 was 995, which shows higher prediction
accuracy of this method.

Fig. 13 shows the prediction results by the feature-based
GPR method. The predicted mean of features was not close
to the real value at almost all prediction steps, and the
confidence interval was very wide. After inputting the mean
value of predicted features into the capacity estimation, it can
be noted that the predicted capacity was close to the real
value if the predicted feature was close to the real feature.
The predicted RUL was 590.90 FEC and the corresponding
AERUL and RERUL were 22.58 FEC and 3.9%, respectively.
The AERUL−step of this model was 0.99. This result was
somewhat random because the predicted feature at EOL fit
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Fig. 12. RUL prediction results based on the capacity-based GPR method
using 50% aging data. Inserted is the density of error of the prediction step.

Fig. 13. Prediction results based on the feature-based GPR method using
50% aging data. (a) Feature prediction results with uncertainty. (b) Estimated
and predicted capacities with uncertainty.

the real value well. The RMSE of the training dataset in the
capacity estimation model was 1.06, which demonstrates the
model can map the feature and capacity well.

From the analysis of Figs. 11 and 13, it can be found that the
accuracy and robustness of a single method are not ideal in all
prediction steps. Different ensemble strategies were, therefore,
proposed, and the prediction results are shown in Fig. 14(a).
All ensemble strategies fit well with the real value. Fig. 14(b)
further summarized the AERUL of single methods (orange)
and ensemble methods (blue). The AERUL of all ensemble
strategies were less than 45.59 FECs i.e., 8% RERUL. The
AERUL−step was less than 2. Specifically, the AERUL of the
strategy using PF to combine capacity-based GPR model and
feature-based GPR model is 0.413, which is almost impossible
to show in Fig. 14(b) due to the range of coordinates. Using the
ensemble strategies can maintain and improve RUL prediction
accuracy when 50% of aging data are available.

C. RUL Prediction With 75% Aging Data

This section presents the results of the proposed ensemble
and single methods using a large amount of measured data,
i.e., 75% of the data with 39 aging rounds. Fig. 15 illustrates
the capacity prediction results by three empirical models. The
predicted value from the three models were closer to the real
value compared with using 25% and 50% of aging data. The
results predicted by the dual exponential model were still the

Fig. 14. Prediction results based on the ensemble strategies and the
comparison of AERUL using 50% aging data. (a) Capacity prediction results.
Inserted is the zoomed-in view around EOL. (b) Comparison of AERUL.

Fig. 15. RUL prediction results based on three empirical models using 75%
aging data.

Fig. 16. RUL prediction results based on the capacity-based GPR method
using 75% aging data. Inserted is the density of AERUL−step.

closest to the actual values. The corresponding RMSE and
AERUL was 0.41 and 22.65, respectively. The dual exponential
was used to further fuse.

Fig. 16 shows the capacity prediction outcome by the
capacity-based method. The predicted capacity was slightly
larger than the actual value, and the RMSE was 0.66. The
mean of the predicted RUL was longer than the real value
and AERUL was 113.56 FEC and AERUL−step was 4.99. The
uncertainty can cover the real value. As shown in the inset of
Fig. 16, the number of AERUL−step less than 1 to 5 was 43,
119, 221, 343, and 492, respectively, which means half of the
predicted capacity points had AERUL−step less than 5 compared
to the actual value.
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Fig. 17. Prediction results based on feature-based GPR method using 50%
aging data. (a) Feature prediction results with uncertainty. (b) Estimated and
predicted capacities with uncertainty.

The prediction results by the feature-based method are
shown in Fig. 17. The predicted features align well with the
actual features with 0.0176 RMSE. Accordingly, the predicted
capacities were close to real capacities with 1.4444 RMSE.
The RMSE of estimated capacities in the training dataset
was 1.0202. The AERUL and AERUL−step were 22.65 FEC and
0.99, respectively. From the above results, the accuracy of
the feature-based method was higher than that of using the
capacity-based method.

The ensemble prediction results using 75% aging data
are presented in Fig. 18(a). The prediction trajectory of the
weighted strategy was similar to the capacity-based method,
which has a longer RUL with 1.0190 RMSE. The performance
of PF for capacity-based and feature-based models was
poor in the initial steps of the prediction. The remaining
ensemble strategies have similar prediction results. Fig. 18(b)
summarizes the AERUL of all methods. The PF for the
capacity-based and feature-based models and the conservative
method can choose the single method with smaller errors from
the two options.

D. Discussion and Comparison

From the above analysis, the prediction accuracy of the
two single methods was not close all the time, especially
when a reduced amount of data was used. It is necessary
to ensemble two single methods for robust and accurate
accuracy. Further, the predicted RUL and AERUL−step of all
single methods and ensemble strategies were summarized in
Table I. Fig. 19 shows RMSEs of predicted capacity using
different percentages of aging data based on all methods. It can
be found that a single model was not enough for accurate RUL
prediction in all cases. The prediction accuracy of model-
based methods increases when the percentage of aging data
increases. When a small amount of measured data is available,
using PF to fuse model-based and ML-based methods can
obtain predicted RUL with less error. For a medium and large
amount of data case, PF for the capacity-based and feature-
based methods is the best, as it has the lowest AERUL−step

Fig. 18. Prediction results based on the ensemble strategies and the
comparison of AERUL using 75% aging data. (a) Capacity prediction results.
Inserted is the zoomed-in view around EOL. (b) Comparison of AERUL.

