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Bilevel Optimization: General Form
Bilevel optimization is a form of optimization where one problem is embedded
within another.

General form of Bilevel Optimization Problem:

min
x∈Rn,w∈Rm

f(x,w) s.t. x ∈ arg min
z∈Z

g(z,w). (GBO)

In the general case that both f and g are only convex:
GBO is NP-hard [Vicente et al.’94]

To address this issue, two different settings are considered in the literature
Assuming that the lower-level problem is strongly-convex wrt to z

Studying a simpler version of GBO known as Simple Bilevel Optimization
⇒ The focus of this talk!
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Bilevel Optimization: General Form
GBO can also be written as:

General form of Bilevel Optimization Problem:

min
w

l(w) := f(x∗(w),w), where x∗(w) ∈ arg min
z∈Z

g(z,w)

In this case we have:

∇`(w) = ∇wf(x∗(w),w)−∇xwg(y∗(w),w)[∇xxg(x∗(w),w)]−1∇xf(x∗(w),w).

Under strong convexity of g, the above expression is well-defined and one can
find an approximate stationary point of the loss `

Several works for this setting:
Implicit differentiation: [Domke,’12], [Pedregosa,’16] [Gould et al.,’16],[Ji et al.,’21], ...
Iterative differentiation: [Maclaurin et al.,’15], [ Franceschi et al.,’18], ...
.....
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Simple Bilevel Optimization

The alternative approach for a computationally tractable case
⇒ Eliminating the variable w ⇒ Simple Bilevel Optimization

Simple bilevel optimization problem:

min
x∈Rn

f(x) s.t. x ∈ arg min
z∈Z

g(z), (SBO)

f, g : Rn → R are continuously differentiable functions on an open set
containing Z.
g is convex, but not necessarily strongly convex.

Indeed, in this setting, ideas from the previous slide do not work!
Z is a compact convex set.
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Motivating Examples for SBO
The following general form:

min
x

model validation loss︸ ︷︷ ︸
secondary objective

s.t. x ∈ arg min
z∈Z

model training loss︸ ︷︷ ︸
primal objective

Over-parameterized regression: [Gao et al.’22]

min
β∈Rd

1
2‖Avalβ − bval‖2

2 s.t. β ∈ arg min
‖z‖1≤λ

1
2‖Atrz− btr‖2

2.

Lifelong learning or continual learning
Continual dictionary learning

min
D̃∈Rm×q

min
X̃∈Rq×n′

1
2n′

n′∑
k=1

‖a′k−D̃x̃k‖2
2︸ ︷︷ ︸

Error on new dataset

s.t. ‖x̃k‖1 ≤ δ, k = 1, . . . , n′; D̃ ∈ arg min
‖d̃j‖2≤1

1
2n

n∑
i=1

‖ai − D̃x̂i‖2
2︸ ︷︷ ︸

Error on old dataset
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Related Work
min
x∈Rn

f(x) s.t. x ∈ arg min
z∈Z

g(z), (SBO)

1) Primal-Dual Algorithms:

min
x∈Rn

f(x) s.t. x ∈ Z, g(x) ≤ g∗,

Strict feasibility and slater’s condition may not hold

What if we relax it and use g(x) ≤ g∗ + ε?
⇒ norm of the optimal dual variable becomes very large for small ε
⇒ causes instability and the upper bound on error could blow up

2) Tikhonov-type regularization [Tikhonov-Arsenin’97]
Combining the two objective functions using a regularization parameter σ > 0

min
x∈Rn

f(x) + σg(x)

Under certain assumptions the solution of (SBO) exactly matches with the
regularized problem [Friedlander-Tseng’08], [Dempe et. al’21]

Proposed adjusting the regularization parameter σ dynamically [Cabot’05],
[Solodov’07] ⇒ but all are asymptotic results.
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(εf , εg)-optimal solution

min
x∈Rn

f(x) s.t. x ∈ arg min
z∈Z

g(z),

Definition:

When f is convex, a point x̂ ∈ Z is (εf , εg)-optimal for the bilevel problem
in (SBO) if

f(x̂)− f∗ ≤ εf and g(x̂)− g∗ ≤ εg.

