

The Power of Adaptivity in Representation Learning: From Meta-Learning to Federated Learning

Aryan Mokhtari ECE Department, UT Austin

TILOS - OPTML Seminar MIT October 26th, 2022

MAML and ANIL Provably Learn Representations, ICML 2022.

Liam Collins UT Austin

Sewoong Oh UW

Sanjay Shakkottai UT Austin

 FedAvg with Fine Tuning: Local Updates Lead to Representation Learning, NeurIPS 2022

Liam Collins UT Austin

Hamed Hassani UPenn

Sanjay Shakkottai UT Austin

- Consider the Multi-Task Learning (MTL) setup
 - ⇒ We are given a set of tasks
 - ⇒ For each task, we have access to some (small number of) samples
 - ⇒ The tasks often share some similarity (but are not identical)
- Main Goal: Train a model that generalizes well to new tasks/domains
 - ⇒ With limited data and computation!

Image credits: Alex Krizhevsky, Learning Multiple Layers of Features from Tiny Images, 2009.

Training Data

Task in new Scenario

Image Credits: bit.ly/3i5m8ay, bit.ly/3w723ZY, bit.ly/3KHMQ5E, bit.ly/3i7pREJ, bit.ly/34I1ytT

 Training data in various scenarios; goal is to quickly adapt to the task in a new scenario

- Suppose that we have access to
 - ⇒ large amounts of data from different training environments
 - ⇒ a small amount of data available just prior to deployment from the deployment environment
- Given this setup how should we train our model?
- Possible Approach:
 - (a) Build a model using data from the training environments
 - (b) Fine-tune the model using the small amount of deployment data

How can we build a model that is easily fine-tunable?

Obvious Approach: Build a model to minimize average training loss, and then fine tune for deployment

- Set of tasks: $\mathcal{T} = \{\mathcal{T}_i\}_{i=1}^{i=n}$ coming from distribution p
- ullet Select a model $oldsymbol{ heta}_{ extit{train}}^*$

Average Risk (Loss) Minimization

$$oldsymbol{ heta}^*_{\textit{train}} \in \operatorname{argmin}_{oldsymbol{ heta}} rac{1}{n} \sum_{i=1}^n f_i(oldsymbol{ heta})$$

- A new task \mathcal{T}_{test} is revealed, drawn according to dist. p
- ullet Fine tune the model: $m{ heta}^*_{ extit{train}}
 ightarrow m{ heta}^*_{ extit{new}}$
- Performance: $f_{test}(\theta_{new}^*)$

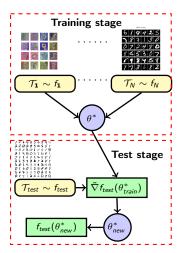


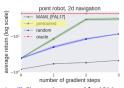
Image Credits: https://bit.ly/392pda9, https://bit.ly/3EEIElg

- Suppose we have images from a large number of classes (e.g., Imagenet)
 - Task == classifying images among a K-subset of these classes, small K
 - Many different subsets == Many tasks

ARM + Fine Tuning has mixed performance [FAL17]

MiniImagenet (Ravi & Larochelle, 2017)	5-way Accuracy	
	1-shot	5-shot
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$
MAML, first order approx. (Finn et al., 2017)	$48.07 \pm 1.75\%$	$63.15 \pm 0.91\%$
MAML (Finn et al., 2017)	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$

"Fine-tuning baseline": Few-shot image classification accuracy of ARM after fine-tuning (image taken from [FAL17])



"Pretrained": Fine-tuning reward for ARM on robot 2d navigation task (image taken from [FAL17])

Does (ARM + Fine Tuning) work well?

- These experiments manifest that ARM + Fine-tuning does not work well!
 - ⇒ The solution trained by ARM often does not generalize well
- For multi-task linear regression, we can formally justify this!
- We show that with adaptivity, we can capture the common structure/representation among the tasks

Takeaway: The adaptivity idea can be done in two ways:

- Change the loss function ⇒ as done in MAML
- Change the training procedure ⇒ as done in Federated Learning

Meta-learning

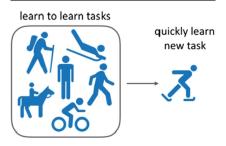


Image credit: https://meta-world.github.io, [HRJ21]

Model-Agnostic Meta Learning [FAL17]

- Set of tasks: $\mathcal{T} = \{\mathcal{T}_i\}_{i=1}^{i=n}$ coming from distribution p
- ullet Select a model $oldsymbol{ heta}_{train}^*$

Change the Loss Function

$$\theta_{train}^* \in \underset{\text{argmin}_{\theta}}{\theta_{train}^*} \in \frac{1}{n} \sum_{i=1}^n f_i(\theta - \alpha \nabla f_i(\theta; (X_i, y_i)))$$

- A new task \mathcal{T}_{test} is revealed, drawn according to dist. p
- ullet Fine tune the model: $oldsymbol{ heta}^*_{ extit{train}}
 ightarrow oldsymbol{ heta}^*_{ extit{new}}$
- Performance: $f_{test}(\theta_{new}^*)$

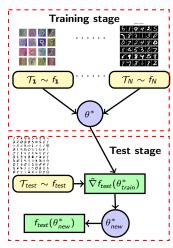


Image Credits: https://bit.ly/392pda9, https://bit.ly/3EEIElq

Seems like finding the right initialization for adaptation!