TABLE I
RUL PREDICTION RESULTS FOR DIFFERENT METHODS

and almost the lowest RMSE in all percentages of aging data.
The feature-based method has a lower AERUL−step compared
with the capacity-based method when it comes to single
methods and the ensemble method with the model-based
method. Because each prediction step has 23 FECs, the
RERUL of the case with a large amount of measured data
will become relatively larger; therefore, the AERUL−step is a
more reasonable metric compared to RERUL to evaluate model
performance. The impact of varying percentages of missing
data on prediction accuracy was also examined. Missing data
points were randomly selected, and interpolation methods
were used to fill the missing values. For the capacity-based
method, the RMSE values for missing data percentages of 0%,
10%, 20%, 30%, 40%, and 50% are 0.5434, 0.7346, 0.8749,
0.5327, 1.0914, and 1.2891, respectively. As shown, the RMSE
increases slightly with a higher percentage of missing data, but
all values remain within an acceptable range. For the feature-
based method, partial data loss does not significantly affect
accuracy due to the inclusion of data from other cells in the
training process.
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Fig. 19. RMSE comparison for different prediction methods using different
percentages of aging data. (a) 25%, (b) 50%, and (c) 75%.

Additionally, to verify the generalization and effectiveness
of the proposed methods on other data, different percentages
of degradation data from two cells with the same aging
profile (5.6 C(19%)-4.6 C) from the MIT dataset were
used as input for the individual methods and the ensemble
strategy (combining the capacity-based and feature-based
methods using PF). The feature used in the feature-based
method was the standard deviation of the incremental capacity
during discharge (dQ/dV), where the same MA method was
adopted to smooth the original feature before inputting. The
prediction results using 25%, 50%, and 75% of aging data
are shown in Fig. 20. All methods demonstrated the accurate
prediction methods. For 25% of aging data, the RMSE values
for the capacity-based, feature-based, and ensemble strategy
were 0.0123, 0.0166, and 0.0148, respectively. For 50% of
aging data, the RMSEs were 0.0086, 0.0054, and 0.0068,
respectively. For 75% of aging data, the RMSEs were 0.0096,
0.0084, and 0.0065, respectively. The ensemble strategy can
even achieve higher accuracy. As the input data increases,
the confidence interval of predictions gradually narrows. The
models are trained and performed well in all cases, as the
selected cells had over 800 cycles, demonstrating the model’s
effectiveness and robustness in large sampling datasets.

The simulation times of different methods are summarized
in Table II. The time of the feature-based method is
larger than the capacity-based method due to the training
of the estimation model. ML-based methods need more
simulation time compared to model-based methods. All
ensemble strategies do not require much time, and all of
them are below 1 s. The more robust and accurate prediction

Fig. 20. Prediction results based on capacity-based GPR, feature-based GPR,
and ensemble strategy (PF combination) using different percentages of the
MIT dataset. (a) 25%, (b) 50%, and (c) 75%.

TABLE II
SIMULATION TIME FOR DIFFERENT METHODS

results can be obtained without additional computational effort
through ensemble strategies.

The choice of state variable and observation variable for PF
method influences prediction accuracy. For example, when the
results from capacity-based model were used as state variable
and those of feature-based model were used as observe
variable, the AERUL was 0.1413. When they are changed, the
AERUL was 22.58. The results from a more accurate method
should be selected as the state variable.

The ML method used in this work was GPR not a neuron
network-based method, because the sample data were limited,
and the accuracy was acceptable.

V. CONCLUSION

Accurate, robust, and reliable RUL prediction of lithium-
ion batteries is crucial for ensuring their safe operation.
For enhancing the robustness of RUL prediction results, this
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study proposes ensemble strategies for batteries aged by real
and dynamic forklift aging profiles. Two distinct methods,
the capacity-based forward prediction method and feature-
based forward prediction method assisted by the capacity
estimation model, are introduced. The weighted least squares,
conservative, and PF methods are used to ensemble the
predicted RUL results derived from two individual methods
and empirical models. Different percentages of data were
input to all proposed methods to evaluate their accuracy. The
obtained results indicate that a single method cannot ensure
accurate RUL prediction in all cases. The dual exponential
model has the highest accuracy among all model-based
methods. PF for model-based and ML-based methods can
reduce the error of RUL prediction for 25% of the aging
data cases. PF for capacity-based and feature-based methods
is recommended for a medium and large amount of data case,
where the AERUL and AERUL−step is less than 23 FECs and
1 step in all cases with negligible computational cost. The
feature-based method has higher accuracy compared with the
capacity-based method when it comes to a single method
and ensemble method with the model-based method, but the
simulation time is longer. The proposed methods are still
effective in other large sampling datasets. Future research will
focus on data filtering, ensemble optimization, and comparison
with electrochemical model-based prediction methods.
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