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Digital twins are virtual replicas of physical systems updated real time and are increasingly vital for complex systems like batteries.
Being electrochemical black boxes that degrade with use, batteries benefit from digital twins for monitoring, predictive
maintenance, and optimization. Data-driven models are popular for digital twins due to their adaptability, but are limited by
dependence on large datasets, weak interpretability, and poor generalization. In contrast, physics-based approaches such as Pseudo-
2D (P2D) models offer higher accuracy, interpretability, and require less operational data. These models can be packaged and
deployed across platforms using the Functional Mock-up Interface (FMI) and Functional Mock-up Units (FMUs). Through FMU
deployment, this paper illustrates the challenges and opportunities in balancing model depth and scale across battery chemistries, as
well as the robustness and efficiency of numerical methods across spatial and temporal scales. In addition, the paper highlights how
classical models already integrate data-driven elements, such as empirical fits for open-circuit voltage and electrolyte properties.
The most effective digital twin strategies for batteries are therefore hybrid models that combine the rigor of physics-based methods
with the flexibility of data-driven tools. Such interpretable, scalable, and fast models are essential for advancing energy storage and
enabling real-time control in diverse applications.
© 2025 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, https://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
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Digital twin has become a popularly researched concept in the
field of computations and modeling coupled together with real world
applications. While Dr. Michael Grieves first conceptualized the idea
for manufacturing in 2002, Digital Twin, as an official terminology,
was first used by the Materials and Process Laboratory at NASA’s
Marshall Space Flight Center in 2010.1,2 A digital twin is a virtual,
software-based representation of a physical asset, system, or process
that accurately reflects its real-world counterpart throughout its
lifecycle. Continuously updated with real-time data, it leverages
simulation, machine learning, analytics, and reasoning to detect
issues, predict outcomes, optimize performance, and support in-
formed decision-making ultimately delivering measurable business
value.3,4 In principle, the concept bridges the physical and digital
worlds, establishing a continuous feedback loop in which data
collected from sensors refines the virtual model, and the updated
model informs interventions in the physical system. This dynamic
exchange of information is what fundamentally differentiates digital
twins from traditional static models.

Dr. Karen Wilcox, Director of the Oden Institute at UT Austin,
has explained here5 that we are surrounded by powerful miniature
computers in the form of smartphones, smartwatches, and health and
wellness devices that are constantly collecting various types of data.
Simultaneously, these devices run sophisticated models on the
device or in the cloud that are rooted in physics and advanced
statistics. Essentially, they continuously gather data about their users
and build a virtual digital profile. For example, smartwatches collect
health data on key indicators and use it to generate personalized
suggestions and recommendations about our health and well-being.

What’s more, as we age, our body composition changes, so what
worked for us before may no longer be effective, hence the digital
model reorients and adapts to these changing conditions. This is the
essence of a digital twin, i.e., a virtual replica of a physical system
that enables real-time monitoring, simulation, and optimization
throughout the lifecycle of its subject. Such examples highlight
how digital twins can enable interventions and optimize decision-
making at both the individual and industrial scales.

Digital twins are widely used in a multitude of fields today. Apart
from personal health, they are useful in the aerospace industry for
aircraft design and maintenance; NASA famously used a digital twin
of the Apollo 13 spacecraft to study the malfunctioning components
and bring the stranded astronauts safely back home.1 Another use for
digital twins is in the launch and upkeep of satellites where they help
in simulating flight behavior, orbital tracking and environmental
control. On a larger scale, weather forecasting agencies have
developed a digital twin of the whole Earth to monitor the weather
patterns, track carbon cycles, water cycles/floods and currents in the
oceans to provide real time weather data. More recently, industrial
sectors such as automotive manufacturing and smart cities have
adopted digital twins to improve sustainability, enhance safety, and
enable predictive maintenance at scale. With the advent of newer
physics-based and data-driven models, digital twins are slowly
becoming omnipresent and affecting all aspects of engineering
endeavors we know today.