MAML Algorithm: GD on MAML Loss

- Average Risk Minimization (ARM): $\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$
- GD update for ARM.: $\theta_{t+1} = \theta_t \frac{\beta}{n} \sum_{i=1}^n \nabla f_i(\theta_t)$
- ullet Gradient evaluated at same $m{ heta}_t$ for all tasks \implies not adaptive

- Average Risk Minimization (ARM): $\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$
- GD update for ARM.: $\theta_{t+1} = \theta_t \frac{\beta}{n} \sum_{i=1}^n \nabla f_i(\theta_t)$
- ullet Gradient evaluated at same eta_t for all tasks \Longrightarrow not adaptive
- Model-Agnostic Meta-Learning (MAML): $\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta \alpha \nabla f_i(\theta))$
- GD update on MAML loss can be implemented as follows

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \frac{\beta}{n} \sum_{i=1}^n (\boldsymbol{I} - \alpha \nabla^2 f_i(\boldsymbol{\theta}_t)) \nabla f_i(\boldsymbol{\theta}_t - \alpha \nabla f_i(\boldsymbol{\theta}_t))$$

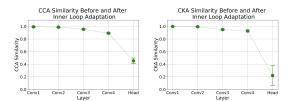
- Average Risk Minimization (ARM): $\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$
- GD update for ARM.: $\theta_{t+1} = \theta_t \frac{\beta}{n} \sum_{i=1}^n \nabla f_i(\theta_t)$
- ullet Gradient evaluated at same $heta_t$ for all tasks \Longrightarrow not adaptive
- Model-Agnostic Meta-Learning (MAML): $\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta \alpha \nabla f_i(\theta))$
- GD update on MAML loss can be implemented as follows

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \frac{\beta}{n} \sum_{i=1}^n (\boldsymbol{I} - \alpha \nabla^2 f_i(\boldsymbol{\theta}_t)) \nabla f_i(\boldsymbol{\theta}_t - \alpha \nabla f_i(\boldsymbol{\theta}_t))$$

which can be implemented via inner and outer loops

- Inner loop: Compute $\theta_{t,i} = \theta_t \alpha \nabla f_i(\theta_t)$ for i = 1, ..., n
- Outer loop: Compute $\theta_{t+1} = \theta_t \frac{\beta}{n} \sum_{i=1}^n (I \alpha \nabla^2 f_i(\theta_t)) \nabla f_i(\theta_{t,i})$
- $oldsymbol{ heta}_{t,i}$ adapted to each task \implies adaptive

- MAML learns models that can quickly solve new tasks [FAL17, AES19]
 - In image classification, sinusoid regression, reinforcement learning.
- MAML seems to be learning a representation shared across tasks [RRBV20]
 - Even though it is not designed for representation learning!



The representation learned by MAML does not change significantly when adapted to each task. Figure credit: [RRBV20]

• Can we formally prove this claim for some multi-task learning setting?

Multi-task linear regression:

• Task *i* has ground-truth solution $\theta_{*,i} \in \mathbb{R}^d$:

$$y_i \sim \boldsymbol{\theta}_{*,i}^{\top} \boldsymbol{x}_i + z_i$$

- \Rightarrow x_i is a random feature vector and $z_i \in \mathbb{R}$ is random, mean-zero noise.
- Solving each task individually would require $\Omega(d)$ samples per task.

Multi-task linear regression:

• Task *i* has ground-truth solution $\theta_{*,i} \in \mathbb{R}^d$:

$$y_i \sim \boldsymbol{\theta}_{*,i}^{\top} \boldsymbol{x}_i + z_i$$

- \Rightarrow x_i is a random feature vector and $z_i \in \mathbb{R}$ is random, mean-zero noise.
- Solving each task individually would require $\Omega(d)$ samples per task.
- ullet Now suppose the $oldsymbol{ heta}_{*,i}$ lie in a shared k-dimensional subspace, $k \ll d$
- Let the columns of $\pmb{B}_* \in \mathbb{R}^{d \times k}$ span this subspace, that is, for all tasks there exists $\pmb{w}_{*,i} \in \mathbb{R}^k$ such that

$$\boldsymbol{\theta}_{*,i} = \boldsymbol{B}_* \boldsymbol{w}_{*,i}$$

- Task Diversity: The concatenation of $w_{*,1},\ldots,w_{*,n}$ spans \mathbb{R}^k
- If we know $col(B_*)$, we can solve new tasks with only O(k) samples

Multi-task linear regression:

• Task *i* has ground-truth solution $\theta_{*,i} \in \mathbb{R}^d$:

$$y_i \sim \boldsymbol{\theta}_{*,i}^{\top} \boldsymbol{x}_i + z_i$$

- \Rightarrow x_i is a random feature vector and $z_i \in \mathbb{R}$ is random, mean-zero noise.
- Solving each task individually would require $\Omega(d)$ samples per task.
- ullet Now suppose the $oldsymbol{ heta}_{*,i}$ lie in a shared k-dimensional subspace, $k \ll d$
- Let the columns of $\pmb{B}_* \in \mathbb{R}^{d \times k}$ span this subspace, that is, for all tasks there exists $\pmb{w}_{*,i} \in \mathbb{R}^k$ such that

$$\boldsymbol{\theta}_{*,i} = \boldsymbol{B}_* \boldsymbol{w}_{*,i}$$

- Task Diversity: The concatenation of $w_{*,1},\ldots,w_{*,n}$ spans \mathbb{R}^k
- If we know $col(B_*)$, we can solve new tasks with only O(k) samples
- Does GD on ARM learn B*? Does GD on MAML learn B*?

