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Convex Minimization

I Consider the general unconstrained minimization problem

min
x∈Rd

f (x),

where f is L1-smooth (i.e. ‖∇f (x)−∇f (x)‖ ≤ L1‖x − y‖)

I We will focus on two general settings
• Case I: f is µ-strongly convex
• Case II: f is (only) convex

I We are interested in settings where we can only query first-order information
⇒ We only have access to ∇f (x)
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Gradient Descent-type Methods

I Popular methods: Gradient Descent (GD) and its Accelerated version (AGD)
• Require only access to gradient oracle ⇒ Cost per iteration O(d)

• In Case I (SCVX): Achieve a Global linear convergence rate

‖xk − x∗‖2 ≤ ρk‖x0 − x∗‖2

where ρ = 1− µ/L1 for GD and ρ = 1−
√
µ/L1 for AGD.

• In Case II (CVX): Achieve a Global sublinear convergence rate

f (xk)− f ∗ ≤ C
kα

where α = 1 for GD and α = 2 for AGD.
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Quasi-Newton Methods

I Quasi-Newton (QN) methods aim at speeding up GD-type methods by approximating
the function’s curvature and using a preconditioner

xk+1 = xk − ρkB−1
k ∇f (xk)

I When Bk ≈ ∇2f (xk) they mimic Newton’s method
I Only use gradient to construct Bk ⇒ Still first-order methods

I Various updates for Bk have been proposed with cost O(d2) (BFGS, DFP, SR1)
I Main ideas:

• Proximity condition: Keep Bk and Bk+1 close
• Secant condition: Bk+1sk = yk where sk = xk+1 − xk , yk = ∇f (xk+1)−∇f (xk)

Bk+1 = argmin ‖B− Bk‖V ⇐⇒ B−1
k+1 =

(
I− sky>k

s>k yk

)
B−1

k

(
I− yks>k

s>k yk

)
+ sks>k

s>k yk

s.t. B sk = yk , B � 0
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Performance of QN Methods

I Several studies have illustrated the superior performance of QN methods
I However, there is no result proving this advantage for QN algorithms
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Results on Quasi-Newton Methods (Strongly Convex setting)

I In the SCVX setting, classic results have shown asymptotic local superlinear
convergence for QN methods: when ‖xk − x∗‖ is small,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0

• Local superlinear rate [Broyden-Dennis-Moré’73][Dennis-Moré’74]
• Global and superlinear rate with exact linesearch [Powell’71][ Dixon’72]
• Global and superlinear rate with inexact linesearch [Powell’76][Bryd-Nocedal-Yuan’87]
• Many other works: [Griewank-Toint’82; Dennis-Martinez-Tapia’89; Yuan’91; Al-Baali’98;

Li-Fukushima’99; Yabe-Ogasawara-Yoshino’07; M-Eisen-Ribeiro’18; Gao-Goldfarb’19]
I However, they are all asymptotic and fail to provide an explicit convergence rate
I The global linear results are no better than GD or AGD
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Recent Results on Quasi-Newton Methods (Strongly Convex setting)

I Recent results show explicit non-asymptotic local superlinear rate for BFGS and DFP

I Rodomanov-Nesterov’21 and Jin-M’22 concurrently but using different Lyapunov
functions showed superlinear rates of the form O((1/

√
k)k)

cond. on ‖x0−x∗‖ cond. on B0 rate

[Jin-M’22] O
(

1√
d

)
B0 = ∇2f (x0) O

(
1√
k

)k

[Rodomanov-Nesterov’21] O
(

1
d

)
∇2f (x) � B0 � κ∇2f (x) O

(√
d lnκ

k

)k

Table: Definition κ = L1/µ

I These results are only local, it is unclear how to extend them into global guarantees
⇒ The condition on B0 may not hold when ‖x0−x∗‖ becomes small

I Moreover, there is no global result matching the linear rate of AGD or GD
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Results for the Convex Setting

I In the CVX setting, few results are known for classical QN methods
• limk→∞ f (xk) = f (x∗) with exact line search [Powell’72]
• lim infk→∞ ‖∇f (xk)‖ = 0 with inexact line search [Powell’76; Byrd-Nocedal-Yuan’87]

I Along another line of work, analyzing QN methods as preconditioned GD methods
• O(1/k) rate is shown in [Scheinberg-Tang’16]
• An accelerated O(1/k2) rate is achieved in [Ghanbari-Scheinberg’18]

I However, the rates are no better than that of AGD ⇒ no provable gain
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Goal and Main Ideas of our Proposed Approach

I Goal: Designing QN methods with superior gradient complexity compared to GD-type
methods in both CVX and SCVX settings.