Battery Models and Digital Twins

Batteries are electrochemical systems that only provide voltage
and current as output measurements (in typical environments).
Therefore, mathematical models of various levels of complexity
are developed to study and predict internal processes and external
outputs from the batteries.6–8 Batteries also degrade over time,zE-mail: venkat.subramanian@utexas.edu
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changing their internal composition and capacity to hold charge.
Thus, creating a digital twin of a battery system is essential to
continually monitor and enhance its operational performance. A key
guideline is that digital twins should not be treated as static
representations. Rather, they must evolve alongside the battery,
continuously incorporating new data to improve predictive accuracy
over its lifetime. Recent papers by Dubarry and Howey provide an
overview on the various scales at which battery digital twins can
exist.3,9

Digital twins of batteries rely on accurate and adaptable battery
models to simulate, monitor, and predict the behavior of real-world
battery systems under various operating conditions. These models
act as the core analytical engine within the twin, allowing it to mirror
the physical battery’s internal states and performance in real-time.
Battery models enable a digital twin to (a) Estimate State of Charge
(SOC) and State of Health (SOH) with greater accuracy, (b) Predict
thermal behavior, capacity fade, and internal resistance growth over
time, (c) Optimize charging strategies and usage patterns to prolong
battery life, (d) Provide early warnings for potential failures or
unsafe conditions through fault detection and predictive mainte-
nance, (e) Simulate various “what-if” scenarios to inform design or
operational decisions, especially in electric vehicles (EVs), satellites,
and grid energy storage. This functionality transforms battery
management into a proactive and predictive framework, ensuring
improved performance and reliability. A well-designed digital twin
of a battery has applications across industries such as electric
vehicles to help manage complex battery packs, detect cell imbal-
ances, and support warranty analytics. In aerospace, battery digital
twins ensure mission readiness and safety under extreme conditions.
In stationary grid storage, they assist in real-time control, and
degradation tracking.

On an individual cell level, battery models generally fall into
these categories6

1. Equivalent Circuit Models (ECMs): They are simplified elec-
trical analogs representing batteries using resistors, capacitors,
and voltage sources. They are fast and computationally efficient,
ideal for embedded systems and real-time applications but
limited in capturing aging effects.

2. Electrochemical Models: They are based on many levels of
physics-based electrochemical models differentiated on length
scales. They involve partial differential equations (PDE)/differen-
tial algebraic equations (DAE) based mathematical description of
electrochemical phenomena representing changes in mass transfer
and interfacial reactions in batteries. Electrochemical models offer
high accuracy often requiring greater computational resources.

3. Data-Driven & Hybrid Models: They combine machine learning
with physics-based principles to handle complex patterns in
battery behavior, improving adaptability while maintaining
physical interpretability. Their strength lies in leveraging real-
world data while retaining the robustness and explanatory power
of physics-based models.

Each type of battery model has their strengths and weaknesses.
Equivalent circuit models, though efficient in replicating battery
behavior with their use of electrical circuit elements as equivalent
electrochemical components within batteries, suffer from inherent
empirical nature with no direct correlation with the physical
processes occurring within the battery.10 Data driven models are
the newer age entrants in the predictive modeling space that leverage
advanced statistical models transformed into machine learning tools
to predict battery behavior. Data driven machine learning models
have been used in aspects such as parameters estimation,11 battery
aging models,12–14 safety and thermal management,15 predicting
remaining useful life and so on. However, as the name suggests,
these models need data which can prove to be a major pitfall in their
predictive capabilities and usefulness. Further, owing to the nature of
the production process of commercial batteries, there is significant
cell to cell variability when it comes to performance of the batteries.

Thus, data-driven analysis performed on one type of battery won’t
necessarily directly translate into accurate prediction for a different
type of battery or worse, similar battery from a different batch. With
significant innovation happening in battery space every day, battery
chemistry and design parameters are trade secrets for OEMs and not
much of the data is shared across or released in the public domain.
As a result, building generalized and transferable models remains a
persistent challenge for data-driven approaches.

Data quality is another issue, as noisy, inconsistent, and poorly
labeled data leads to unreliable models. Lack of physical interpret-
ability is another major concern. While data-driven models may seem
attractive when they provide accurate results, they essentially work
like black boxes where the reasoning behind predictions can be
obscure. Therefore, limitations such as data scarcity, overfitting, biases
in training sets, and poor interpretability hinder the widespread
adoption of purely data-driven models in safety-critical applications.