• Loss function for task i:

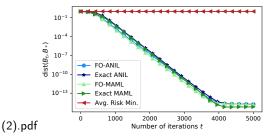
$$f_i(\boldsymbol{B}, \boldsymbol{w}) := \frac{1}{2} \mathbb{E}_{\boldsymbol{x}_i, y_i} [(\langle \boldsymbol{B} \boldsymbol{w}, \boldsymbol{x}_i \rangle - y_i)^2]$$

• ARM: Uses GD to solve $\min_{\boldsymbol{B},\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{B},\boldsymbol{w})$

Algorithm

- (Outer loop) For t = 1, ..., T:
 - Select n tasks satisfying diversity condition $(\operatorname{span}(\{\boldsymbol{w}_{*,i}\}_{i\in[n]}) = \mathbb{R}^k)$
 - (Inner loop) For i = 1, ..., n:
 - - Adapt head: $\mathbf{w}_{t,i} = \mathbf{w}_t \alpha \nabla_{\mathbf{w}} f_i(\mathbf{B}_t, \mathbf{w}_t)$.
 - - If MAML: Adapt rep: $B_{t,i} = B_t \alpha \nabla_B f_i(B_t, w_t)$ If ANIL: Do not adapt rep: $B_{t,i} = B_t$
 - $\begin{bmatrix} \mathbf{w}_{t+1} \\ \bar{\mathbf{B}}_{t+1} \end{bmatrix} = \begin{bmatrix} \mathbf{w}_t \\ \bar{\mathbf{B}}_t \end{bmatrix} \frac{\beta}{n} \sum_{i=1}^n \mathbf{H}_{t,i,\mathsf{Alg}}(\mathbf{B}_t, \mathbf{w}_t) \begin{bmatrix} \nabla_{\mathbf{w}} f_i(\mathbf{B}_{t,i}, \mathbf{w}_{t,i}) \\ \nabla_{\mathbf{B}} f_i(\mathbf{B}_{t,i}, \mathbf{w}_{t,i}) \end{bmatrix}$ where $\mathbf{H}_{t,i,\mathsf{Alg}}(\mathbf{B}_t, \mathbf{w}_t)$ is a Hessian that differs between MAML and ANIL.

- We consider four meta-learning algorithms:
 - MAML,
 - ANIL [RRBV19], a close relative of MAML, and
 - their first-order approximations (FO-MAML and FO-ANIL).



For multi-task linear regression with population losses, the meta-learning approaches learn $col(\boldsymbol{B}_*)$, while ARM does not.

• How can we explain this? Can we formalize this observation?

• In the multi-task linear representation learning setting:

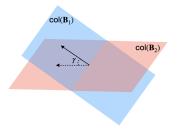
Theorem (informal)

- Under standard assumptions, MAML, ANIL and their first-order analogues recover col(B*) exponentially fast when run on the task population losses.
- ANIL and FO-ANIL require $m = \Omega((\frac{d}{n} + 1)k^3) \ll d$ samples per task to learn the ground-truth subspace.
- The key is that MAML and ANIL's adaptation of the head harnesses task diversity to improve the representation in all directions.
- First results showing that MAML and ANIL provably learn effective representations!

Theorem (informal)

There exist problems for which the model trained by ARM fails to learn $col(B_*)$.

 We use the principal angle distance to measure the distance between representations.



Formally,

$$\operatorname{dist}(\pmb{B}_1,\pmb{B}_2) := \|\hat{\pmb{B}}_{1,\perp}^{\top}\hat{\pmb{B}}_2\|_2,$$

where $\hat{\mathcal{B}}_{1,\perp}$ and $\hat{\mathcal{B}}_2$ are orthonormal matrices s.t. $\operatorname{col}(\hat{\mathcal{B}}_{1,\perp}) = \operatorname{col}(\mathcal{B}_1)^{\perp}$ and $\operatorname{col}(\hat{\mathcal{B}}_2) = \operatorname{col}(\mathcal{B}_2)$.

• Let's focus on the population case to simply the expressions

ARM:
$$\min_{\boldsymbol{B},\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{B}, \boldsymbol{w})$$

In this case we can show:

$$\boldsymbol{B}_{t+1} = \boldsymbol{B}_{t} \left(\underbrace{\boldsymbol{I}_{k} - \beta \boldsymbol{w}_{t} \boldsymbol{w}_{t}^{\top}}_{\text{prior weight}} \right) + \boldsymbol{B}_{*} \underbrace{\frac{\beta}{n} \sum_{i=1}^{n} \boldsymbol{w}_{*,i} \boldsymbol{w}_{t}^{\top}}_{\text{signal weight}}$$

• The prior weight is rank k-1, while the signal weight is only rank 1.

Key observation

The representation can only move closer to $col(B_*)$ in **one** direction on each iteration \rightarrow not clear that it can eventually reach $col(B_*)$.

Let's focus on the population case to simply the expressions

ARM:
$$\min_{\boldsymbol{B},\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{B}, \boldsymbol{w})$$

In this case we can show:

$$\boldsymbol{B}_{t+1} = \boldsymbol{B}_{t} \left(\underbrace{\boldsymbol{I}_{k} - \beta \boldsymbol{w}_{t} \boldsymbol{w}_{t}^{\top}}_{\text{prior weight}} \right) + \boldsymbol{B}_{*} \underbrace{\frac{\beta}{n} \sum_{i=1}^{n} \boldsymbol{w}_{*,i} \boldsymbol{w}_{t}^{\top}}_{\text{signal weight}}$$

• The prior weight is rank k-1, while the signal weight is only rank 1.

