• Skip to primary navigation
  • Skip to main content
  • Skip to footer
UT Shield
Math Neuro - Taillefumier Lab
  • Home
  • Research
    • Replica-mean-field neural networks
    • Synchrony in spiking networks
    • Neural code and spatial cognitive map
    • Information and resource allocation in microbial networks
  • Bio
  • People
  • Publications
  • Positions
  • Contact

Math Neuro

Taillefumier Lab

Departments of Mathematics/Neuroscience
College of Natural Science

January 12, 2017, Filed Under: Publications

Metabolic trade-offs promote diversity in a model ecosystem

Citation:

Posfai A, Taillefumier T, Wingreen NS. Metabolic trade-offs promote diversity in a model ecosystem. Physical Review Letter [Internet]. 118 (2).

Publisher’s Version

Abstract

In nature a large number of species can coexist on a small number of shared resources, however resource competition models predict that the number of species in steady coexistence cannot exceed the number of resources. Motivated by recent studies of phytoplankton, we introduce trade-offs into a resource competition model, and find that an unlimited number of species can coexist. Our model spontaneously reproduces several features of natural ecosystems including keystone species and population dynamics/abundances characteristic of neutral theory, despite an underlying non- neutral competition for resources.

Footer

FOOTER SECTION ONE

FOOTER SECTION TWO

FOOTER SECTION THREE

  • Email
  • Facebook
  • Instagram
  • Twitter

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025