In this context, physics-based electrochemical models have
proved their usefulness and reliability for both long-timescale
academic research and fast-turnaround Battery Management
System (BMS) applications.6,16 Figure 1 shows the hierarchy of
battery models ranging from cell level Equivalent Circuit Models to
atomistic simulations. Significant work has been carried out for the
order reduction of the battery models that make them useful in fast
parameter estimation, deployable in real time battery simulations and
overall computational efficiency. An attractive part of physics-based
models is the aspect of physical interpretability where change in
model results can be traced back to physical changes to electro-
chemical components and reactions within the battery. Thus, in the
space of digital twins, physics-based models are valuable in the
following aspects.

1. Low data dependency: Since these models are grounded in
physical laws, they require only material and cell parameters and
not extensive operational data to make predictions. This is
especially advantageous in early development stages or for
novel chemistries where data is sparse.

2. Rich state estimation: Physics-based models can infer internal
states of the battery (e.g., lithium concentration gradients,
temperature fields, SEI layer growth) that are not directly
measurable but are critical for health estimation and control.

3. Generalization across conditions: These models can be adapted
to simulate a wide range of operating scenarios (different C-
rates, temperatures, or cycling profiles) without retraining (or
with reduced retraining), making them robust for real-world
deployment.

4. Scenario planning and prognostics: Digital twins powered by
physics models can perform “what-if” simulations, forecasting
future states under varying usage, which is critical for predictive
maintenance and lifecycle optimization.

5. Hybridization potential: Even when some data is available,
hybrid models can be built by combining physics-based models
with machine learning to correct residual errors or adapt to
degradation over time.

Now that models have been briefly introduced, next we discuss
taking these models to applications as digital twins.

Functional Mock-up Interface (FMI) for Battery Model
Deployment

The Functional Mock-up Interface (FMI) is an open standard
developed to enable the exchange and integration of dynamic models
across different simulation tools.17,18 It defines a vendor- and tool-
neutral API for packaging compiled simulation models including
their equations, solver routines, and platform-specific libraries into a
single, self-contained archive called a Functional Mock-up Unit
(FMU). This standardized format ensures consistent behavior and
results across operating systems and tools, simplifying model reuse,
accelerating development, and streamlining collaboration.
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In the context of battery modeling, FMUs are especially
powerful. Researchers and engineers can encapsulate high-fidelity
physics-based models such as Single Particle Models (SPM), Open
Circuit Voltage (OCV) models, phase field models, or thermal-
electrochemical degradation models into modular black box compo-
nents. These models can then be seamlessly integrated into larger
system-level simulations for applications like BMS testing, compo-
nent optimization, and digital twin deployments. The idea of FMU is
to provide the user (especially experimental researchers and system
level integrators (for EVs, grids)) with a tool that can readily provide
model output without getting into details of the model equations.
FMU-based battery models described here are developed in C++
and possess remarkable flexibility in input and output configurations.
Therefore, a model can easily be built that accepts not only the input
parameters from the experiments but also experimental data to
perform validation. Figure 2 shows the salient features of battery
functional mockup unit (FMU).

Black Box Paradigm

FMUs behave like opaque components under a strict input/output
handshake paradigm:

• Encapsulation: All internal code, numerical solvers, and platform-
specific libraries are hidden behind a standardized interface,
protecting intellectual property and simplifying dependency man-
agement.

• Interface Specification: Each FMU exposes only a defined set
of inputs (e.g., current profiles, temperature schedules) and
outputs (e.g., surface/center concentration, OCV), along with
tunable parameters.

• Interoperability: FMUs generated from different tools can be
swapped or coupled within a simulation framework without
requiring source code access or recompilation of the host
application.

Execution Workflow:

1. Prepare Inputs: Populate a CSV file (e.g., lco-ocv_input_params.
csv) with time-series and parameter values.

2. Invoke Runner: Execute the FMU runner (fmusim.exe) via
command line, specifying the FMU file, input CSV, simulation
start/stop times, output CSV path, and logging interval.

fmusim.exe \
–start-time 0 \
–stop-time 3600 \
–input-file lco-ocv_input_params.csv \
–output-file lco-output.csv \
–output-interval 10 \
\lco-ocv.fmu

3. Post-Process Outputs: Import the generated CSV (e.g., lco-
output.csv) into analysis tools for visualization and further data-
driven tuning.

