Online Learning Guided Quasi-Newton Methods: Improved Global Non-asymptotic Guarantees

Aryan Mokhtari

Department of Electrical and Computer Engineering, UT Austin

Based on joint work with Ruichen Jiang and Qiujiang Jin

Cornell University, October 31st, 2023

Convex Minimization

- Consider the general unconstrained minimization problem

$$
\min _{x \in \mathbb{R}^{d}} f(\boldsymbol{x})
$$

where f is L_{1}-smooth (i.e. $\|\nabla f(\boldsymbol{x})-\nabla f(\boldsymbol{x})\| \leq L_{1}\|\boldsymbol{x}-\boldsymbol{y}\|$)

Convex Minimization

- Consider the general unconstrained minimization problem

$$
\min _{x \in \mathbb{R}^{d}} f(\boldsymbol{x})
$$

where f is L_{1}-smooth (i.e. $\|\nabla f(\boldsymbol{x})-\nabla f(\boldsymbol{x})\| \leq L_{1}\|\boldsymbol{x}-\boldsymbol{y}\|$)

- We will focus on two general settings
- Case I: f is μ-strongly convex
- Case II: f is (only) convex

Convex Minimization

- Consider the general unconstrained minimization problem

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{d}} f(\boldsymbol{x})
$$

where f is L_{1}-smooth (i.e. $\|\nabla f(\boldsymbol{x})-\nabla f(\boldsymbol{x})\| \leq L_{1}\|\boldsymbol{x}-\boldsymbol{y}\|$)

- We will focus on two general settings
- Case I: f is μ-strongly convex
- Case II: f is (only) convex
- We are interested in settings where we can only query first-order information \Rightarrow We only have access to $\nabla f(x)$

Gradient Descent-type Methods

- Popular methods: Gradient Descent (GD) and its Accelerated version (AGD)
- Require only access to gradient oracle \Rightarrow Cost per iteration $\mathcal{O}(d)$

Gradient Descent-type Methods

- Popular methods: Gradient Descent (GD) and its Accelerated version (AGD)
- Require only access to gradient oracle \Rightarrow Cost per iteration $\mathcal{O}(d)$
- In Case I (SCVX): Achieve a Global linear convergence rate

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2} \leq \rho^{k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}
$$

where $\rho=1-\mu / L_{1}$ for GD and $\rho=1-\sqrt{\mu / L_{1}}$ for AGD.

Gradient Descent-type Methods

- Popular methods: Gradient Descent (GD) and its Accelerated version (AGD)
- Require only access to gradient oracle \Rightarrow Cost per iteration $\mathcal{O}(d)$
- In Case I (SCVX): Achieve a Global linear convergence rate

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2} \leq \rho^{k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}
$$

where $\rho=1-\mu / L_{1}$ for GD and $\rho=1-\sqrt{\mu / L_{1}}$ for AGD.

- In Case II (CVX): Achieve a Global sublinear convergence rate

$$
f\left(\boldsymbol{x}_{k}\right)-f^{*} \leq \frac{C}{k^{\alpha}}
$$

where $\alpha=1$ for GD and $\alpha=2$ for AGD.

Quasi-Newton Methods

- Quasi-Newton (QN) methods aim at speeding up GD-type methods by approximating the function's curvature and using a preconditioner

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\rho_{k} \mathbf{B}_{k}^{-1} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

Quasi-Newton Methods

- Quasi-Newton (QN) methods aim at speeding up GD-type methods by approximating the function's curvature and using a preconditioner

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\rho_{k} \mathbf{B}_{k}^{-1} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

- When $\mathbf{B}_{k} \approx \nabla^{2} f\left(\boldsymbol{x}_{k}\right)$ they mimic Newton's method

Quasi-Newton Methods

- Quasi-Newton (QN) methods aim at speeding up GD-type methods by approximating the function's curvature and using a preconditioner

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\rho_{k} \mathbf{B}_{k}^{-1} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

- When $\mathbf{B}_{k} \approx \nabla^{2} f\left(\boldsymbol{x}_{k}\right)$ they mimic Newton's method
- Only use gradient to construct $\mathbf{B}_{k} \Rightarrow$ Still first-order methods

Quasi-Newton Methods

- Quasi-Newton (QN) methods aim at speeding up GD-type methods by approximating the function's curvature and using a preconditioner

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\rho_{k} \mathbf{B}_{k}^{-1} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

- When $\mathbf{B}_{k} \approx \nabla^{2} f\left(\boldsymbol{x}_{k}\right)$ they mimic Newton's method
- Only use gradient to construct $\mathbf{B}_{k} \Rightarrow$ Still first-order methods
- Various updates for \mathbf{B}_{k} have been proposed with cost $\mathcal{O}\left(d^{2}\right)$ (BFGS, DFP, SR1)

Quasi-Newton Methods

- Quasi-Newton (QN) methods aim at speeding up GD-type methods by approximating the function's curvature and using a preconditioner

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\rho_{k} \mathbf{B}_{k}^{-1} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

- When $\mathbf{B}_{k} \approx \nabla^{2} f\left(\boldsymbol{x}_{k}\right)$ they mimic Newton's method
- Only use gradient to construct $\mathbf{B}_{k} \Rightarrow$ Still first-order methods
- Various updates for \mathbf{B}_{k} have been proposed with $\operatorname{cost} \mathcal{O}\left(d^{2}\right)$ (BFGS, DFP, SR1)
- Main ideas:
- Proximity condition: Keep \mathbf{B}_{k} and \mathbf{B}_{k+1} close
- Secant condition: $\mathbf{B}_{k+1} \boldsymbol{s}_{k}=\boldsymbol{y}_{k}$ where $\boldsymbol{s}_{k}=\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}, \boldsymbol{y}_{k}=\nabla f\left(\boldsymbol{x}_{k+1}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)$