When f is non-convex, x̂ ∈ Z is (εf , εg)-optimal if

G(x̂) ≤ εf and g(x̂)− g∗ ≤ εg,

where G(x̂) is the FW gap defined by

G(x̂) , max
s∈X∗g
{〈∇f(x̂), x̂− s〉}.

where g∗ , minz∈Z g(z) and X ∗g , arg minz∈Z g(z)
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Related work

References Upper level Lower level Convergence Oracle
Objective f Objective g Feasible set Z Upper level Lower level

MNG
[A. Beck& S. Sabach’14] SC, differentiable C, smooth Closed Asymptotic O(1/ε2) projection

BiG-SAM
[S. Sabach & S. Shtern’17] SC, smooth C, composite Closed Asymptotic O(1/ε) projection

Tseng’s method
[Y. Malitsky’17] C, composite C, composite Closed Asymptotic o(1/ε) projection

a-IRG
[H.D. Kaushik & F. Yousefian’21] C, Lipschitz VI, Lipschitz Closed O(max{1/ε4

f , 1/ε
4
g}) projection

Ours C, smooth C, smooth Compact O(max{1/εf , 1/εg}) linear solver

Ours Non-C , smooth C, smooth Compact O(max{1/ε2
f , 1/(εf εg)}) linear solver
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Challenges

min
x∈Rn

f(x) s.t. x ∈ arg min
z∈Z

g(z) ⇐⇒ min
x∈X∗g

f(x)

Frank Wolfe Method:
Find a feasible direction by minimizing linear approximation of objective

sk ← arg min
s∈X∗g

〈∇f(xk), s〉

xk+1 ← (1− γk)xk + γksk

Challenge I: X ∗g for the lower-level problem is not explicitly given
⇒ The linear minimization is computationally intractable

Challenge II: The FW method needs to be initialized with a feasible point
⇒ requires exact solution of g that is computationally intractable

Remark: Similar issues also hold for projection-based methods
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CG-BiO: Main Idea
Resolution: Provide an approximation for X ∗g

What properties should the approximation set Xk have?
It should have an explicit expression so that LMO is tractable
It should contain the set X ∗g
It should allow us to control the increase of g

Our idea:
Consider x0 as an εg

2 approximate solution of the lower-level problem

⇒ x0 ∈ Z and g(x0)− g∗ ≤ εg

2 ⇒ it is easy to find such a point

We use the following set:

Xk , Z ∩Hk where Hk = {s ∈ Rn : 〈∇g(xk), s− xk〉 ≤ g(x0)− g(xk)}

Our Method: At each iteration follow

xk+1 ← (1− γk)xk + γksk, where sk ← arg min
s∈Xk

〈∇f(xk), s〉
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Why does it make sense?
It checks all the boxes!

The cutting plane Hk and the approximation set Xk are explicit

X ∗g ⊆ Xk for all k ≥ 0. (Why?) if x̂ ∈ X ∗g , then

x̂ ∈ Z and 〈∇g(xk), x̂− xk〉 ≤ g∗ − g(xk) ≤ g(x0)− g(xk) ⇒ x̂ ∈ Xk

We can control the possible increase in g. (How?)

By smoothness and construction of Xk:

g(xk+1) ≤ g(xk) + γk 〈∇g(xk), sk − xk〉+ Lgγ
2
kD

2

2

≤ g(xk) + γk(g(x0)− g(xk)) + Lgγ
2
kD

2

2

Hence,
g(xk+1)− g(x0) ≤ (1− γk)(g(xk)− g(x0)) + Lgγ

2
kD

2

2
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CG-BiO Algorithm

1: Input: Target accuracy εf , εg > 0, stepsizes {γk}k
2: Initialization: Initialize x0 ∈ Z such that 0 ≤ g(x0)− g∗ ≤ εg/2
3: for k = 0, . . . ,K − 1 do
4: Compute sk ← arg mins∈Xk

〈∇f(xk), s〉

5: if 〈∇f(xk),xk − sk〉 ≤ εf and 〈∇g(xk),xk − sk〉 ≤ εg/2 then

6: Return xk and STOP
7: else
8: xk+1 ← (1− γk)xk + γksk
9: end if

10: end for

12



Convergence Analysis in Convex Setting

Theorem 1 (Convex upper-level)

Let {xk}Kk=0 be the sequence generated by CG-BiO Algorithm with stepsize
γk = 2/(k + 2) for k ≥ 0. Then we have

f(xK)− f∗ ≤ 2LfD2

K + 1 and g(xK)− g∗ ≤ 2LgD2

K + 1 + 1
2εg.