Advantages

• Portability: One FMU runs identically across platforms and tools.

Figure 2. Battery functional mockup unit (FMU) features.

Figure 1. Hierarchy of battery models ranging from cell level Equivalent Circuit Models to atomistic simulations.
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• Modularity: Plug-and-play architecture allows rapid model
comparison and scalable system simulations.

• Abstraction: Users never need to compile or link source code,
and proprietary implementations remain protected.

• Scalability & Efficiency: Algorithmically optimized FMUs
support multi-physics modeling and parameter-agnostic per-
formance, enabling system-level analysis under diverse loading
and thermal conditions.

Trade-offs:

• Opacity: Internal solver settings and numerical methods are hidden,
limiting opportunities for fine-grained debugging or customization.

• Runtime Overhead: The standardized FMI layer may introduce
modest performance penalties.

• Versioning Challenges: Evolving FMU formats or tooling
changes can cause compatibility issues if not carefully tracked.

In summary, by enabling tool-agnostic, encapsulated deployment
of detailed battery models, FMUs offer a reproducible and main-
tainable way to integrate digital twins across diverse electrification
applications. Whether for fast prototyping or production-grade
simulations, this standard ensures that high-fidelity models remain
modular, interoperable, and platform-independent.

Mathematical description of representative battery models for
FMUs.—Let us now look at the role of physics and math that goes
into the development of an FMU. Consider a physics-based electro-
chemical model for an NMC cathode particle that is charged. We use
empirical OCV curve reported in literature19 with cell-centered finite
difference discretization for spatial variables.
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represents the flux of concentration. Figure 3 presents the surface
concentration for increasing number of node points (Nx = 2, 4, 8, 16,
& 32). The same model described above can be approached with a
different mathematical approach such as Galerkin weak form derived
using symmetric polynomials explained elsewhere.20 Figure 4 presents
surface concentration with 1, 2, 3, 4, 5 terms using this approach.

Batteries however differ in their behavior for different chemistries.
For LFP batteries, a phase separation is observed upon intercalation,
and the voltage profile is much flatter around 3.2—3.4 V. As shown in
a recent paper,21 to tackle the phase separation dynamics phase field
models have been proposed to describe the intercalation behavior in
LFP type cathodes. Equation 2 shows the phase field model used for
lithium intercalation in the cathode.
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Where, Nx refers to the modified flux expression. is the chemical
potential, whereas and are the enthalpy of mixing per site and the
gradient energy penalty coefficient in dimensionless form respectively.22

Figure 5 shows a typical charge profile for LFP chemistry where the
concentration at x = 0 and x = 1 is plotted with respect to time for the
values of = 3. It should be noted that, the higher value represents
the phase separating behavior whereas the lower value represents the
single-phase behavior as presented here.21 Further, we have observed
that, for this model, using higher-order weak form finite element or
higher-order spectral methods do not result in faster convergence.

Next, a digital twin was developed for Li-S batteries (a conver-
sion chemistry) originally developed by Kumaresan and White and
has been studied in detail by others.23–25 Model equations are given
in Eq. 3. A cell-centered finite difference model of Li-S was
developed and discharge curves at different C-rates predicted are
given in Fig. 6. With respect to Li-S cathodes, it is noted that
mesoscale modeling has captured how the Li2S precipitate mor-
phology (e.g., film-like vs. fractal growth) affects the evolution of
electrochemically active area (e.g., surface passivation) and pore-