Quasi-Newton Methods

- Quasi-Newton (QN) methods aim at speeding up GD-type methods by approximating the function's curvature and using a preconditioner

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\rho_{k} \mathbf{B}_{k}^{-1} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

- When $\mathbf{B}_{k} \approx \nabla^{2} f\left(\boldsymbol{x}_{k}\right)$ they mimic Newton's method
- Only use gradient to construct $\mathbf{B}_{k} \Rightarrow$ Still first-order methods
- Various updates for \mathbf{B}_{k} have been proposed with $\operatorname{cost} \mathcal{O}\left(d^{2}\right)$ (BFGS, DFP, SR1)
- Main ideas:
- Proximity condition: Keep \mathbf{B}_{k} and \mathbf{B}_{k+1} close
- Secant condition: $\mathbf{B}_{k+1} \boldsymbol{s}_{k}=\boldsymbol{y}_{k}$ where $\boldsymbol{s}_{k}=\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}, \boldsymbol{y}_{k}=\nabla f\left(\boldsymbol{x}_{k+1}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)$

$$
\mathbf{B}_{k+1}=\operatorname{argmin}\left\|\mathbf{B}-\mathbf{B}_{k}\right\| \mathbf{v} \Longleftrightarrow \mathbf{B}_{k+1}^{-1}=\left(\mathbf{I}-\frac{\boldsymbol{s}_{k} \boldsymbol{y}_{k}^{\top}}{\boldsymbol{s}_{k}^{\top} \boldsymbol{y}_{k}}\right) \mathbf{B}_{k}^{-1}\left(\mathbf{I}-\frac{\boldsymbol{y}_{k} \boldsymbol{s}_{k}^{\top}}{\boldsymbol{s}_{k}^{\top} \boldsymbol{y}_{k}}\right)+\frac{\boldsymbol{s}_{k} \boldsymbol{s}_{k}^{\top}}{\boldsymbol{s}_{k}^{\top} \boldsymbol{y}_{k}}
$$

$$
\text { s.t. } \quad \mathbf{B} \boldsymbol{s}_{k}=\boldsymbol{y}_{k}, \quad \mathbf{B} \succeq \mathbf{0}
$$

Performance of QN Methods

- Several studies have illustrated the superior performance of QN methods
- However, there is no result proving this advantage for QN algorithms

Results on Quasi-Newton Methods (Strongly Convex setting)

- In the SCVX setting, classic results have shown asymptotic local superlinear convergence for QN methods: when $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|$ is small,

$$
\lim _{k \rightarrow \infty} \frac{\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}\right\|}{\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|}=0
$$

Results on Quasi-Newton Methods (Strongly Convex setting)

- In the SCVX setting, classic results have shown asymptotic local superlinear convergence for QN methods: when $\left\|\boldsymbol{x}_{\boldsymbol{k}}-\boldsymbol{x}^{*}\right\|$ is small,

$$
\lim _{k \rightarrow \infty} \frac{\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}\right\|}{\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|}=0
$$

- Local superlinear rate [Broyden-Dennis-Moré'73][Dennis-Moré'74]
- Global and superlinear rate with exact linesearch [Powell'71][Dixon'72]
- Global and superlinear rate with inexact linesearch [Powell'76][Bryd-Nocedal-Yuan'87]
- Many other works: [Griewank-Toint'82; Dennis-Martinez-Tapia'89; Yuan'91; Al-Baali'98; Li-Fukushima'99; Yabe-Ogasawara-Yoshino'07; M-Eisen-Ribeiro'18; Gao-Goldfarb'19]

Results on Quasi-Newton Methods (Strongly Convex setting)

- In the SCVX setting, classic results have shown asymptotic local superlinear convergence for QN methods: when $\left\|\boldsymbol{x}_{\boldsymbol{k}}-\boldsymbol{x}^{*}\right\|$ is small,

$$
\lim _{k \rightarrow \infty} \frac{\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}\right\|}{\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|}=0
$$

- Local superlinear rate [Broyden-Dennis-Moré'73][Dennis-Moré'74]
- Global and superlinear rate with exact linesearch [Powell'71][Dixon'72]
- Global and superlinear rate with inexact linesearch [Powell'76][Bryd-Nocedal-Yuan'87]
- Many other works: [Griewank-Toint'82; Dennis-Martinez-Tapia'89; Yuan'91; Al-Baali'98;

Li-Fukushima'99; Yabe-Ogasawara-Yoshino'07; M-Eisen-Ribeiro'18; Gao-Goldfarb'19]

- However, they are all asymptotic and fail to provide an explicit convergence rate
- The global linear results are no better than GD or AGD

Recent Results on Quasi-Newton Methods (Strongly Convex setting)

- Recent results show explicit non-asymptotic local superlinear rate for BFGS and DFP

Recent Results on Quasi-Newton Methods (Strongly Convex setting)

- Recent results show explicit non-asymptotic local superlinear rate for BFGS and DFP
- Rodomanov-Nesterov'21 and Jin-M'22 concurrently but using different Lyapunov functions showed superlinear rates of the form $O\left((1 / \sqrt{k})^{k}\right)$

Recent Results on Quasi-Newton Methods (Strongly Convex setting)