I Our Approach: Online-Learning guided Quasi-Newton Proximal Extragradient
(QNPE) Algorithms

I Main Ideas:

• Instead of the classic template of QN methods (xk+1 = xk − ρkB−1
k ∇f (xk)), we

follow the Hybrid Proximal Extragradient (HPE) framework
• Instead of updating Bk by enforcing the Proximity condition and Secant condition,
we use an Online Learning framework for updating Bk inspired by our analysis
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Our Contributions (Strongly-Convex Setting)

I Global convergence rates (no conditions on x0 or B0) [Jiang-Jin-M, COLT ’23]

‖xk − x∗‖2
‖x0 − x∗‖2 ≤ min


(
1 + µ

4L1

)−k
,

1 + µ

4L1

√
k
C

−k


∥xk − x*∥2

∥x0 − x*∥2

Iterations

Linear rate:  


Superlinear rate: 

(1 + μ
4L1 )

−k

(1 + μ
4L1

k
C )

−k

C

C = 𝒪(∥B0 − ∇2f(x*)∥2
F

L21 )
≤ d

Log scale

I For k ≤ d , QNPE matches the linear rate of GD
I After at most O(d) iterations QNPE becomes provably faster than GD
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Our Contributions (Convex Setting)

I An accelerated QN proximal extragradient method [Jiang-M, NeurIPS ’23]

f (xk)− f (x) ≤ O
(

min
{

1
k2 ,

√
d log k
k2.5

})

• for k ≤ d log d , it matches the rate of AGD
• for k ≥ d log d , it provably converges faster than AGD

I Lower bound discussion:
• This result does not violate the lower bound for first-order methods
• The lower bound of Ω

(
1
k2

)
only holds for k ≤ d
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Hybrid Proximal Extragradient

I We follow (a variant of) the Hybrid Proximal Extragradient (HPE) framework
[Solodov-Svaiter’99; Monteiro-Svaiter’10]

I Stage 1: Inexact proximal point update

I Stage 2: Extragradient step

xk+1 = γk [xk − ηk∇f (x̂k)] + (1− γk)x̂k , γk = 1
1 + 2ηkµ

I ‖xk+1 − x∗‖2 ≤ 1
1+2ηkµ

‖xk − x∗‖2 ⇒ any rate can be achieved as ηk ↑
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Newton Proximal Extragradient

I Issue: Subproblem in Stage 1 is costly!

‖x̂k − xk + ηk∇f (x̂k)‖ ≤ 1
2‖x̂k − xk‖

I Solution: Linearize ∇f (x̂k) ≈ ∇f (xk) +∇2f (xk)(x̂k − xk)
⇒ subproblem becomes a linear system of equations

I Stage 1: Newton proximal step [Monteiro-Svaiter’12]

‖x̂k − xk + ηk(∇f (xk) +∇2f (xk)(x̂k − xk))‖ ≤ 1
4‖x̂k − xk‖,

ηk‖∇f (x̂k)− (∇f (xk) +∇2f (xk)(x̂k − xk))‖ ≤ 1
4‖x̂k − xk‖

• ηk is not arbitrary; requires backtracking line search
I To obtain a quasi-Newton method, we first replace ∇2f (xk) by Bk
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Quasi-Newton Proximal Extragradient

I Stage 1: Quasi-Newton proximal step

‖x̂k − xk + ηk(∇f (xk) + Bk(x̂k − xk))‖ ≤ 1
4‖x̂k − xk‖,

ηk‖∇f (x̂k)− (∇f (xk) + Bk(x̂k − xk))‖ ≤ 1
4‖x̂k − xk‖

• Given xk and Bk , use backtracking line search to find ηk and x̂k
I Stage 2: Extragradient step

xk+1 = γk [xk − ηk∇f (x̂k)] + (1− γk)x̂k , γk = 1
1 + 2ηkµ

I The remaining question: how to select {Bk}?
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How to Update Bk : Starting from Convergence Analysis

I How should we select/update {Bk}?