Figure 3. (a) Concentration at x = 1 vs time and (b) Voltage vs time plot for increasing number of node points (Nx = 2, 4, 8, 16, & 32) showing convergence
after 8 node points. The discretization scheme used was cell centered finite difference. One can perform detailed error analysis for different applied currents to
confirm that higher applied currents need a greater number of elements for convergence.
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phase transport, governing the shift from interface-limited to trans-
port-limited regimes.26–28 In this context, pore-scale simulations
enable the computation of effective electrode properties, including
active area, pore-phase tortuosity, and electronic conductivity, that
can be incorporated into cell-level performance models.26 The
development of microstructure-aware modeling frameworks is cri-
tical for accurately capturing how design parameters such as the
electrolyte-to-sulfur (E/S) ratio, pristine porosity, pore size, and
electrolyte transport properties affect cell performance and degrada-
tion pathways (e.g., polysulfide shuttle). Integrating such mesoscale
models into digital twins allows dynamic microstructural evolution
and associated electrochemical-transport interactions to be reflected
in cell-level performance, thereby enhancing predictive fidelity and
enabling earlier detection of degradation onset in Li-S batteries.

Governing Equations for Li-S model:23
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Here, i represents the individual species taking part in electro-
chemical transport reactions, k represents solid phase species taking
part in precipitation reactions.Ci is the concentration of species i and
is the porosity. Ni represents the flux of species i. ri and Ri

represents rate of production/consumption of species i via electro-
chemical or precipitation reactions respectively. is represents solid
phase current density and ie represents liquid phase current density. a
is interfacial surface area. Di is diffusivity, si j, is stoichiometric
coefficient, i j, is number of moles of ionic species i in solid species
k . kk is rate constant and Ksp k, is the solubility product for a

precipitation reaction involving k . Ṽk is the partial molar volume of k
and Rk is the precipitation rate.

In this context, pore-scale simulations enable the computation of
effective electrode properties, including active area, pore-phase

Figure 5. Concentration profile at x = 0 and x = 1 for LFP type phase
separating electrodes during charging for ω = 3.

Figure 4. (a) Concentration at x = 1 vs time and (b) Voltage vs time plot for increasing number of terms (N = 1, 2, 3, 4, & 5) for Galerkin weak form
formulation using symmetric polynomials. Here, convergence is achieved after N = 2 indicating faster rate of convergence compared to the cell-centered finite
difference discretization shown in Fig. 3.
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tortuosity, and electronic conductivity, that can be incorporated into
cell-level performance models.26 The development of microstruc-
ture-aware modeling frameworks is critical for accurately capturing
how design parameters such as the electrolyte-to-sulfur (E/S) ratio,
pristine porosity, pore size, and electrolyte transport properties affect
cell performance and degradation pathways (e.g., polysulfide
shuttle). Integrating such mesoscale models into digital twins allows
dynamic microstructural evolution and associated electrochemical-
transport interactions to be reflected in cell-level performance,
thereby enhancing predictive fidelity and enabling earlier detection
of degradation onset in Li-S batteries.

To capture the influence of microstructure on transport behavior,
the effective properties like tortuosity, electronic conductivity, and
specific active surface area are evaluated using Direct Numerical
Simulations (DNS), as discussed below.7,29 Microstructural inputs
are generated by procedurally growing precipitates within an initially
pristine mesoporous carbon scaffold, followed by evaluating trans-
port properties on the resulting voxelized geometry. The scaffold is
characterized by its initial porosity ( 0), mean pore radius (Rp), and a
representative elementary volume (REV) that has been pre-validated
for both size and resolution independence. Precipitation is allowed to
occur along carbon-pore and precipitate-pore interfaces, with local
attachment influenced by a morphology factor ( ). Interfacial sites
are prioritized for growth based on a defined deposition metric. At
each growth increment, deposition sites are filled, and the interfacial
areas are recalculated. These growth and characterization steps are
iteratively repeated until the desired precipitate fraction is achieved.
The directional pore tortuosity ( x, y, z) is then determined by
solving the steady-state diffusion equation within the pore domain.

The steady state concentration balance is solved in the pore phase:
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Which yields along the chosen axis, and the same procedure is

repeated for the other two directions to capture anisotropy, with
isotropic averages reported when appropriate.