- Recent results show explicit non-asymptotic local superlinear rate for BFGS and DFP
- Rodomanov-Nesterov'21 and Jin-M'22 concurrently but using different Lyapunov functions showed superlinear rates of the form $O\left((1 / \sqrt{k})^{k}\right)$

	cond. on $\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|$	cond. on \mathbf{B}_{0}	rate
[Jin-M'22]	$\mathcal{O}\left(\frac{1}{\sqrt{d}}\right)$	$\mathbf{B}_{0}=\nabla^{2} f\left(\boldsymbol{x}_{0}\right)$	$\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)^{k}$
[Rodomanov-Nesterov'21]	$\mathcal{O}\left(\frac{1}{d}\right)$	$\nabla^{2} f(\boldsymbol{x}) \preceq \mathbf{B}_{0} \preceq \kappa \nabla^{2} f(\boldsymbol{x})$	$\mathcal{O}\left(\sqrt{\frac{d \ln \kappa}{k}}\right)^{k}$

Table: Definition $\kappa=L_{1} / \mu$

Recent Results on Quasi-Newton Methods (Strongly Convex setting)

- Recent results show explicit non-asymptotic local superlinear rate for BFGS and DFP
- Rodomanov-Nesterov'21 and Jin-M'22 concurrently but using different Lyapunov functions showed superlinear rates of the form $O\left((1 / \sqrt{k})^{k}\right)$

	cond. on $\left\\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\\|$	cond. on \mathbf{B}_{0}	rate
[Jin-M'22]	$\mathcal{O}\left(\frac{1}{\sqrt{d}}\right)$	$\mathbf{B}_{0}=\nabla^{2} f\left(\boldsymbol{x}_{0}\right)$	$\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)^{k}$
[Rodomanov-Nesterov'21]	$\mathcal{O}\left(\frac{1}{d}\right)$	$\nabla^{2} f(\boldsymbol{x}) \preceq \mathbf{B}_{0} \preceq \kappa \nabla^{2} f(\boldsymbol{x})$	$\mathcal{O}\left(\sqrt{\frac{d \ln \kappa}{k}}\right)^{k}$

Table: Definition $\kappa=L_{1} / \mu$

- These results are only local, it is unclear how to extend them into global guarantees \Rightarrow The condition on \mathbf{B}_{0} may not hold when $\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|$ becomes small
- Moreover, there is no global result matching the linear rate of AGD or GD

Results for the Convex Setting

- In the CVX setting, few results are known for classical QN methods
- $\lim _{k \rightarrow \infty} f\left(\boldsymbol{x}_{k}\right)=f\left(\boldsymbol{x}^{*}\right)$ with exact line search [Powell'72]
- $\lim \inf _{k \rightarrow \infty}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|=0$ with inexact line search [Powell'76; Byrd-Nocedal-Yuan'87]

Results for the Convex Setting

- In the CVX setting, few results are known for classical QN methods
- $\lim _{k \rightarrow \infty} f\left(\boldsymbol{x}_{k}\right)=f\left(\boldsymbol{x}^{*}\right)$ with exact line search [Powell'72]
- $\lim \inf _{k \rightarrow \infty}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|=0$ with inexact line search [Powell'76; Byrd-Nocedal-Yuan'87]
- Along another line of work, analyzing QN methods as preconditioned GD methods
- $\mathcal{O}(1 / k)$ rate is shown in [Scheinberg-Tang'16]
- An accelerated $\mathcal{O}\left(1 / k^{2}\right)$ rate is achieved in [Ghanbari-Scheinberg'18]
- However, the rates are no better than that of $\mathrm{AGD} \Rightarrow$ no provable gain

Goal and Main Ideas of our Proposed Approach

- Goal: Designing QN methods with superior gradient complexity compared to GD-type methods in both CVX and SCVX settings.

Goal and Main Ideas of our Proposed Approach

- Goal: Designing QN methods with superior gradient complexity compared to GD-type methods in both CVX and SCVX settings.
- Our Approach: Online-Learning guided Quasi-Newton Proximal Extragradient (QNPE) Algorithms

Goal and Main Ideas of our Proposed Approach

- Goal: Designing QN methods with superior gradient complexity compared to GD-type methods in both CVX and SCVX settings.
- Our Approach: Online-Learning guided Quasi-Newton Proximal Extragradient (QNPE) Algorithms
- Main Ideas:
- Instead of the classic template of QN methods $\left(\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\rho_{k} \mathbf{B}_{k}^{-1} \nabla f\left(\boldsymbol{x}_{k}\right)\right)$, we follow the Hybrid Proximal Extragradient (HPE) framework
- Instead of updating \mathbf{B}_{k} by enforcing the Proximity condition and Secant condition, we use an Online Learning framework for updating \mathbf{B}_{k} inspired by our analysis

Our Contributions (Strongly-Convex Setting)

- Global convergence rates (no conditions on \boldsymbol{x}_{0} or \mathbf{B}_{0}) [Jiang-Jin-M, COLT '23]

$$
\frac{\left\|x_{k}-x^{*}\right\|^{2}}{\left\|x_{0}-\boldsymbol{x}^{*}\right\|^{2}} \leq \min \left\{\left(1+\frac{\mu}{4 L_{1}}\right)^{-k},\left(1+\frac{\mu}{4 L_{1}} \sqrt{\frac{k}{C}}\right)^{-k}\right\}
$$

Our Contributions (Strongly-Convex Setting)

- Global convergence rates (no conditions on \boldsymbol{x}_{0} or \mathbf{B}_{0}) [Jiang-Jin-M, COLT '23]

$$
\frac{\left\|x_{k}-\boldsymbol{x}^{*}\right\|^{2}}{\left\|x_{0}-\boldsymbol{x}^{*}\right\|^{2}} \leq \min \left\{\left(1+\frac{\mu}{4 L_{1}}\right)^{-k},\left(1+\frac{\mu}{4 L_{1}} \sqrt{\frac{k}{C}}\right)^{-k}\right\}
$$