Key observation

The representation can only move closer to $col(B_*)$ in **one** direction on each iteration \to not clear that it can eventually reach $col(B_*)$.

Theorem

For any $\delta \in (0., 0.5]$, α , T, $\{w_{*,i}\}$ and full rank \mathbf{B}_0 , there exists a \mathbf{B}_* whose column space is δ -close to $col(\mathbf{B}_0)$, i.e., $dist(\mathbf{B}_0, \mathbf{B}_*) = \delta$, while its distance from the representation learned by ARM is at least 0.7δ , i.e., $dist(\mathbf{B}_T^{ARM}, \mathbf{B}_*) > 0.7\delta$.

• For FO-ANIL, we have

$$\boldsymbol{B}_{t+1} = \boldsymbol{B}_t \left(\underbrace{\boldsymbol{I}_k - \frac{\beta}{n} \sum_{i=1}^n \boldsymbol{w}_{t,i} \boldsymbol{w}_{t,i}^\top}_{\text{prior weight}} \right) + \boldsymbol{B}_* \frac{\beta}{n} \sum_{i=1}^n \boldsymbol{w}_{*,i} \boldsymbol{w}_{t,i}^\top$$

• Suppose $\frac{1}{n}\sum_{i=1}^{n} \boldsymbol{w}_{t,i} \boldsymbol{w}_{t,i}^{\top}$ is full rank (i.e., the $\boldsymbol{w}_{t,i}$'s are diverse), then:

Key observation

Prior weight reduces energy from B_t , and signal weight boosts energy from B_* in all directions.

- ⇒ Head adaptation and task diversity are critical!
 - The more diverse the adapted $w_{t,i}$'s (i.e. smaller condition number of $\frac{1}{n} \sum_{i=1}^{n} w_{t,i} w_{t,i}^{\top}$), the faster convergence rate.

- Need to show that the w_{t,i}'s are sufficiently diverse, i.e. evenly spread across R^k.
- We can show:

$$\mathbf{w}_{t,i} = \mathbf{w}_t - \alpha \nabla f_i(\mathbf{B}_t, \mathbf{w}_t)$$

$$= \underbrace{(\mathbf{I}_k - \alpha \mathbf{B}_t^{\top} \mathbf{B}_t) \mathbf{w}_t}_{\text{shared for all } i} + \underbrace{\alpha \mathbf{B}_t^{\top} \mathbf{B}_* \mathbf{w}_{*,i}}_{\text{unique for each } i}$$

• We must show the unique part of $w_{t,i}$ dominates the shared part.

$$\mathbf{w}_{t,i} = \underbrace{(\mathbf{I}_k - \alpha \mathbf{B}_t^{\mathsf{T}} \mathbf{B}_t) \mathbf{w}_t}_{\text{shared for all } i} + \underbrace{\alpha \mathbf{B}_t^{\mathsf{T}} \mathbf{B}_* \mathbf{w}_{*,i}}_{\text{unique for each } i}$$

- In order to show the unique part dominates, we must show three things hold for all t:

 - $||\boldsymbol{w}_t||_2$ is small
 - $oldsymbol{\circ} \sigma_{\min}(oldsymbol{B}_t^{ op} oldsymbol{B}_*)$ is lower bounded \iff dist $(oldsymbol{B}_t, oldsymbol{B}_*) < 1-c$ for a positive constant c
- Difficult because the algorithms lack explicit regularization and a normalization step.
- Leads to an intricate 6-way induction....

- Define $\Delta_t := \mathbf{I}_k \alpha \mathbf{B}_t^{\top} \mathbf{B}_t$, $\mathbf{\Psi}_t := \frac{1}{n} \sum_{i=1}^n \mathbf{w}_{t,i} \mathbf{w}_{t,i}^{\top}$, and $\rho := 1 \Omega(\beta \alpha)$.
- Inductive hypotheses:

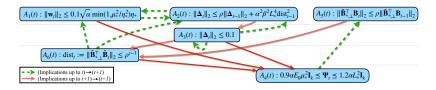
 - **3** $A_2(t) := \{\|\mathbf{\Delta}_t\|_2 = \rho\|\mathbf{\Delta}_{t-1}\|_2 + O(\beta^2 \alpha^2 \operatorname{dist}_{t-1}^2)\}$ \mathbf{B}_t gets closer to orthogonal as dist_t decreases

 - $lacktriangledown_{4}(t) := \{\kappa(oldsymbol{\Psi}_t) = O(1)\}$ adapted heads $oldsymbol{w}_{t,i}$ are diverse
 - **③** $A_5(t) := \{\|\boldsymbol{B}_{*,\perp}^{\top}\boldsymbol{B}_t\|_2 = \rho\|\boldsymbol{B}_{*,\perp}^{\top}\boldsymbol{B}_{t-1}\|_2\}$ energy of \boldsymbol{B}_t in perpendicular space to col(\boldsymbol{B}_*) is contracting
 - $oldsymbol{0}$ $A_6(t):=\{{\sf dist}_t\leq
 ho^{t-1}\}$ PA distance of $oldsymbol{B}_t$ to $oldsymbol{B}_*$ is linearly decreasing