Effective electronic conductivity of the connected carbon net-
work ( ,eff x, ,eff y eff z, , ) is computed by solving charge conservation
in the solid phase while treating pores and precipitate as insulators.
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In general, the effective electronic conductivity ( eff ) closely
follows the carbon fraction and remains nearly constant until the
system approaches the percolation threshold. In contrast, the τ is
highly sensitive to the 0, Rp, precipitate volume fraction, and , as
precipitation alters and constricts ionic transport pathways within the
electrolyte. The validity of these formulations has been confirmed in
previous studies.26,30,31 Table I provides microstructural properties
as a function of various geometrical and morphological parameters
described here.

Black boxing battery models—from simulation to estimation/
optimization.—In this work, simulations were conducted for both
identical models using different numerical discretization approaches,
and different models using the same spatial discretization approach. For
the model described here, the time integrator IDA (Implicit Differential-
Algebraic equation solver) from the SUNDIALS (SUite of Nonlinear
and DIfferential/ALgebraic equation Solvers)32 suite was found to be
sufficiently robust and efficient for all simulations. Electrochemical
battery models are stiff, highly nonlinear, ill-conditioned and require
consistent initialization due to their inherent DAE nature. A discussion
on consistent initialization of DAE models can be seen in.33,34 Stiffness
in such systems is typically handled using implicit time solvers. Among
available solvers, SUNDIALS’s IDA has remained one of the most
robust and efficient options, as demonstrated through decades of
national laboratory testing. It is recommended to restrict the solver to

Figure 6. The typical discharge curve for Li-S model for different C-rates of
C/2, C/5 and C/8.

Table I. Mathematical correlation of microstructural properties as function of precipitation amount ( 2), morphology ( ) and porosity ( ).

Property Mathematical relation Coefficient of determination, R2

Active area (carbon-electrolyte interface)

( )( )
= ( + ( )

( ) )
+

a 0.194794 4.636493 1

6.299025 1 . 1

R

1
0

0
2

0.247642 0.508887

0.171546

p

2
2.862174

0.985191

Tortuosity = (
( + ))

( ( + ))

0.841432

0.582207 0.829378 0.121772 .

2

2

2.149351 1.936327 2.920928 0.1730312 2

0.968584

Conductivity = ( )1.480809 10 0
2.130685 0.983681
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a maximum order of 2, since the algorithm is not A-stable beyond
that.35 The nonlinearity of electrochemical battery models necessitates a
robust Newton–Raphson solver, which in turn requires an analytic
Jacobian for convergence. When numerical differentiation methods for
computing the Jacobian fail or become unstable, the use of analytical
Jacobians, derived with the help of tools such as Maple, Mathematica,
or AutoDiff, can greatly improve robustness.

The choice of linear solver within IDA also plays a critical role. The
ill-conditioning introduced by Butler–Volmer (BV) kinetics demands a
robust direct linear solver. For one-dimensional models, Newman’s
BANDJ algorithm based on Thomas’s tridiagonal method offers an
efficient solution strategy. The codes presented in this paper, as well as
IDA implementations for 1D problems, perform effectively using either
Gaussian elimination (dense matrix algebra) or banded solvers (arising
from finite difference or finite element methods with a known bandwidth).

When extending from 1D to 2D and 3D models, the use of sparse
direct solvers becomes necessary. Based on our testing, PARDISO36

currently offers the best performance for such systems. However,
interfacing IDA with these solvers is not straightforward. Tools like
COMSOL provide built-in interfaces to PARDISO and employ implicit
time-stepping methods for battery simulations. In contrast, iterative solvers
generally perform poorly for electrochemical battery models. Future work
from our group will focus on converting some of these 2D and 3Dmodels
into FMU form for enhanced flexibility and interoperability.

Now that a robust and efficient digital twin has been developed
for simulation models, the natural next step is to create a digital twin
for parameter and model estimation, using both experimental data
and the previously developed models.