- For $k \leq d$, QNPE matches the linear rate of GD
- After at most $\mathcal{O}(d)$ iterations QNPE becomes provably faster than GD

Our Contributions (Convex Setting)

- An accelerated QN proximal extragradient method [Jiang-M, NeurIPS '23]

$$
f\left(x_{k}\right)-f(x) \leq \mathcal{O}\left(\min \left\{\frac{1}{k^{2}}, \frac{\sqrt{d \log k}}{k^{2.5}}\right\}\right)
$$

- for $k \leq d \log d$, it matches the rate of AGD
- for $k \geq d \log d$, it provably converges faster than AGD

Our Contributions (Convex Setting)

- An accelerated QN proximal extragradient method [Jiang-M, NeurIPS '23]

$$
f\left(x_{k}\right)-f(x) \leq \mathcal{O}\left(\min \left\{\frac{1}{k^{2}}, \frac{\sqrt{d \log k}}{k^{2.5}}\right\}\right)
$$

- for $k \leq d \log d$, it matches the rate of AGD
- for $k \geq d \log d$, it provably converges faster than AGD
- Lower bound discussion:
- This result does not violate the lower bound for first-order methods
- The lower bound of $\Omega\left(\frac{1}{k^{2}}\right)$ only holds for $k \leq d$

Hybrid Proximal Extragradient

- We follow (a variant of) the Hybrid Proximal Extragradient (HPE) framework [Solodov-Svaiter'99; Monteiro-Svaiter'10]

Hybrid Proximal Extragradient

- We follow (a variant of) the Hybrid Proximal Extragradient (HPE) framework [Solodov-Svaiter'99; Monteiro-Svaiter'10]
- Stage 1: Inexact proximal point update

$$
\hat{\boldsymbol{x}}_{k} \approx \boldsymbol{x}_{k}-\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)
$$

Hybrid Proximal Extragradient

- We follow (a variant of) the Hybrid Proximal Extragradient (HPE) framework [Solodov-Svaiter'99; Monteiro-Svaiter'10]
- Stage 1: Inexact proximal point update

$$
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right\| \leq \frac{1}{2}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
$$

Hybrid Proximal Extragradient

- We follow (a variant of) the Hybrid Proximal Extragradient (HPE) framework [Solodov-Svaiter'99; Monteiro-Svaiter'10]
- Stage 1: Inexact proximal point update

$$
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right\| \leq \frac{1}{2}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
$$

- Stage 2: Extragradient step

$$
\boldsymbol{x}_{k+1}=\gamma_{k}\left[\boldsymbol{x}_{k}-\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right]+\left(1-\gamma_{k}\right) \hat{x}_{k},
$$

Hybrid Proximal Extragradient

- We follow (a variant of) the Hybrid Proximal Extragradient (HPE) framework [Solodov-Svaiter'99; Monteiro-Svaiter'10]
- Stage 1: Inexact proximal point update

$$
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right\| \leq \frac{1}{2}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
$$

- Stage 2: Extragradient step

$$
\boldsymbol{x}_{k+1}=\gamma_{k}\left[\boldsymbol{x}_{k}-\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right]+\left(1-\gamma_{k}\right) \hat{\boldsymbol{x}}_{k}, \quad \gamma_{k}=\frac{1}{1+2 \eta_{k} \mu}
$$

Hybrid Proximal Extragradient

- We follow (a variant of) the Hybrid Proximal Extragradient (HPE) framework [Solodov-Svaiter'99; Monteiro-Svaiter'10]
- Stage 1: Inexact proximal point update

$$
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right\| \leq \frac{1}{2}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
$$

- Stage 2: Extragradient step

$$
\boldsymbol{x}_{k+1}=\gamma_{k}\left[\boldsymbol{x}_{k}-\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right]+\left(1-\gamma_{k}\right) \hat{\boldsymbol{x}}_{k}, \quad \gamma_{k}=\frac{1}{1+2 \eta_{k} \mu}
$$

- $\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}\right\|^{2} \leq \frac{1}{1+2 \eta_{k} \mu}\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2} \Rightarrow$ any rate can be achieved as $\eta_{k} \uparrow$

Newton Proximal Extragradient

- Issue: Subproblem in Stage 1 is costly!

$$
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right\| \leq \frac{1}{2}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
$$

Newton Proximal Extragradient

- Issue: Subproblem in Stage 1 is costly!

$$
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right\| \leq \frac{1}{2}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
$$

- Solution: Linearize $\nabla f\left(\hat{\boldsymbol{x}}_{k}\right) \approx \nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)$
\Rightarrow subproblem becomes a linear system of equations

Newton Proximal Extragradient

- Issue: Subproblem in Stage 1 is costly!

$$
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right\| \leq \frac{1}{2}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
$$

- Solution: Linearize $\nabla f\left(\hat{x}_{k}\right) \approx \nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)$
\Rightarrow subproblem becomes a linear system of equations
- Stage 1: Newton proximal step [Monteiro-Svaiter'12]

$$
\begin{aligned}
& \left\|\hat{\boldsymbol{x}}_{\boldsymbol{k}}-\boldsymbol{x}_{\boldsymbol{k}}+\eta_{\boldsymbol{k}}\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{\boldsymbol{k}}-\boldsymbol{x}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{\boldsymbol{k}}-\boldsymbol{x}_{\boldsymbol{k}}\right\|, \\
& \eta_{k}\left\|\nabla f\left(\hat{x}_{k}\right)-\left(\nabla f\left(x_{k}\right)+\nabla^{2} f\left(x_{k}\right)\left(\hat{x}_{k}-x_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\hat{x}_{k}-x_{k}\right\|
\end{aligned}
$$