$$\boldsymbol{B}_{t+1} = \boldsymbol{B}_{t} \left(\underbrace{\boldsymbol{I}_{k} - \frac{\beta}{n} \sum_{i=1}^{n} \boldsymbol{w}_{t,i} \boldsymbol{w}_{t,i}^{\top}}_{\text{prior weight}} \right) + \boldsymbol{B}_{*} \underbrace{\frac{\beta}{n} \sum_{i=1}^{n} \boldsymbol{w}_{*,i} \boldsymbol{w}_{t,i}^{\top}}_{\text{signal weight}}$$

$$\mathbf{w}_{t,i} = \underbrace{(I_k - \alpha \mathbf{B}_t^{\mathsf{T}} \mathbf{B}_t) \mathbf{w}_t}_{\text{shared for all } i} + \underbrace{\alpha \mathbf{B}_t^{\mathsf{T}} \mathbf{B}_* \mathbf{w}_{*,t,i}}_{\text{unique for each } i}$$

Inductive logic:



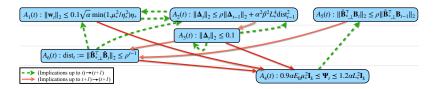
Notable implications (1/3):

- $A_4(t) \Longrightarrow A_5(t+1) \stackrel{A_3(t+1)}{\Longrightarrow} A_6(t+1)$: Adapted head diversity and well-conditioned B_{t+1} implies $\operatorname{dist}_{t+1}$ is linearly converging.
 - *Proof.* Use expression for B_{t+1} discussed earlier.

$$\boldsymbol{B}_{t+1} = \boldsymbol{B}_{t} \bigg(\underbrace{\boldsymbol{I}_{k} - \frac{\beta}{n} \sum_{i=1}^{n} \boldsymbol{w}_{t,i} \boldsymbol{w}_{t,i}^{\top}}_{\text{prior weight}} \bigg) + \boldsymbol{B}_{\star} \underbrace{\frac{\beta}{n} \sum_{i=1}^{n} \boldsymbol{w}_{\star,i} \boldsymbol{w}_{t,i}^{\top}}_{\text{signal weight}}$$

$$\mathbf{w}_{t,i} = \underbrace{(I_k - \alpha \mathbf{B}_t^{\top} \mathbf{B}_t) \mathbf{w}_t}_{\text{shared for all } i} + \underbrace{\alpha \mathbf{B}_t^{\top} \mathbf{B}_* \mathbf{w}_{*,t,i}}_{\text{unique for each } i}$$

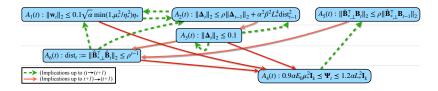
Inductive logic:



Notable implications (2/3):

- $A_1(t+1), A_3(t+1), A_6(t+1) \Longrightarrow A_4(t+1)$: Small $\|\boldsymbol{w}_t\|_2$, $\|\boldsymbol{\Delta}_t\|_2$, and dist_t implies adapted heads are diverse.
 - Proof. Use expression for $\mathbf{w}_{t,i}$ discussed earlier.

Inductive logic:



Notable implications (3/3):

- $A_2(t) + A_6(t) \implies A_1(t+1)$: Bounds on $\|\mathbf{\Delta}_t\|_2$ and dist_t imply $\|\mathbf{w}_{t+1}\|_2$ stays small.
 - *Proof.* $A_2(t)$ and the linear convergence of ${\rm dist}_t$ implies $\|{\bf \Delta}_t\|_2$ eventually linearly converges to zero. We can show $\|{\bf w}_{t+1}\|_2 \leq \|{\bf w}_t\|_2 + O(\|{\bf \Delta}_t\|_2)$, which implies $|\|{\bf w}_{t+1}\|_2 \|{\bf w}_t\|_2|$ eventually linearly converges to zero.

Main Theorem [Collins-M-Oh-Shakkottai, ICML 2022]

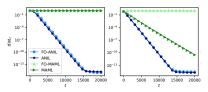
Suppose there are $m=\infty$ samples/task, the ground-truth heads satisfy $\mu_*^2 \mathbf{I}_k \preceq \frac{1}{n} \sum_{i=1}^n \mathbf{w}_{*,t,i} \mathbf{w}_{*,t,i}^{\mathsf{T}} \preceq L_*^2 \mathbf{I}_k$, and the step sizes α , β are sufficiently small. Then after T iterations, ANIL, FO-ANIL, MAML, and FO-MAML learn a representation \mathbf{B}_T that satisfies:

$$\mathsf{dist}(oldsymbol{\mathcal{B}}_{\mathcal{T}},oldsymbol{\mathcal{B}}_*) \leq \left(1 - \Omega(eta lpha \mu_*^2)
ight)^{\mathcal{T}-1}$$

as long as:

- ANIL, FO-ANIL: $dist(B_0, B_*) \le c$ for a constant c.
- MAML: dist $(B_0, B_*) = O((L_*/\mu_*)^{-0.75})$.
- FO-MAML: dist $(B_0, B_*) = O((L_*/L_*)^{-1})$ and $\|\frac{1}{n}\sum_{i=1}^n \mathbf{w}_{*,t,i}\|_2 = O((L_*/L_*)^{-1.5})$.
- We also show finite-sample results in the paper.

