• Skip to primary navigation
  • Skip to main content
  • Skip to footer
UT Shield
Math Neuro - Taillefumier Lab
  • Home
  • Research
    • Replica-mean-field neural networks
    • Synchrony in spiking networks
    • Neural code and spatial cognitive map
    • Information and resource allocation in microbial networks
  • Bio
  • People
  • Publications
  • Positions
  • Contact

Math Neuro

Taillefumier Lab

Departments of Mathematics/Neuroscience
College of Natural Science

August 11, 2010, Filed Under: Publications

A Fast Algorithm for the First-Passage Times of Gauss-Markov Processes with Hölder Continuous Boundaries

Citation:

Taillefumier T, Magnasco MO. A Fast Algorithm for the First-Passage Times of Gauss-Markov Processes with Hölder Continuous Boundaries. Journal of Statistical Physics [Internet]. 140 (6) :1130 – 1156.

Publisher’ Version

Abstract

Even for simple diffusion processes, treating first-passage problems analytically proves intractable for generic barriers and existing numerical methods are inaccurate and computationally costly. Here, we present a novel numerical method that is faster and has more tightly controlled accuracy. Our algorithm is a probabilistic variant of dichotomic search for the computation of first passage times through non-negative homogeneously Hölder continuous boundaries by Gauss-Markov processes. These include the Ornstein-Uhlenbeck process underlying the ubiquitous “leaky integrate-and-fire” model of neuronal excitation. Our method evaluates discrete points in a sample path exactly, and refines this representation recursively only in regions where a passage is rigorously estimated to be probable (e.g. when close to the boundary).

Footer

FOOTER SECTION ONE

FOOTER SECTION TWO

FOOTER SECTION THREE

  • Email
  • Facebook
  • Instagram
  • Twitter

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025