Newton Proximal Extragradient

- Issue: Subproblem in Stage 1 is costly!

$$
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right\| \leq \frac{1}{2}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
$$

- Solution: Linearize $\nabla f\left(\hat{\boldsymbol{x}}_{k}\right) \approx \nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)$
\Rightarrow subproblem becomes a linear system of equations
- Stage 1: Newton proximal step [Monteiro-Svaiter'12]

$$
\begin{aligned}
& \left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k}\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|, \\
& \eta_{k}\left\|\nabla f\left(\hat{\boldsymbol{x}}_{k}\right)-\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
\end{aligned}
$$

Newton Proximal Extragradient

- Issue: Subproblem in Stage 1 is costly!

$$
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right\| \leq \frac{1}{2}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
$$

- Solution: Linearize $\nabla f\left(\hat{\boldsymbol{x}}_{k}\right) \approx \nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)$
\Rightarrow subproblem becomes a linear system of equations
- Stage 1: Newton proximal step [Monteiro-Svaiter'12]

$$
\begin{aligned}
& \left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k}\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|, \\
& \eta_{k}\left\|\nabla f\left(\hat{\boldsymbol{x}}_{k}\right)-\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
\end{aligned}
$$

- η_{k} is not arbitrary; requires backtracking line search

Newton Proximal Extragradient

- Issue: Subproblem in Stage 1 is costly!

$$
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right\| \leq \frac{1}{2}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
$$

- Solution: Linearize $\nabla f\left(\hat{\boldsymbol{x}}_{k}\right) \approx \nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)$
\Rightarrow subproblem becomes a linear system of equations
- Stage 1: Newton proximal step [Monteiro-Svaiter'12]

$$
\begin{aligned}
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k}\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right)\right\| & \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|, \\
\eta_{k}\left\|\nabla f\left(\hat{\boldsymbol{x}}_{k}\right)-\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right)\right\| & \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
\end{aligned}
$$

- η_{k} is not arbitrary; requires backtracking line search
- To obtain a quasi-Newton method, we first replace $\nabla^{2} f\left(\boldsymbol{x}_{k}\right)$ by \mathbf{B}_{k}

Quasi-Newton Proximal Extragradient

- Stage 1: Quasi-Newton proximal step

$$
\begin{aligned}
\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k}\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\mathbf{B}_{k}\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right)\right\| & \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|, \\
\eta_{k}\left\|\nabla f\left(\hat{x}_{k}\right)-\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\mathbf{B}_{k}\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right)\right\| & \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
\end{aligned}
$$

- Given \boldsymbol{x}_{k} and \mathbf{B}_{k}, use backtracking line search to find η_{k} and $\hat{\boldsymbol{x}}_{k}$
- Stage 2: Extragradient step

$$
\boldsymbol{x}_{k+1}=\gamma_{k}\left[\boldsymbol{x}_{k}-\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right]+\left(1-\gamma_{k}\right) \hat{\boldsymbol{x}}_{k}, \quad \gamma_{k}=\frac{1}{1+2 \eta_{k} \mu}
$$

Quasi-Newton Proximal Extragradient

- Stage 1: Quasi-Newton proximal step

$$
\begin{aligned}
& \left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}+\eta_{k}\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\mathbf{B}_{k}\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|, \\
& \eta_{k}\left\|\nabla f\left(\hat{\boldsymbol{x}}_{k}\right)-\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\mathbf{B}_{k}\left(\hat{x}_{k}-\boldsymbol{x}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
\end{aligned}
$$

- Given \boldsymbol{x}_{k} and \mathbf{B}_{k}, use backtracking line search to find η_{k} and $\hat{\boldsymbol{x}}_{k}$
- Stage 2: Extragradient step

$$
\boldsymbol{x}_{k+1}=\gamma_{k}\left[\boldsymbol{x}_{k}-\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right]+\left(1-\gamma_{k}\right) \hat{\boldsymbol{x}}_{k}, \quad \gamma_{k}=\frac{1}{1+2 \eta_{k} \mu}
$$

- The remaining question: how to select $\left\{\mathbf{B}_{k}\right\}$?

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- How should we select/update $\left\{\mathbf{B}_{k}\right\}$?

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- How should we select/update $\left\{\mathbf{B}_{k}\right\}$?
- We don't follow the classic approaches that use Proximity and Secant conditions

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- How should we select/update $\left\{\mathbf{B}_{k}\right\}$?
- We don't follow the classic approaches that use Proximity and Secant conditions
- We let the convergence analysis guide our choice of \mathbf{B}_{k} !

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- How should we select/update $\left\{\mathbf{B}_{k}\right\}$?
- We don't follow the classic approaches that use Proximity and Secant conditions
- We let the convergence analysis guide our choice of \mathbf{B}_{k} !
- We know that $\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}\right\|^{2} \leq \frac{1}{1+2 \eta_{k} \mu}\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2}$

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- How should we select/update $\left\{\mathbf{B}_{k}\right\}$?
- We don't follow the classic approaches that use Proximity and Secant conditions
- We let the convergence analysis guide our choice of \mathbf{B}_{k} !
- We know that $\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}\right\|^{2} \leq \frac{1}{1+2 \eta_{k} \mu}\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2}$
- η_{k} is constrained by

$$
\eta_{k}\left\|\nabla f\left(\hat{\boldsymbol{x}}_{k}\right)-\left(\nabla f\left(\boldsymbol{x}_{k}\right)+\mathbf{B}_{k}\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|
$$