I We don’t follow the classic approaches that use Proximity and Secant conditions
I We let the convergence analysis guide our choice of Bk !

I We know that ‖xk+1 − x∗‖2 ≤ 1
1+2ηkµ

‖xk − x∗‖2

I ηk is constrained by

ηk‖∇f (x̂k)− (∇f (xk) + Bk(x̂k − xk))‖ ≤ 1
4‖x̂k − xk‖

I Initial result: By backtracking line search:

ηk '
‖x̂k − xk‖

‖∇f (x̂k)−∇f (xk)− Bk(x̂k − xk)‖ = ‖sk‖
‖yk − Bksk‖

,

where yk = ∇f (x̂k)−∇f (xk) and sk = x̂k − xk
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How to Update Bk : Starting from Convergence Analysis

I After N iterations, we have

‖xN − x∗‖2
‖x0 − x∗‖2 ≤

N−1∏
k=0

(1 + 2ηkµ)−1 ≤
(
1 + 2µ

√
N∑N−1

k=0 1/η2
k

)−N

I Since ηk ' ‖sk‖/‖yk − Bksk‖, we further have

‖xN − x∗‖2
‖x0 − x∗‖2 ≤

(
1 + 2µ

√
N

O(
∑N−1

k=0 ‖yk − Bksk‖2/‖sk‖2)

)−N

,

I Hence, the goal is to choose Bk such that we minimize

N−1∑
k=0

`k(Bk) :=
N−1∑
k=0

‖yk − Bksk‖2

‖sk‖2
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Hessian Approximation Update via Online Learning

I We aim to minimize
∑N−1

k=0 `k(Bk), but we observe `k after selecting Bk !

Why? given xk ,Bk → select (ηk , x̂k) by BLS → compute sk , yk → compute `k(Bk)

I Key idea: View the update of Bk as an online convex opt problem
• Choose Bk ∈ Z, where Z = {B : µI � B � L1I}
• Receive `k(Bk)
• Update Bk+1 by an online learning algorithm, e.g., Online Gradient Descent

Bk+1 = ΠZ (Bk − ρ∇`k(Bk))

I Side note: Why do we project to set Z? You’ll see!
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Global Linear Convergence

I Now our goal is to upper bound
∑N−1

k=0 `k(Bk)
I A “trivial” bound: since µI � Bk � L1I,

`k(Bk) = ‖yk − Bksk‖2

‖sk‖2
≤ 2‖yk‖2 + 2‖Bksk‖2

‖sk‖2
≤ 2‖yk‖2

‖sk‖2
+ 2L2

1

I Recall that yk = ∇f (x̂k)−∇f (xk) and sk = x̂k − xk
I Since ‖∇f (x̂k)−∇f (xk)‖ ≤ L1‖x̂k − xk‖, we have ‖yk‖ ≤ L1‖sk‖

I Thus, we always have `k(Bk) ≤ 4L2
1 ⇒

∑N−1
k=0 `k(Bk) ≤ 4L2

1N
I Plugging this bound back:

‖xN − x∗‖2
‖x0 − x∗‖2 ≤

(
1 + 2µ

√
N

O(
∑N−1

k=0 `k(Bk))

)−N

=
(
1 + Ω

(
µ

L1

))−N
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Global Superlinear Convergence

I Moreover, we can use a “small-loss” regret bound for Online Gradient Descent

Bk+1 = ΠZ (Bk − ρ∇`k(Bk))

• Standard analysis shows that, for any H ∈ Z:

`k(Bk)− `k(H) ≤ 1
2ρ‖Bk −H‖2F −

1
2ρ‖Bk+1 −H‖2F + ρ

2‖∇`k(Bk)‖2F

• We also have ‖∇`k(Bk)‖2F ≤ 4`k(Bk). Thus, by taking ρ = 1/4, we get

`k(Bk)− `k(H) ≤ 2‖Bk −H‖2F − 2‖Bk+1 −H‖2F + 1
2`k(Bk)

⇒ `k(Bk) ≤ 4‖Bk −H‖2F − 4‖Bk+1 −H‖2F + 2`k(H)

