• Skip to primary navigation
  • Skip to main content
  • Skip to footer
UT Shield
Math Neuro - Taillefumier Lab
  • Home
  • Research
    • Replica-mean-field neural networks
    • Synchrony in spiking networks
    • Neural code and spatial cognitive map
    • Information and resource allocation in microbial networks
  • Bio
  • People
  • Publications
  • Positions
  • Contact

Math Neuro

Taillefumier Lab

Departments of Mathematics/Neuroscience
College of Natural Science

May 15, 2022, Filed Under: Submitted

Characterization of blowups via time change in a mean-field neural network

Citation:

Whitman P, Taillefumier T. Characterization of blowups via time change in a mean-field neural network. [Internet].

Publisher’s Version

Abstract

Idealized networks of integrate-and-fire neurons with impulse-like interactions obey McKean-Vlasov diffusion equations in the mean-field limit. These equations are prone to blowups: for a strong enough interaction coupling, the mean-field rate of interaction diverges in finite time with a finite fraction of neurons spiking simultaneously, thereby marking a macroscopic synchronous event. Characterizing these blowup singularities analytically is the key to understanding the emergence and persistence of spiking synchrony in mean-field neural models. However, such a resolution is hindered by the first-passage nature of the mean-field interaction in classically considered dynamics. Here, we introduce a delayed Poissonian variation of the classical integrate-and-fire dynamics for which blowups are analytically well defined in the mean-field limit. Albeit fundamentally nonlinear, we show that this delayed Poissonian dynamics can be transformed into a noninteracting linear dynamics via a deterministic time change. We specify this time change as the solution of a nonlinear, delayed integral equation via renewal analysis of first-passage problems. This formulation also reveals that the fraction of simultaneously spiking neurons can be determined via a self-consistent, probability-conservation principle about the time-changed linear dynamics. We utilize the proposed framework in a companion paper to show analytically the existence of singular mean-field dynamics with sustained synchrony for large enough interaction coupling.

Footer

FOOTER SECTION ONE

FOOTER SECTION TWO

FOOTER SECTION THREE

  • Email
  • Facebook
  • Instagram
  • Twitter

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025