- Initial result: By backtracking line search:

$$
\eta_{k} \simeq \frac{\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|}{\left\|\nabla f\left(\hat{\boldsymbol{x}}_{k}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)-\mathbf{B}_{k}\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right\|}=\frac{\left\|\boldsymbol{s}_{k}\right\|}{\left\|\boldsymbol{y}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|},
$$

where $\boldsymbol{y}_{k}=\nabla f\left(\hat{\boldsymbol{x}}_{k}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)$ and $\boldsymbol{s}_{k}=\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}$

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- After N iterations, we have

$$
\frac{\left\|\boldsymbol{x}_{N}-\boldsymbol{x}^{*}\right\|^{2}}{\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}} \leq \prod_{k=0}^{N-1}\left(1+2 \eta_{k} \mu\right)^{-1} \leq\left(1+2 \mu \sqrt{\frac{N}{\sum_{k=0}^{N-1} 1 / \eta_{k}^{2}}}\right)^{-N}
$$

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- After N iterations, we have

$$
\frac{\left\|\boldsymbol{x}_{N}-\boldsymbol{x}^{*}\right\|^{2}}{\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}} \leq \prod_{k=0}^{N-1}\left(1+2 \eta_{k} \mu\right)^{-1} \leq\left(1+2 \mu \sqrt{\frac{N}{\sum_{k=0}^{N-1} 1 / \eta_{k}^{2}}}\right)^{-N}
$$

- Since $\eta_{k} \simeq\left\|\boldsymbol{s}_{k}\right\| /\left\|\boldsymbol{y}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|$, we further have

$$
\frac{\left\|\boldsymbol{x}_{N}-\boldsymbol{x}^{*}\right\|^{2}}{\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}} \leq\left(1+2 \mu \sqrt{\frac{N}{\mathcal{O}\left(\sum_{k=0}^{N-1}\left\|\boldsymbol{y}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|^{2} /\left\|\boldsymbol{s}_{k}\right\|^{2}\right)}}\right)^{-N}
$$

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- After N iterations, we have

$$
\frac{\left\|\boldsymbol{x}_{N}-\boldsymbol{x}^{*}\right\|^{2}}{\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}} \leq \prod_{k=0}^{N-1}\left(1+2 \eta_{k} \mu\right)^{-1} \leq\left(1+2 \mu \sqrt{\frac{N}{\sum_{k=0}^{N-1} 1 / \eta_{k}^{2}}}\right)^{-N}
$$

- Since $\eta_{k} \simeq\left\|\boldsymbol{s}_{k}\right\| /\left\|\boldsymbol{y}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|$, we further have

$$
\frac{\left\|\boldsymbol{x}_{N}-\boldsymbol{x}^{*}\right\|^{2}}{\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}} \leq\left(1+2 \mu \sqrt{\frac{N}{\mathcal{O}\left(\sum_{k=0}^{N-1}\left\|\boldsymbol{y}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|^{2} /\left\|\boldsymbol{s}_{k}\right\|^{2}\right)}}\right)^{-N}
$$

- Hence, the goal is to choose \mathbf{B}_{k} such that we minimize

$$
\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right):=\sum_{k=0}^{N-1} \frac{\left\|\boldsymbol{y}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}}
$$

Hessian Approximation Update via Online Learning

- We aim to minimize $\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)$, but we observe ℓ_{k} after selecting \mathbf{B}_{k} !

Hessian Approximation Update via Online Learning

- We aim to minimize $\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)$, but we observe ℓ_{k} after selecting \mathbf{B}_{k} !

Why? given $\boldsymbol{x}_{k}, \mathbf{B}_{k} \rightarrow$ select $\left(\eta_{k}, \hat{\boldsymbol{x}}_{k}\right)$ by BLS \rightarrow compute $\boldsymbol{s}_{k}, \boldsymbol{y}_{k} \rightarrow$ compute $\ell_{k}\left(\mathbf{B}_{k}\right)$

Hessian Approximation Update via Online Learning

- We aim to minimize $\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)$, but we observe ℓ_{k} after selecting \mathbf{B}_{k} !

Why? given $\boldsymbol{x}_{k}, \mathbf{B}_{k} \rightarrow$ select $\left(\eta_{k}, \hat{\boldsymbol{x}}_{k}\right)$ by BLS \rightarrow compute $\boldsymbol{s}_{k}, \boldsymbol{y}_{k} \rightarrow$ compute $\ell_{k}\left(\mathbf{B}_{k}\right)$

- Key idea: View the update of \mathbf{B}_{k} as an online convex opt problem
- Choose $\mathbf{B}_{k} \in \mathcal{Z}$, where $\mathcal{Z}=\left\{\mathbf{B}: \mu \mathbf{I} \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$
- Receive $\ell_{k}\left(\mathbf{B}_{k}\right)$
- Update \mathbf{B}_{k+1} by an online learning algorithm, e.g., Online Gradient Descent

$$
\mathbf{B}_{k+1}=\Pi_{\mathcal{Z}}\left(\mathbf{B}_{k}-\rho \nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right)
$$

Hessian Approximation Update via Online Learning

- We aim to minimize $\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)$, but we observe ℓ_{k} after selecting \mathbf{B}_{k} !