• Summing up the inequalities:
N−1∑
k=0

`k(Bk) ≤ 4‖B0 −H‖2F + 2
N−1∑
k=0

`k(H)
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Bk+1 = ΠZ (Bk − ρ∇`k(Bk))

• Standard analysis shows that, for any H ∈ Z:

`k(Bk)− `k(H) ≤ 1
2ρ‖Bk −H‖2F −

1
2ρ‖Bk+1 −H‖2F + ρ

2‖∇`k(Bk)‖2F

• We also have ‖∇`k(Bk)‖2F ≤ 4`k(Bk). Thus, by taking ρ = 1/4, we get
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Global Superlinear Convergence

I We showed that for any H ∈ Z = {B : µI � B � L1I}:
N−1∑
k=0

`k(Bk) ≤ 4‖B0 −H‖2F + 2
N−1∑
k=0

`k(H)

I A natural choice: H = ∇2f (x∗)
I We can show that

`k(∇2f (x∗)) = ‖yk −∇2f (x∗)sk‖2

‖sk‖2
. ‖∇2f (xk)−∇2f (x∗)‖2op ≤ L2

2‖xk − x∗‖2

I By using ‖xk − x∗‖2 ≤ ‖x0 − x∗‖2
(
1 + Ω(L1

µ )
)−k

, we further get

N−1∑
k=0

`k(∇2f (x∗)) = O
(

L1L2
2‖x0 − x∗‖2

µ

)

A. Mokhtari Online Learning Guided Quasi-Newton Methods 20 / 45



Global Superlinear Convergence

I We showed that for any H ∈ Z = {B : µI � B � L1I}:
N−1∑
k=0

`k(Bk) ≤ 4‖B0 −H‖2F + 2
N−1∑
k=0

`k(H)

I A natural choice: H = ∇2f (x∗)

I We can show that

`k(∇2f (x∗)) = ‖yk −∇2f (x∗)sk‖2

‖sk‖2
. ‖∇2f (xk)−∇2f (x∗)‖2op ≤ L2

2‖xk − x∗‖2

I By using ‖xk − x∗‖2 ≤ ‖x0 − x∗‖2
(
1 + Ω(L1

µ )
)−k

, we further get

N−1∑
k=0

`k(∇2f (x∗)) = O
(

L1L2
2‖x0 − x∗‖2

µ

)

A. Mokhtari Online Learning Guided Quasi-Newton Methods 20 / 45



Global Superlinear Convergence

I We showed that for any H ∈ Z = {B : µI � B � L1I}:
N−1∑
k=0

`k(Bk) ≤ 4‖B0 −H‖2F + 2
N−1∑
k=0

`k(H)

I A natural choice: H = ∇2f (x∗)
I We can show that

`k(∇2f (x∗)) = ‖yk −∇2f (x∗)sk‖2

‖sk‖2
. ‖∇2f (xk)−∇2f (x∗)‖2op ≤ L2

2‖xk − x∗‖2

I By using ‖xk − x∗‖2 ≤ ‖x0 − x∗‖2
(
1 + Ω(L1

µ )
)−k

, we further get

N−1∑
k=0

`k(∇2f (x∗)) = O
(

L1L2
2‖x0 − x∗‖2

µ

)

A. Mokhtari Online Learning Guided Quasi-Newton Methods 20 / 45



Global Superlinear Convergence

I We showed that for any H ∈ Z = {B : µI � B � L1I}:
N−1∑
k=0

`k(Bk) ≤ 4‖B0 −H‖2F + 2
N−1∑
k=0

`k(H)

I A natural choice: H = ∇2f (x∗)
I We can show that

`k(∇2f (x∗)) = ‖yk −∇2f (x∗)sk‖2

‖sk‖2
. ‖∇2f (xk)−∇2f (x∗)‖2op ≤ L2

2‖xk − x∗‖2

I By using ‖xk − x∗‖2 ≤ ‖x0 − x∗‖2
(
1 + Ω(L1

µ )
)−k

, we further get

N−1∑
k=0

`k(∇2f (x∗)) = O
(

L1L2
2‖x0 − x∗‖2

µ

)

A. Mokhtari Online Learning Guided Quasi-Newton Methods 20 / 45



Global Superlinear Convergence

I Putting everything together:

N−1∑
k=0

`k(Bk) = O
(
‖B0 −∇2f (x∗)‖2F + L1L2

2‖x0 − x∗‖2
µ

)