- Recall that our result requires
 - stronger initialization for MAML and FO-MAML than for ANIL and FO-ANIL, and
 - **3** for FO-MAML, the mean of $\mathbf{w}_{*,i}$'s must be ≈ 0 .
- Here we show these conditions are tight:

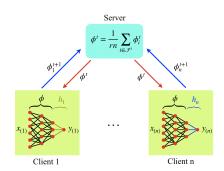


(Left) Random initialization and (Right) structured initialization. In both cases, the mean of the ground-truth heads is far from zero, explaining why FO-MAML fails. MAML succeeds only with structured initialization.

⇒ MAML/FO-MAML's inner loop update of the representation can inhibit representation learning.

- We have obtained the first results showing that ANIL and MAML learn effective representations in any setting.
- Inner loop adaptation of the head is key to MAML and ANIL's ability to learn representations.
- Inner loop adaptation of the representation restricts representation learning.

- So far we have seen that by adding adaptivity via changes in the function we can learn the representation
- Next, we show that by changing algorithms in the training process that leads to adaptivity we can also learn the representation

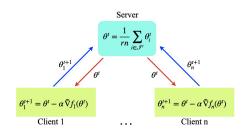


• Step 1: Train a single model by minimizing the average loss

$$\boldsymbol{\theta}^* \in \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{\theta}; \mathcal{D}_i)$$

ullet Step 2: Fine tune the obtained model eta^* to new task / deployment environment

• Popular approach: Distributed Stochastic Gradient Descent (DSGD)

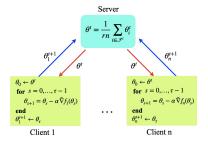


• Effective update $\theta^{t+1} = \theta^t - \frac{\alpha}{m} \sum_{i \in \mathcal{I}^t} \tilde{\nabla} f_i(\theta^t)$ \Rightarrow running SGD on the global loss

Same Loss as ARM - Only change is a Distributed Implementation

$$oldsymbol{ heta}^* \in \underset{oldsymbol{ heta}}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^n f_i(oldsymbol{ heta}; \mathcal{D}_i)$$

- Federated learning is similar to DSGD
 - Except it allows for multiple local updates
- FedAvg: the most common approach!



- Advantage: Number of communication rounds
 ≪ number of updates
 - More communication-efficient than distributed SGD!
- Issue: Drifting effect with data heterogeneity (aka multiple tasks)
 - The local grads ∇f_i are not aligned with the global direction $\sum_{i=1}^n \nabla f_i$

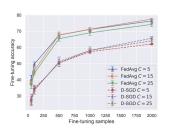
From an optimization point of view:

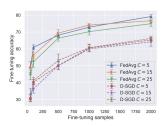
- Due to local drifting, FedAvg may not solve global objective in the data heterogeneous setting
 - [WJ19], [CK21],
- There are several other sophisticated methods to control/remove the local drift issue in FedAvg
 - SCAFFOLD: [KKMRSS20]
 - VRL-SGD: [LLZSM20]
 - FEDGATE: [HKMM21]
 - FedNova: [WLLJP20]
 -

Our Takeaway

Implicitly, the new implementation has changed the objective

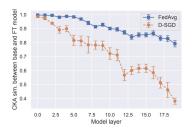
• The local updates are in fact good for generalization!





- Left plot: Models trained on 80 classes from CIFAR-100 (with C classes/client) and fine-tuned on new clients from 20 new classes from CIFAR-100
- Right plot: Models trained on CIFAR-100 (with C classes/client) and fine-tuned on new clients from CIFAR-10
- $T\tau=$ 125000 for both. (FedAvg $\tau=$ 50, T= 2500, DSGD $\tau=$ 1, T= 125000)

 The early layers of FedAvg's pre-trained model (corresponding to the representation) change much less than those of D-SGD



 Local updates enable learning the common representation among the tasks!

Open Problems

- Does FedAvg provably learn representations of heterogeneous tasks?
- Are the local updates are essential for learning representations?

- Multi-task linear regression.
- Task *i* has ground-truth solution $\theta_{*,i} \in \mathbb{R}^d$:

$$y_i \sim \boldsymbol{\theta}_{*,i}^{\top} \boldsymbol{x}_i + z_i$$

- x_i is a random feature vector, $z_i \in \mathbb{R}$ is random, mean-zero noise
- Now suppose the $\theta_{*,i}$ lie in a shared k-dimensional subspace, $k \ll d$
- Let the columns of $\boldsymbol{B}_* \in \mathbb{R}^{d \times k}$ span this subspace, that is, for all tasks there exists $\mathbf{w}_{*,i} \in \mathbb{R}^k$ such that

$$oldsymbol{ heta}_{*,i} = oldsymbol{B}_* oldsymbol{w}_{*,i}$$

Task Diversity: The concatenation of $w_{*,1}, \ldots, w_{*,n}$ spans \mathbb{R}^k

Main Results (DGD May Not Learn Representation)

ullet Now suppose au=1 and we have the update of DGD

$$\boldsymbol{B}_{t+1} = \boldsymbol{B}_{t} \underbrace{\left(\boldsymbol{I}_{k} - \alpha \boldsymbol{w}_{t} \boldsymbol{w}_{t}^{\top}\right)}_{\text{prior weight}} + \alpha \boldsymbol{B}_{*} \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{w}_{*,i}\right) \boldsymbol{w}_{t}^{\top}}_{\text{signal weight}}$$

- The prior weight is rank k-1, while the signal weight is only rank 1.
- ullet The representation can only move closer to $col(B_*)$ in **one** direction on each iteration

Theorem

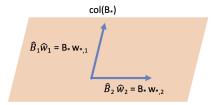
For any $\delta \in (0., 0.5], \alpha, T, \{w_{*,i}\}$ and full rank B_0 , there exists a \boldsymbol{B}_* whose column space is δ -close to $col(\boldsymbol{B}_0)$, i.e., $dist(\boldsymbol{B}_0, \boldsymbol{B}_*) = \delta$, while its distance from the representation learned by DGD is at least 0.7δ , i.e., $dist(\boldsymbol{B}_D^{DGD}, \boldsymbol{B}_*) > 0.7\delta$.