Why? given $\boldsymbol{x}_{k}, \mathbf{B}_{k} \rightarrow$ select $\left(\eta_{k}, \hat{\boldsymbol{x}}_{k}\right)$ by BLS \rightarrow compute $\boldsymbol{s}_{k}, \boldsymbol{y}_{k} \rightarrow$ compute $\ell_{k}\left(\mathbf{B}_{k}\right)$

- Key idea: View the update of \mathbf{B}_{k} as an online convex opt problem
- Choose $\mathbf{B}_{k} \in \mathcal{Z}$, where $\mathcal{Z}=\left\{\mathbf{B}: \mu \mathbf{I} \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$
- Receive $\ell_{k}\left(\mathbf{B}_{k}\right)$
- Update \mathbf{B}_{k+1} by an online learning algorithm, e.g., Online Gradient Descent

$$
\mathbf{B}_{k+1}=\Pi_{\mathcal{Z}}\left(\mathbf{B}_{k}-\rho \nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right)
$$

- Side note: Why do we project to set \mathcal{Z} ? You'll see!

Global Linear Convergence

- Now our goal is to upper bound $\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)$
- A "trivial" bound: since $\mu \mathbf{I} \preceq \mathbf{B}_{k} \preceq L_{1} \mathbf{I}$,

$$
\ell_{k}\left(\mathbf{B}_{k}\right)=\frac{\left\|\boldsymbol{y}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}} \leq \frac{2\left\|\boldsymbol{y}_{k}\right\|^{2}+2\left\|\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}} \leq \frac{2\left\|\boldsymbol{y}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}}+2 L_{1}^{2}
$$

Global Linear Convergence

- Now our goal is to upper bound $\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)$
- A "trivial" bound: since $\mu \mathbf{I} \preceq \mathbf{B}_{k} \preceq L_{1} \mathbf{I}$,

$$
\ell_{k}\left(\mathbf{B}_{k}\right)=\frac{\left\|\boldsymbol{y}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}} \leq \frac{2\left\|\boldsymbol{y}_{k}\right\|^{2}+2\left\|\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}} \leq \frac{2\left\|\boldsymbol{y}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}}+2 L_{1}^{2}
$$

- Recall that $\boldsymbol{y}_{k}=\nabla f\left(\hat{\boldsymbol{x}}_{k}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)$ and $\boldsymbol{s}_{k}=\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}$
- Since $\left\|\nabla f\left(\hat{\boldsymbol{x}}_{k}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)\right\| \leq L_{1}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|$, we have $\left\|\boldsymbol{y}_{k}\right\| \leq L_{1}\left\|\boldsymbol{s}_{k}\right\|$

Global Linear Convergence

- Now our goal is to upper bound $\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)$
- A "trivial" bound: since $\mu \mathbf{I} \preceq \mathbf{B}_{k} \preceq L_{1} \mathbf{I}$,

$$
\ell_{k}\left(\mathbf{B}_{k}\right)=\frac{\left\|\boldsymbol{y}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}} \leq \frac{2\left\|\boldsymbol{y}_{k}\right\|^{2}+2\left\|\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}} \leq \frac{2\left\|\boldsymbol{y}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}}+2 L_{1}^{2}
$$

- Recall that $\boldsymbol{y}_{k}=\nabla f\left(\hat{\boldsymbol{x}}_{k}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)$ and $\boldsymbol{s}_{k}=\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}$
- Since $\left\|\nabla f\left(\hat{x}_{k}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)\right\| \leq L_{1}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|$, we have $\left\|\boldsymbol{y}_{k}\right\| \leq L_{1}\left\|\boldsymbol{s}_{k}\right\|$
- Thus, we always have $\ell_{k}\left(\mathbf{B}_{k}\right) \leq 4 L_{1}^{2} \quad \Rightarrow \quad \sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right) \leq 4 L_{1}^{2} N$
- Plugging this bound back:

$$
\frac{\left\|\boldsymbol{x}_{N}-\boldsymbol{x}^{*}\right\|^{2}}{\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}} \leq\left(1+2 \mu \sqrt{\frac{N}{\mathcal{O}\left(\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)\right)}}\right)^{-N}=\left(1+\Omega\left(\frac{\mu}{L_{1}}\right)\right)^{-N}
$$

Global Superlinear Convergence

- Moreover, we can use a "small-loss" regret bound for Online Gradient Descent

$$
\mathbf{B}_{k+1}=\Pi_{\mathcal{Z}}\left(\mathbf{B}_{k}-\rho \nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right)
$$

Global Superlinear Convergence

- Moreover, we can use a "small-loss" regret bound for Online Gradient Descent

$$
\mathbf{B}_{k+1}=\Pi_{\mathcal{Z}}\left(\mathbf{B}_{k}-\rho \nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right)
$$

- Standard analysis shows that, for any $\mathbf{H} \in \mathcal{Z}$:

$$
\ell_{k}\left(\mathbf{B}_{k}\right)-\ell_{k}(\mathbf{H}) \leq \frac{1}{2 \rho}\left\|\mathbf{B}_{k}-\mathbf{H}\right\|_{F}^{2}-\frac{1}{2 \rho}\left\|\mathbf{B}_{k+1}-\mathbf{H}\right\|_{F}^{2}+\frac{\rho}{2}\left\|\nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right\|_{F}^{2}
$$

Global Superlinear Convergence

- Moreover, we can use a "small-loss" regret bound for Online Gradient Descent

$$
\mathbf{B}_{k+1}=\Pi_{\mathcal{Z}}\left(\mathbf{B}_{k}-\rho \nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right)
$$

- Standard analysis shows that, for any $\mathbf{H} \in \mathcal{Z}$:

$$
\ell_{k}\left(\mathbf{B}_{k}\right)-\ell_{k}(\mathbf{H}) \leq \frac{1}{2 \rho}\left\|\mathbf{B}_{k}-\mathbf{H}\right\|_{F}^{2}-\frac{1}{2 \rho}\left\|\mathbf{B}_{k+1}-\mathbf{H}\right\|_{F}^{2}+\frac{\rho}{2}\left\|\nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right\|_{F}^{2}
$$