Note that the upper bound is independent of N!
I Thus,

‖xN − x∗‖2
‖x0 − x∗‖2 ≤

(
1 + 2µ

√
N

O(
∑N−1

k=0 `k(Bk))

)−N

=

1 + µ

L1

√
N
C

−N

,

where C = O
(
‖B0−∇2f (x∗)‖2

F
L2

1
+ L2

2‖x0−x∗‖2

µ

)
⇒ Worst case: C = O(d)
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Projection-Free Online Learning

I One issue: Euclidean projection onto Z = {B : µI � B � L1I} is expensive
• It requires full eigen-decomposition, which costs O(d3)

I Observation: it is simpler to do “gauge projection” [Mhammedi’22]
• For a given B ∈ Sd , compute λmin and λmax
• If µ ≤ λmin ≤ λmax ≤ L1, then B ∈ Z
• Otherwise, we obtain a feasible point B̂ by “pulling” it towards to the “center”

B̂ = cB + (1− c)L1 + µ

2 Id , 0 < c < 1

I Solution: We adopted a projection-free approach inspired by [Mhammedi’22]
I To better illustrate the technique, consider a general online learning problem
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Projection-Free Online Learning

I Consider a standard online learning problem over the constraint set C
I For k = 0, 1, . . . ,N − 1:

• Learner chooses xk ∈ C
• Learner observes a convex loss `k : C → R

I The goal is to minimize the regret: RegN(x) =
∑N−1

k=0 (`k(xk)− `k(x))
I The Euclidean projection onto C can be computationally expensive.
⇒ But, we have access to a separation oracle
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Separation Oracle

I WLOG, we assume that 0 ∈ C ⊂ BR(0). Moreover, we have a separation oracle for C
• Input: w ∈ BR(0)
• Output: γ > 0, s ∈ Rn such that{

γ ≤ 1 ⇒ w ∈ C;
γ > 1 ⇒ w/γ ∈ C and 〈s,w − x〉 ≥ γ − 1, ∀x ∈ C

C ww/�

s

0
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Projection-Free Online Learning

I We introduce an auxiliary online learning problem over the set BR(0)
I For k = 0, 1, . . . ,N − 1:

• Learner chooses wk ∈ BR(0)
• Observes ˜̀k(·) = 〈g̃k , ·〉

I We will show that
∑N−1

k=0 (`k(xk)− `k(x)) ≤
∑N−1

k=0 〈g̃k ,wk − x〉, ∀x ∈ C
⇒ It suffices to bound the regret of the auxiliary problem

I It is simple to compute the Euclidean projection onto the set BR(0)
⇒ We can use Online Gradient Descent: wk+1 = ΠBR(0)(wk − ρg̃k)

I Question:
• How to generate the “actual” iterate xk ∈ C?
• How to define the surrogate loss vector g̃k?

We will use the separation oracle!
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Projection-Free Online Learning

I Initialize w0 = x0 ∈ C and g̃0 ← ∇`0(x0)
I For k = 0, 1, . . . ,N − 1:

• Update wk+1 ← ΠBR(0)(wk − ρg̃k)
• Let (γk+1, sk+1)← SEP(wk+1)
• We consider two cases:If γk+1 ≤ 1 : set xk+1 ← wk+1, g̃k+1 ← gk+1

If γk+1 > 1 : set xk+1 ← wk+1
γk+1

, g̃k+1 ← gk+1 + |〈gk+1, xk+1〉|sk+1

where gk+1 = ∇`k+1(xk+1)

N−1∑
k=0

(`k(xk)− `k(x)) ≤
N−1∑
k=0
〈g̃k ,wk − x〉, ∀x ∈ C
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Separation Oracle in Our Setting

I Recall that in our case, the constraint set is Z = {B : µI � B � L1I}
I By translation and rescaling, we work with C , {B̂ : −I � B̂ � I} = {B̂ : ‖B̂‖op ≤ 1}

I Input: w ∈ BR(0)
I Output: γ > 0, s ∈ Rn such that

γ ≤ 1 ⇒ w ∈ C;

γ > 1 ⇒
w/γ ∈ C,
〈s,w − x〉 ≥ γ − 1, ∀x ∈ C

I Input: W ∈ Sd satisfying ‖W‖F ≤
√

d
I Output: γ > 0, S ∈ Sd such that

γ ≤ 1 ⇒ ‖W‖op ≤ 1;