Algorithm CG-BiO will return an (εf , εg)-optimal solution when the number
of iterations K exceeds

max
{

2LfD2

εf
− 1, 4LgD2

εg
− 1
}

= O
(

max
{

1
εf
,

1
εg

})
.
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Convergence Analysis in Non-convex Setting

Theorem 2 (Non-Convex upper-level)

Let {xk}K−1
k=0 be the sequence generated by CG-BiO Algorithm with step-

size γk = min
{ εf

LfD2 ,
εg

LgD2

}
for all k ≥ 0. Define f = minx∈Z f(x).

Then for K ≥ max
{ 2LfD

2(f(x0)−f)
ε2

f

,
2LgD

2(f(x0)−f)
εf εg

}
, there exists k∗ ∈

{0, 1, . . . ,K − 1} such that G(xk∗) ≤ εf and g(xk∗)− g∗ ≤ εg.

The number of iterations required to find an (εf , εg)-optimal solution is

O

(
max

{
1
ε2f
,

1
(εf εg)

})
.
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Hölderian Error Bound
Presented bounds can only guarantee that f(x̂)− f∗ ≤ εf

But, ideally we would like a bound of the form |f(x̂)− f∗| ≤ εf

However, there has been shown a negative result in [Chen et al. ’23]!
for any first-order method and a given number of iterations K, there exists an
instance of SBO where |f(xk)− f∗| > 1 for all k.

Hence, we need a condition to control how much x and then f(x) can change
when g(x) is slightly worse than g∗

Assumption 2
The function g satisfies the Hölderian error bound for some α > 0 and r ≥ 1,

α

r
dist(x,X ∗g )r ≤ g(x)− g∗, ∀x ∈ Z,

The Hölderian error bound holds generically for real analytic and subanalytic
functions [Łojasiewicz’63], [Łojasiewicz’93]
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Convergence Under Hölderian Error Bound
Proposition 1

If g satisfies the Hölderian error bound, and M = maxx∈X∗g ‖∇f(x)‖∗, then
for any x̂ that satisfies g(x̂)− g∗ ≤ εg, it holds that:

(i) If f is convex, then f(x̂)− f∗ ≥ −M
( rεg

α

) 1
r .

(ii) If f is non-convex and has Lf -Lipschitz gradient, then
G(x̂) ≥ −M

( rεg

α

) 1
r − Lf

( rεg

α

) 2
r .

Corollary

Let g satisfies the Hölderian error bound
(i) If f in Problem (SBO) is convex, we can set εg = O(εrf ), then after

K = O(1/εrf ) iterations, |f(xK)− f∗| ≤ εf and g(xK)− g∗ ≤ εg.
(ii) If f in Problem (SBO) is non-convex, and εg = O(εrf ) Then after

K = O(1/εr+1
f ) iterations, there exists k∗ ∈ {0, 1, . . . ,K − 1} such

that |G(xk∗)| ≤ εf and g(xk∗)− g∗ ≤ εg.
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Numerical Experiments
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Over-parameterized regression
Sparse linear regression problem on the Wikipedia Math Essential dataset
Data matrix A ∈ Rn×d and outcome vector b ∈ Rn, with n = 1068 instances
and d = 730 attributes
60% as training set (Atr,btr), 20% as validation set (Aval,bval), the rest as
test set
The bilevel formulation:

min
β∈Rd

f(β) , 1
2‖Avalβ − bval‖2

2

s.t. β ∈ arg min
‖z‖1≤λ

g(z) , 1
2‖Atrz− btr‖2

2.
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Dictionary learning
Generate the true dictionary D̃∗ ∈ R25×50.
Construct the two dictionaries D∗ and D∗′.
Generate the two dataset A = {a1, . . . ,a250} and A′ = {a′1, . . . ,a′200}
according to the following rules:

ai = D∗xi + ni, i = 1, 2, . . . , 250, a′k = D′∗x′k + n′k, k = 1, 2, . . . , 200,
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Thank you
Any questions?

Based on:
R. Jiang, N. Abolfazli, A. Mokhtari, E. Y. Hamedani, “A Conditional Gradient-based
Method for Simple Bilevel Optimization with Convex Lower-level Problem",
Proceedings of the 26th International Conference on Artificial Intelligence and
Statistics (AISTATS), Valencia, Spain, 2023.
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