Parameter Estimation as Optimization Problem

In addition to standard least-squares fitting, parameter estimation
can be formulated as an optimization problem. This approach is

important because, beyond fitting voltage–time curves, the estimated
parameters must remain within physically meaningful limits to
ensure accurate tracking of a battery’s real-time behavior (voltage,
temperature etc.). Therefore, the upper and lower bounds, as well as
any linear constraints on the parameters, are incorporated into the
optimizer based on battery physics. Optimization strategies can be
broadly classified into two main categories, as illustrated in Fig. 7a.
The parameter estimation based on optimization can be solved using
either indirect methods or direct methods. The indirect methods are
based on Pontryagin maximum principle which was discovered
mid-19th century when computational expense was high. This
method provides best answer if one can successfully implement the
same.37 However, it becomes impractical or at least difficult for
larger, nonlinear models with active inequality constraints on state
variables due to their computational complexity. Direct methods, on
the other hand, transform the infinite-dimensional optimization
problem into a finite-dimensional one, making it more computation-
ally tractable. These methods can be further divided into simulta-
neous and sequential strategies, which are discussed in the following
sections.

Simultaneous optimization strategy.—The schematic of this
approach is shown in Fig. 7b. The dynamic mathematical models
are typically PDEs. Spatial discretization of these PDEs converts the
system into DAEs, and further temporal discretization transforms the
DAEs into a set of nonlinear algebraic equations (NAEs). A
nonlinear programming problem (NLP) is then formulated to
minimize a specific objective function, with the NAEs explicitly
defined as nonlinear constraints, along with any relevant path
constraints. This approach enables the solution of the nonlinear
optimization problem while avoiding model failures.38,39 In the past,
we have used large scale nonlinear optimizers’ model-based control

Figure 7. (a) Broad classification of various techniques that are used for parameter estimation (b) Simultaneous dynamic optimization strategy for parameter
estimation (c) Sequential dynamic optimization strategy for parameter estimation.

ECS Advances, 2025 4 040503



strategies using physics-based battery model and for estimation of
parameters. The primary challenge in this framework is the large
number of time steps required for temporal discretization to achieve
sufficient accuracy, as well as selecting an appropriate discretization
strategy (e.g., collocation methods). As of today, only problems
stated as algebraic equations (not PDEs or blackboxes) can be
guaranteed to converge to global optima for convex problems. This
makes the simultaneous approach attractive as it converts the
optimization problem to a large set of algebraic equations.

Sequential optimization strategy.—The schematic of this ap-
proach is shown in Fig. 7c. In this strategy the DAE solver is
integrated with NLP solver. At each iteration of the optimization
cycle, the parameters (decision variables) are specified by the NLP
solver. The solver simulates the model for the specific time period, or
till a stop condition is achieved. The generated model simulation data
is used to compute the objective function to generate parameters for
the next iteration cycle. The optimization cycle will be continued till
the objective function hits its minimum. This optimization strategy is
robust when a DAE solver avoids model simulation failure. The
FMUs developed in this paper enables researchers to solve optimiza-
tion problems to estimate parameters without any error in optimiza-
tion due to model simulation failure.40 CASADI is very robust for
optimization, but without proper initialization, calls to battery
models within CASADI framework might fail. In addition, handling
nonlinear path constraints is more challenging in the sequential
approach as opposed to simultaneous approach.

Bayesian estimation can be viewed as a sequential approach for
optimization, though it is not an optimization strategy. For example,
in our past work,41 we had estimated five effective transport and
kinetic parameters by applying least-squares estimation to experi-
mental voltage-discharge data. The estimated parameters were the
effective diffusion coefficient of lithium ion in the solution phase
(D1), effective diffusion coefficient of lithium in the solid phase for
the negative and positive electrodes (Dsn and Dsp), and electro-
chemical reaction rate constants for the negative and positive
electrodes (kn and kp). The effective negative-electrode solid-phase
diffusion coefficient and reaction rate constant (Dsn and kn) were
found to decrease monotonically with cycles, whereas the other three
parameters did not follow any trend. This suggested that the voltage-
discharge curves may not contain sufficient information to accurately
estimate the effective values of D1, Dsp, and kp., resulting in large
uncertainties in their values when fit only to experimental voltage-
discharge curves.

Under-appreciated role of data-based approaches in classical
models.—Even in the case of classical models, a significant point to
note is the role of data-based approaches already embedded in them.
The P2D model developed by Newman’s group contains PDEs
representing mass and charge transport coupled with electrode
kinetics. The electrode OCV as a function of SOC is obtained using
the data-based approaches only.16 The thermodynamics of intercala-
tion is not fully predictable even today from physics-based
approaches. Therefore, an OCP fit is obtained from experiments
done on half cells. This fit, in the form of a piecewise polynomial or
an empirical nonlinear mathematical function, is used to correctly
obtain the voltage at individual electrodes. Thus, empirical fits from
experimental data and numerical solution of classical PDEs are used
for physics based electrochemical modeling of batteries for the last 3
decades.