γ > 1 ⇒
‖W/γ‖op ≤ 1,
〈S,W− B̂〉 ≥ γ − 1, ∀‖B̂‖op ≤ 1

I We only need to approximately compute (λmin, vmin) and (λmax, vmax) of W
I We rely on the Lanczos method with a random start [Kuczyński-Woźniakowski’92]
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Summary of Convergence Rates (Strongly Convex)
Theorem: [Jiang-Jin-M, COLT, ’23]

Assume that µI � ∇2f (x) � L1I and ‖∇2f (x)−∇2f (y)‖ ≤ L2‖x − y‖. Then
(a) (Linear convergence) For any k ≥ 0, we have ‖xk+1−x∗‖2

‖xk−x∗‖2 ≤
(
1 + µ

4L1

)−1
.

(b) (Superlinear convergence) For any k ≥ 0,

‖xk − x∗‖2
‖x0 − x∗‖2 ≤

(
1 + µ

L1

√
k
C

)−k

≈ O
(( 1√

k

)k
)

where C = O(‖B0 −∇2f (x∗)‖2F/L2
1 + L2

2‖x0 − x∗‖2/(L1µ)) ≈ O(d)

I As a corollary, the number of iterations to reach ε-accuracy can be bounded by

Nε =


L1
µ log 1

ε , if ε > exp(− µ
L1

C)
log 1

ε

log log 1
ε

, if ε� exp(− µ
L1

C)
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Computational Cost

Lemma: [Jiang-Jin-M, COLT, ’23]

Let Nε be the number of iterations to reach ε-accuracy. Then, the total number of
gradient computations (due to BTLS) is bounded above by 3Nε.

I Iteration and gradient complexity: Nε = O
( log 1

ε

log log 1
ε

)
I Matrix-vector products:

• O
(
Nε

√
L1
µ log

(
L1‖x0−x∗‖2

µε

))
from approx. linear system solving

• O
(
Nε

√
L1
µ log

(
dN2

ε

))
from approx. eigenvector computation

I Total number of Matrix-vector products Õ(Nε
√
κ)
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Numerical Experiment
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(a) Convergence by iteration
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(b) Convergence by gradient evals (c) Histogram of gradient evals

Figure: Numerical results for an L2-regularized logistic regression problem

What about the CVX setting?
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Accelerated Hybrid Proximal Extragradient (MS Acceleration)

I Our proposed method is based on the accelerated HPE framework [Monteiro-Svaiter’13]
I Initialization: x0, z0 ∈ Rd and A0 = 0
I Stage 1: Pick ηk and compute

ak =
ηk +

√
η2

k + 4ηkAk

2 , yk = Ak
Ak + ak

xk + ak
Ak + ak

zk

I Stage 2: Inexact proximal point update

xk+1 ≈ yk − ηk∇f (xk+1)

I Stage 3: Extragradient step

zk+1 = zk − ak∇f (xk+1), Ak+1 = Ak + ak

I f (xN)− f (x∗) ≤ 2‖z0 − x∗‖2/(
∑N−1

k=0
√
ηk)2 ⇒ any rate can be achieved as ηk ↑
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Accelerated Newton Proximal Extragradient

I Issue: Subproblem in Stage 2 is costly!

‖xk+1 − yk + ηk∇f (xk+1)‖ ≤ 1
2‖xk+1 − yk‖

I Solution: Linearize ∇f (xk+1) ≈ ∇f (yk) +∇2f (yk)(xk+1 − yk)
I Stage 2: Newton Proximal Step [Monteiro-Svaiter’13]

‖xk+1 − yk + ηk(∇f (yk) +∇2f (yk)(xk+1 − yk))‖ ≤ 1
4‖xk+1 − yk‖,

ηk‖∇f (xk+1)− (∇f (yk) +∇2f (yk)(xk+1 − yk))‖ ≤ 1
4‖xk+1 − yk‖

I However, there is another issue: ηk appears in both Stage 1 and 2
⇒ The line search procedure is much more complicated

I In the paper, we adopt a refined MS acceleration framework by [Carmon et al.’22]

