• Skip to primary navigation
  • Skip to main content
  • Skip to footer
UT Shield
Math Neuro - Taillefumier Lab
  • Home
  • Research
    • Replica-mean-field neural networks
    • Synchrony in spiking networks
    • Neural code and spatial cognitive map
    • Information and resource allocation in microbial networks
  • Bio
  • People
  • Publications
  • Positions
  • Contact

Math Neuro

Taillefumier Lab

Departments of Mathematics/Neuroscience
College of Natural Science

January 17, 2022, Filed Under: Publications

Replica-mean-field limits Fragmentation-Interaction-Aggregation Processes

Citation:

Davydov M, Baccelli F, Taillefumier T. Replica-mean-field limits Fragmentation-Interaction-Aggregation Processes. Accepted in Advances in Applied Probability [Internet]. 59 (1) :38-59.

Publisher’s Version

Abstract

Network dynamics with point-process-based interactions are of paramount modeling interest. Unfortunately, most relevant dynamics involve complex graphs of interactions for which an exact computational treatment is impossible. To circumvent this difficulty, the replica-mean-field approach focuses on randomly interacting replicas of the networks of interest. In the limit of an infinite number of replicas, these networks become analytically tractable under the so-called ‘Poisson hypothesis’. However, in most applications this hypothesis is only conjectured. In this paper we establish the Poisson hypothesis for a general class of discrete-time, point-process-based dynamics that we propose to call fragmentation-interaction-aggregation processes, and which are introduced here. These processes feature a network of nodes, each endowed with a state governing their random activation. Each activation triggers the fragmentation of the activated node state and the transmission of interaction signals to downstream nodes. In turn, the signals received by nodes are aggregated to their state. Our main contribution is a proof of the Poisson hypothesis for the replica-mean-field version of any network in this class. The proof is obtained by establishing the propagation of asymptotic independence for state variables in the limit of an infinite number of replicas. Discrete-time Galves–Löcherbach neural networks are used as a basic instance and illustration of our analysis.

Footer

FOOTER SECTION ONE

FOOTER SECTION TWO

FOOTER SECTION THREE

  • Email
  • Facebook
  • Instagram
  • Twitter

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025