• Skip to primary navigation
  • Skip to main content
  • Skip to footer
UT Shield
Math Neuro - Taillefumier Lab
  • Home
  • Research
    • Replica-mean-field neural networks
    • Synchrony in spiking networks
    • Neural code and spatial cognitive map
    • Information and resource allocation in microbial networks
  • Bio
  • People
  • Publications
  • Positions
  • Contact

Math Neuro

Taillefumier Lab

Departments of Mathematics/Neuroscience
College of Natural Science

December 1, 2012, Filed Under: Publications

Exact Event-Driven Implementation for Recurrent Networks of Stochastic Perfect Integrate-and-Fire Neurons

Citation:

Taillefumier T, Touboul J, Magnasco M. Exact Event-Driven Implementation for Recurrent Networks of Stochastic Perfect Integrate-and-Fire Neurons. Neural Computation [Internet]. 24 (12) :3145 – 3180.

Publisher’s Version

Abstract

In vivo cortical recording reveals that indirectly driven neural assemblies can produce reliable and temporally precise spiking patterns in response to stereotyped stimulation. This suggests that despite being fundamentally noisy, the collective activity of neurons conveys information through temporal coding. Stochastic integrate-and-fire models delineate a natural theoretical framework to study the interplay of intrinsic neural noise and spike timing precision. However, there are inherent difficulties in simulating their networks’ dynamics in silico with standard numerical discretization schemes. Indeed, the well-posedness of the evolution of such networks requires temporally ordering every neuronal interaction, whereas the order of interactions is highly sensitive to the random variability of spiking times. Here, we answer these issues for perfect stochastic integrate-and-fire neurons by designing an exact event-driven algorithm for the simulation of recurrent networks, with delayed Dirac-like interactions. In addition to being exact from the mathematical standpoint, our proposed method is highly efficient numerically. We envision that our algorithm is especially indicated for studying the emergence of polychronized motifs in networks evolving under spike-timing-dependent plasticity with intrinsic noise.

Footer

FOOTER SECTION ONE

FOOTER SECTION TWO

FOOTER SECTION THREE

  • Email
  • Facebook
  • Instagram
  • Twitter

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025