A. Mokhtari Online Learning Guided Quasi-Newton Methods 32 / 45



Accelerated Quasi-Newton Proximal Extragradient

I Stage 1: Pick ηk and compute

ak =
ηk +

√
η2

k + 4ηkAk

2 , yk = Ak
Ak + ak

xk + ak
Ak + ak

zk

I Stage 2: Quasi-Newton proximal step
‖xk+1 − yk + ηk(∇f (yk) + Bk(xk+1 − yk))‖ ≤ 1

4‖xk+1 − yk‖,

ηk‖∇f (xk+1)− (∇f (yk) + Bk(xk+1 − yk))‖ ≤ 1
4‖xk+1 − yk‖

• Given yk and Bk , use backtracking line search to find ηk and xk+1
I Stage 3: Extragradient step

zk+1 = zk − ak∇f (xk+1), Ak+1 = Ak + ak
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How to Update Bk : Starting from Convergence Analysis

I How should we select/update {Bk}?

I Same story: we let the convergence analysis guide our choice of Bk !

I We know that f (xN)− f (x∗) ≤ 2‖z0 − x∗‖2/(
∑N−1

k=0
√
ηk)2

I ηk is constrained by

ηk‖∇f (xk+1)− (∇f (yk) + Bk(xk+1 − yk))‖ ≤ 1
4‖xk+1 − yk‖

I Initial result: By backtracking line search:

ηk '
‖xk+1 − yk‖

‖∇f (xk+1)−∇f (yk)− Bk(xk+1 − yk)‖ = ‖sk‖
‖wk − Bksk‖

,

where wk = ∇f (xk+1)−∇f (yk) and sk = xk+1 − yk
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How to Update Bk : Starting from Convergence Analysis

I After N iterations, we have

f (xN)− f (x∗) ≤ 2‖z0 − x∗‖2

(
∑N−1

k=0
√
ηk)2

≤ 2‖z0 − x∗‖2
N2.5

√√√√N−1∑
k=0

1
η2

k

I Since ηk ' ‖sk‖/‖wk − Bksk‖, we further have

f (xN)− f (x∗) ≤ 2‖z0 − x∗‖2
N2.5

√√√√O(N−1∑
k=0

‖wk − Bksk‖2
‖sk‖2

)

I Hence, the goal is to choose Bk such that we minimize

N−1∑
k=0

`k(Bk) :=
N−1∑
k=0

‖wk − Bksk‖2

‖sk‖2
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Hessian Approximation Update via Online Learning

I Again, we view the update of Bk as an online convex opt problem
• Choose Bk ∈ Z, where Z = {B : 0 � B � L1I}
• Receive `k(Bk)
• Update Bk+1 by an online learning algorithm, e.g., Online Gradient Descent

Bk+1 = ΠZ (Bk − ρ∇`k(Bk))

I To avoid Euclidean projection, we use the same projection-free online learning approach
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O(1/k2) Convergence Rate

I Now our goal is to upper bound
∑N−1

k=0 `k(Bk)
I Using 0 � Bk � L1I, we can always have `k(Bk) ≤ 4L2

1 ⇒
∑N−1

k=0 `k(Bk) ≤ 4L2
1N

I Plugging this bound back:

f (xN)− f (x∗) ≤ 2‖z0 − x∗‖2
N2.5

√√√√O(N−1∑
k=0

`k(Bk)
)

= O
(

L1‖z0 − x∗‖2
N2

)

I This matches the rate of Nesterov’s Accelerated Gradient
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Õ(
√

d/k2.5) Convergence Rate

I Recall that in the strongly convex setting, a better bound on
∑N−1

k=0 `k(Bk) can be
obtained using regret analysis

• For any H ∈ Z = {B : 0 � B � L1I}, we have

N−1∑
k=0

`k(Bk) ≤ 4‖B0 −H‖2F + 2
N−1∑
k=0

`k(H)

• Choosing H = ∇2f (x∗), we showed that `k(∇2f (x∗)) . L2
2‖xk − x∗‖2

• By linear convergence,
∑N−1

k=0 ‖xk − x∗‖2 = O
(

L1
µ ‖x0 − x∗‖2

)
I However, we do not have linear convergence in the convex setting!
I Have to take a different approach via dynamic regret bound
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Õ(
√

d/k2.5) Convergence Rate

I For any sequence {Hk}N−1
k=0 with Hk ∈ Z = {B : 0 � B � L1I}, we can show that

N−1∑
k=0

`k(Bk) = O
(
‖B0 −H0‖2F +

N−1∑
k=0

`k(Hk) + L1
√

d
N−1∑
k=0
‖Hk+1 −Hk‖F

)

