Citation:
Taillefumier T, Touboul J. Multiresolution Hilbert Approach to Multidimensional Gauss-Markov Processes. International Journal of Stochastic Analysis [Internet]. 2011 :89.
Abstract
The study of the multidimensional stochastic processes involves complex computations in intricate functional spaces. In particular, the diffusion processes, which include the practically important Gauss-Markov processes, are ordinarily defined through the theory of stochastic integration. Here, inspired by the Lévy-Ciesielski construction of the Wiener process, we propose an alternative representation of multidimensional Gauss-Markov processes as expansions on well-chosen Schauder bases, with independent random coefficients of normal law with zero mean and unit variance. We thereby offer a natural multiresolution description of the Gauss-Markov processes as limits of finite-dimensional partial sums of the expansion, that are strongly almost-surely convergent. Moreover, such finite-dimensional random processes constitute an optimal approximation of the process, in the sense of minimizing the associated Dirichlet energy under interpolating constraints. This approach allows for a simpler treatment of problems in many applied and theoretical fields, and we provide a short overview of applications we are currently developing.