• DGD cannot guarantee to recover the ground-truth representation.

• Recall that the local updates are with respect to the local loss:

$$f_i(\mathbf{B}, \mathbf{w}) = \frac{1}{2} \|\mathbf{B}\mathbf{w} - \mathbf{B}_* \mathbf{w}_{*,i}\|_2^2$$

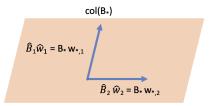
- Let $\hat{\boldsymbol{B}}_i$, $\hat{\boldsymbol{w}}_i$ be the result of τ local updates for client i
- (Naive) idea: Use fact that if $\hat{\pmb{B}}_i\hat{\pmb{w}}_i = \pmb{B}_*\pmb{w}_{*,i}$ for all i, then the local products $\{\hat{\pmb{B}}_i\hat{\pmb{w}}_i\}_i$ all lie in the correct subspace
 - \Rightarrow and span $(\{\hat{\pmb{B}}_i\hat{\pmb{w}}_i\}_i)=\mathsf{col}(\pmb{B}_*)$



• Recall that the local updates are with respect to the local loss:

$$f_i(B, \mathbf{w}) = \frac{1}{2} \|B\mathbf{w} - B_* \mathbf{w}_{*,i}\|_2^2$$

- Let $\hat{\pmb{B}}_i, \hat{\pmb{w}}_i$ be the result of τ local updates for client i
- (Naive) idea: Use fact that if $\hat{\pmb{B}}_i \hat{\pmb{w}}_i = \pmb{B}_* \pmb{w}_{*,i}$ for all i, then the local products $\{\hat{\pmb{B}}_i \hat{\pmb{w}}_i\}_i$ all lie in the correct subspace
 - \Rightarrow and span $(\{\hat{\pmb{B}}_i\hat{\pmb{w}}_i\}_i)=\mathsf{col}(\pmb{B}_*)$



• However, this does not imply anything meaningful about $B_{t+1} := \frac{1}{n} \sum_{i=1}^{n} \hat{B}_{i}$

• Let
$$k = n = 2$$
, and suppose $\theta_{*,1} = \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, $\theta_{*,2} = \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$

$$\implies \operatorname{col}(\mathbf{B}_*) = \operatorname{span}(\mathbf{e}_1, \mathbf{e}_2)$$

• Let
$$k = n = 2$$
, and suppose $\theta_{*,1} = \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, $\theta_{*,2} = \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$

$$\implies \operatorname{col}(\boldsymbol{B}_*) = \operatorname{span}(\boldsymbol{e}_1, \boldsymbol{e}_2)$$

$$\bullet \text{ Let } \hat{\boldsymbol{\mathcal{B}}}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix}, \ \hat{\boldsymbol{w}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \hat{\boldsymbol{\mathcal{B}}}_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix}, \ \hat{\boldsymbol{w}}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• Then $\hat{B}_1 \hat{w}_1 = B_* w_{*,1}$ and $\hat{B}_2 \hat{w}_2 = B_* w_{*,2}$, yet

$$m{B}_{t+1} = rac{1}{2} \hat{m{B}}_1 + rac{1}{2} \hat{m{B}}_2 = [rac{1}{2} (m{e}_1 + m{e}_2), 0]$$

 $\mathsf{has}\;\mathsf{dist}(\pmb{B}_{t+1},\pmb{B}_*)=1....$

⇒ Can't rely only on local convergence!

Theorem (informal) [Collins-Hassani-M-Shakkottai, NeurIPS 2022]

If the number of local updates satisfies $\tau \geq 2$, FedAvg recovers $col(B^*)$ exponentially fast when run on the task population losses.

 The key insight is that FedAvg local updates harnesses task diversity to improve the representation in all directions.

$$\begin{aligned} \boldsymbol{B}_{t+1} &= \boldsymbol{B}_{t} \left(\underbrace{\frac{1}{n} \sum_{i=1}^{n} \prod_{s=0}^{\tau-1} \left(\boldsymbol{I}_{k} - \alpha \boldsymbol{w}_{t,i,s} \boldsymbol{w}_{t,i,s}^{\top} \right)}_{\text{prior weight}} \right) \\ &+ \boldsymbol{B}_{*} \underbrace{\left(\frac{\alpha}{n} \sum_{i=1}^{n} \boldsymbol{w}_{*,i} \sum_{s=0}^{\tau-1} \boldsymbol{w}_{t,i,s}^{\top} \prod_{r=s+1}^{\tau-1} \left(\boldsymbol{I}_{k} - \alpha \sum_{i=1}^{n} \boldsymbol{w}_{t,i,r} \boldsymbol{w}_{t,i,r}^{\top} \right) \right)}_{\text{signal weight}} \end{aligned}$$

• Prior weight reduces energy from B_t , and signal weight boosts energy from B_* in all directions

Theorem (informal) [Collins-Hassani-M-Shakkottai]

If the number of local updates satisfies $\tau \geq 2$, FedAvg recovers $col(B^*)$ exponentially fast when run on the task population losses.