I We then choose Hk = ∇2f (yk) for k = 0, . . . ,N − 1
I We can show that

`k(∇2f (yk)) ≤ L2
2‖xk+1 − yk‖2,

‖∇2f (yk+1)−∇2f (yk)‖F ≤
√

d‖∇2f (yk+1)−∇2f (yk)‖op ≤
√

dL2‖yk+1 − yk‖

I With some careful analysis, we can bound
N−1∑
k=0
‖xk+1 − yk‖2 = O

(
‖z0 − x∗‖2

)
,

N−1∑
k=0
‖yk+1 − yk‖ = O (log N‖z0 − x∗‖)
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Õ(
√

d/k2.5) Convergence Rate

I Putting everything together:

N−1∑
k=0

`k(Bk) = O
(
‖B0 −H0‖2F +

N−1∑
k=0

`k(Hk) + L1
√

d
N−1∑
k=0
‖Hk+1 −Hk‖F

)
= O

(
‖B0 −∇2f (x0)‖2F + L2

2‖x0 − x∗‖2 + L1L2d‖z0 − x∗‖ log N
)

I Thus, we have

f (xN)− f (x∗) ≤ 2‖z0 − x∗‖2
N2.5

√√√√O(N−1∑
k=0

`k(Bk)
)

= O
(√

d log N
N2.5

)
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Summary of our results for the Convex setting

Theorem: [Jiang-Jin-M, NeurIPS, ’23]

Assume that 0 � ∇2f (x) � L1I and ‖∇2f (x) − ∇2f (y)‖ ≤ L2‖x − y‖. Then the
iterates if AQNPE satisfy

f (xk)− f (x) ≤ O
(

min
{

1
k2 ,

√
d log k
k2.5

})

I Iteration complexity: Nε = Õ(min{ 1√
ε
, d0.2

ε0.4 })

I Side result: Gradient evaluations: 3Nε

I Hence, gradient complexity: Nε = Õ(min{ 1√
ε
, d0.2

ε0.4 })
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Computational Cost

I Matrix-vector products:

• O
(

Nε +
√

1
ε

)
from approx. linear system solving

• Õ
(
N1.25
ε

)
from approx. eigenvector computation

Methods Gradient queires Additional Matrix-vector products

AGD O( 1√
ε
) N.A.

A-QNPE (ours) Õ(min{ 1√
ε
, d0.2

ε0.4 }) Õ(min{ 1
ε0.625 ,

d0.25

ε0.5 })

I Gradient complexity of AQNPE is always better than AGD
I Overall complexity is better when gradient query is more costly than mat-vec product
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Numerical Experiment
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(a) Convergence by iteration (b) Histogram of gradient evals

Figure: Numerical results for log-sum-exp function on a synthetic dataset.
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Quasi-Newton Proximal Extragradient
1: Initialization: initial point x0 ∈ Rd and initial B0 s.t. µI � B0 � L1I
2: for iteration k = 0, . . . ,N − 1 do
3: Let ηk be the largest possible step size in {σkβ

i : i ≥ 0} such that
x̂k ≈α1 xk − ηk(I + ηkBk)−1∇f (xk),
ηk‖∇f (x̂k)−∇f (xk)− Bk(x̂k − xk)‖ ≤ α2‖x̂k − xk‖.

4: Set σk+1 ← ηk/β
5: Update xk+1 ← 1

1+2ηk µ (xk − ηk∇f (x̂k)) + 2ηk µ
1+2ηk µ x̂k

6: if ηk = σk then # Line search accepted the initial trial step size
7: Set Bk+1 ← Bk
8: else # Line search bactracked
9: Let x̃k be the last rejected iterate in the line search

10: Set yk ← ∇f (x̃k)−∇f (xk) and sk ← x̃k − xk

11: Define the loss function `k(B) = ‖yk−Bsk‖2

2‖sk‖2

12: Feed `k(B) to an online learning algorithm and obtain Bk+1
13: end if
14: end for
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