Another application of data driven approaches in classical models
is the electrolyte conductivity used in battery models. The con-
ductivity of electrolytes is generally derived from independent data
and applied as input to the P2D models. AI based approaches are
making a difference in identifying electrolytes for improved
conductivity.42 In addition, Bruggeman coefficient, which represents
the tortuosity of the media, needs rethinking at the microscale. At
that length scale, a 2D/3D model representation becomes important.
Successful past efforts in microscale come from detailed numerical

simulation based on SEM images of a porous electrode and learning
updated tortuosity, diffusion coefficients and local heterogeneity
from offline simulation.

Future prospects and perspective.—The examples presented
above were from approximate models such as SPM model simulated
using spectral (Galerkin) and cell-centered finite difference method. It
was shown that faster convergence is achieved by carefully selecting
the numerical method to solve the model involved. For the description
of mass and charge transport through all the three domains, i.e.,
cathode, anode and electrolyte; P2D models have proved themselves
to be the gold standard in this space. An FMU has been developed by
us for P2D models that show superior performance in various
conditions up to 10x faster than commercially available software
such as COMSOL. This has been licensed by an OEM. In addition, a
digital twin has also been developed for Li-S batteries.

In the context of digital twins, the speed of the underlying model
is critical to expedite faster analysis of possible scenarios for best
predictions. Rapid simulation capabilities improve computational
efficiency and make real-time decision support feasible, which is
essential for large-scale applications such as EV fleets and grid
energy storage. Using the best possible model and best possible
algorithm helps us arrive at perhaps the fastest digital twin as
elaborated in the previous section. A fast model also supports
continuous monitoring and enables the twin to adapt dynamically
to new conditions and operational realities. In addition, computa-
tional speed underpins advanced techniques such as Bayesian
estimation and uncertainty quantification, which enhance robustness
and reliability. This can enable better prediction of battery states and
parameters, improve performance and support the development of
optimal charging profiles.

In advancing the data driven and machine learning models
applied to batteries, physics informed machine learning models for
batteries are gaining popularity.43 This helps with the interpretability
and validation of the data driven models.

Our future work in this area also includes developments of FMUs
for parameter estimation and Bayesian estimation to understand
degradation and optimization to identify fast charging profiles. This
will include estimation and optimal control approaches based on the
combination of robust time integrators coupled with optimizers and
estimators. Note that by brute forcing and by running a lot of
simulations, robust optimization can be performed with Genetic
Algorithms, simulated annealing, etc. However, gradient based
approaches, if they work can be very efficient and can be
implemented in real-time in embedded systems. As seen earlier,
optimization codes can fail, if the model is not simulated to sufficient
precision providing inaccurate gradients and Hessians. Also, active
inequalities of very simple models can result in high index DAEs31

which cannot be even simulated today with standard packages or
solvers without order reduction.

Conclusions

The future of battery research and development undoubtedly or at
least partially lies in the adoption of digital twin technology. These
virtual representations of batteries, built upon fundamental models,
whether physics-based or data-driven, offer unprecedented opportu-
nities for monitoring, control, and optimization. However, careful
model selection remains crucial: the chosen model must strike the
right balance between accuracy and computational efficiency to be
practical and scalable. While data-driven models are gaining
popularity, their shortcomings such as limited interpretability and
dependence on large datasets cannot be overlooked. Hence, the most
promising path forward involves developing hybrid models that are
rooted in electrochemical fundamentals, judiciously integrate data-
driven techniques, and remain computationally lightweight. This
holistic approach holds the key to unlocking the full potential of
digital twins for batteries, ultimately accelerating innovation and
deployment in energy storage systems.
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Code Dissemination

All the FMUs developed and presented in this paper (including the
original source codes in C++) are available upon request from the
corresponding author, Venkat R. Subramanian, without any restrictions.
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