 The key insight is that FedAvg local updates harnesses task diversity to improve the representation in all directions.

$$\mathbf{B}_{t+1} \approx \mathbf{B}_{t} \left(\underbrace{\mathbf{I}_{k} - \frac{\alpha}{n} \sum_{i=1}^{n} \sum_{s=0}^{\tau-1} \mathbf{w}_{t,i,s} \mathbf{w}_{t,i,s}^{\top}}_{\text{prior weight}} \right) + \mathbf{B}_{*} \left(\underbrace{\frac{\alpha}{n} \sum_{i=1}^{n} \sum_{s=0}^{\tau-1} \mathbf{w}_{*,i} \mathbf{w}_{t,i,s}^{\top}}_{\text{signal weight}} \right)$$

- Prior weight reduces energy from B_t , and signal weight boosts energy from B_* in all directions
 - Local updates and task diversity are critical!

• Client Diversity Assumption: Let $W_* := [w_{*,1}, \dots, w_{*,n}]$. Then $\sigma_{\min,*} := \sigma_{\min}(W_*) > 0$.

Theorem [Collins-Hassani-M-Shakkottai, NeurIPS '22]

If the Client Diversity Assumption holds, the number of local updates between rounds satisfies $\tau \geq 2$, the step size $\alpha = O(\frac{1}{\sqrt{\tau}})$, and the initialization satisfies $\operatorname{dist}(\mathbf{B}_0,\mathbf{B}_*) \leq 1-c$ for some $c \in (0,1]$, then for any $\epsilon \in (0,1)$, FedAvg learns a representation \mathbf{B}_T satisfying $\operatorname{dist}(\mathbf{B}_T,\mathbf{B}_*) \leq \epsilon$ after at most

$$T = O\left(\frac{\log(1/\epsilon)}{\alpha^2 \tau \sigma_{\min,*}^2}\right)$$

communication rounds.

• Client Diversity Assumption: Let $W_* := [w_{*,1}, \ldots, w_{*,n}]$. Then $\sigma_{\min,*} := \sigma_{\min}(W_*) > 0$.

Theorem [Collins-Hassani-M-Shakkottai, NeurIPS '22]

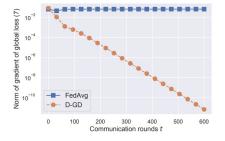
If the Client Diversity Assumption holds, the number of local updates between rounds satisfies $\tau \geq 2$, the step size $\alpha = O(\frac{1}{\sqrt{\tau}})$, and the initialization satisfies $\operatorname{dist}(\mathbf{B}_0,\mathbf{B}_*) \leq 1-c$ for some $c \in (0,1]$, then for any $\epsilon \in (0,1)$, FedAvg learns a representation \mathbf{B}_T satisfying $\operatorname{dist}(\mathbf{B}_T,\mathbf{B}_*) \leq \epsilon$ after at most

$$T = O\left(\frac{\log(1/\epsilon)}{\alpha^2 \tau \sigma_{\min,*}^2}\right)$$

communication rounds.

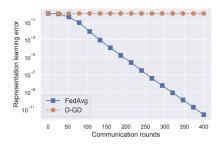
 First result showing that FedAvg learns an expressive representation in any setting!

- Optimization point of view
 - DGD finds a stationary point of the average loss, while FedAvg does not

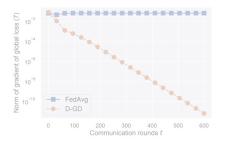


Generalization point of view

 FedAvg learns the correct representation (principal angle distance)

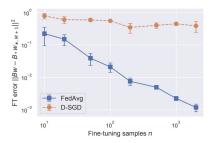


- Optimization point of view
 - DGD finds a stationary point of the average loss, while FedAvg does not



Generalization point of view

 FedAvg generalizes better (loss with new task, after fine tuning)!



[FAL17] C. Finn, P. Abbeel, S. Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Neural Networks, *ICML*, 2017.

[AES19] A. Antoniou, H. Edwards, A. Storkey. How to Train Your MAML, ICLR, 2019.

[RRBV19] A. Raghu, M. Raghu, S. Bengio, O. Vinyals. Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML, *ICLR*, 2020.

[HRJ21] M. Huisman, J. N. van Rijn, A. Plaat. A Survey of deep Meta-Learning, Artificial Intelligence Review Volume 54, pages 4483-4541, 2021.

[LLZSM20] Liang, Liu, Ziyin, Salakhutdinov, and Morency. Think locally, act globally: Federated learning with local and global representations, 2020.

[WLLJP20] Wang, Liu, Liang, Joshi, and Poor. Tackling the objective inconsistency problem in heterogeneous federated optimization, *NeurIPS* 2020.

[CK21] Charles, Konecny. Convergence and accuracy trade-offs in federated learning and meta-learning, AISTATS 2021.

[WJ18] Wang, Joshi. Cooperative SGD: A unified framework for the design and analysis of communication-efficient SGD algorithms, 2018.

[KKMRSS20] Karimireddy, Kale, Mohri, Reddi, Stich, and Suresh. Scaffold: Stochastic controlled averaging for federated learning, *ICML* 2020.

[HKMM21] Haddadpour, Kamani, Mokhtari, Mahdavi. Federated Learning with Compression: Unified Analysis and Sharp Guarantees, *AISTATS* 2021.