- We also have $\left\|\nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right\|_{F}^{2} \leq 4 \ell_{k}\left(\mathbf{B}_{k}\right)$. Thus, by taking $\rho=1 / 4$, we get

$$
\begin{aligned}
\ell_{k}\left(\mathbf{B}_{k}\right)-\ell_{k}(\mathbf{H}) & \leq 2\left\|\mathbf{B}_{k}-\mathbf{H}\right\|_{F}^{2}-2\left\|\mathbf{B}_{k+1}-\mathbf{H}\right\|_{F}^{2}+\frac{1}{2} \ell_{k}\left(\mathbf{B}_{k}\right) \\
\Rightarrow \quad \ell_{k}\left(\mathbf{B}_{k}\right) & \leq 4\left\|\mathbf{B}_{k}-\mathbf{H}\right\|_{F}^{2}-4\left\|\mathbf{B}_{k+1}-\mathbf{H}\right\|_{F}^{2}+2 \ell_{k}(\mathbf{H})
\end{aligned}
$$

Global Superlinear Convergence

- Moreover, we can use a "small-loss" regret bound for Online Gradient Descent

$$
\mathbf{B}_{k+1}=\Pi_{\mathcal{Z}}\left(\mathbf{B}_{k}-\rho \nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right)
$$

- Standard analysis shows that, for any $\mathbf{H} \in \mathcal{Z}$:

$$
\ell_{k}\left(\mathbf{B}_{k}\right)-\ell_{k}(\mathbf{H}) \leq \frac{1}{2 \rho}\left\|\mathbf{B}_{k}-\mathbf{H}\right\|_{F}^{2}-\frac{1}{2 \rho}\left\|\mathbf{B}_{k+1}-\mathbf{H}\right\|_{F}^{2}+\frac{\rho}{2}\left\|\nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right\|_{F}^{2}
$$

- We also have $\left\|\nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right\|_{F}^{2} \leq 4 \ell_{k}\left(\mathbf{B}_{k}\right)$. Thus, by taking $\rho=1 / 4$, we get

$$
\begin{array}{ll}
\ell_{k}\left(\mathbf{B}_{k}\right)-\ell_{k}(\mathbf{H}) & \leq 2\left\|\mathbf{B}_{k}-\mathbf{H}\right\|_{F}^{2}-2\left\|\mathbf{B}_{k+1}-\mathbf{H}\right\|_{F}^{2}+\frac{1}{2} \ell_{k}\left(\mathbf{B}_{k}\right) \\
\Rightarrow \quad \ell_{k}\left(\mathbf{B}_{k}\right) & \leq 4\left\|\mathbf{B}_{k}-\mathbf{H}\right\|_{F}^{2}-4\left\|\mathbf{B}_{k+1}-\mathbf{H}\right\|_{F}^{2}+2 \ell_{k}(\mathbf{H})
\end{array}
$$

- Summing up the inequalities:

$$
\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right) \leq 4\left\|\mathbf{B}_{0}-\mathbf{H}\right\|_{F}^{2}+2 \sum_{k=0}^{N-1} \ell_{k}(\mathbf{H})
$$

Global Superlinear Convergence

- We showed that for any $\mathbf{H} \in \mathcal{Z}=\left\{\mathbf{B}: \mu \mathbf{I} \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$:

$$
\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right) \leq 4\left\|\mathbf{B}_{0}-\mathbf{H}\right\|_{F}^{2}+2 \sum_{k=0}^{N-1} \ell_{k}(\mathbf{H})
$$

Global Superlinear Convergence

- We showed that for any $\mathbf{H} \in \mathcal{Z}=\left\{\mathbf{B}: \mu \mathbf{I} \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$:

$$
\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right) \leq 4\left\|\mathbf{B}_{0}-\mathbf{H}\right\|_{F}^{2}+2 \sum_{k=0}^{N-1} \ell_{k}(\mathbf{H})
$$

- A natural choice: $\mathbf{H}=\nabla^{2} f\left(\boldsymbol{x}^{*}\right)$

Global Superlinear Convergence

- We showed that for any $\mathbf{H} \in \mathcal{Z}=\left\{\mathbf{B}: \mu \mathbf{I} \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$:

$$
\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right) \leq 4\left\|\mathbf{B}_{0}-\mathbf{H}\right\|_{F}^{2}+2 \sum_{k=0}^{N-1} \ell_{k}(\mathbf{H})
$$

- A natural choice: $\mathbf{H}=\nabla^{2} f\left(\boldsymbol{x}^{*}\right)$
- We can show that

$$
\ell_{k}\left(\nabla^{2} f\left(\boldsymbol{x}^{*}\right)\right)=\frac{\left\|\boldsymbol{y}_{k}-\nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{s}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}} \lesssim\left\|\nabla^{2} f\left(\boldsymbol{x}_{k}\right)-\nabla^{2} f\left(\boldsymbol{x}^{*}\right)\right\|_{\mathrm{op}}^{2} \leq L_{2}^{2}\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2}
$$

Global Superlinear Convergence

- We showed that for any $\mathbf{H} \in \mathcal{Z}=\left\{\mathbf{B}: \mu \mathbf{I} \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$:

$$
\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right) \leq 4\left\|\mathbf{B}_{0}-\mathbf{H}\right\|_{F}^{2}+2 \sum_{k=0}^{N-1} \ell_{k}(\mathbf{H})
$$

- A natural choice: $\mathbf{H}=\nabla^{2} f\left(\boldsymbol{x}^{*}\right)$
- We can show that

$$
\ell_{k}\left(\nabla^{2} f\left(\boldsymbol{x}^{*}\right)\right)=\frac{\left\|\boldsymbol{y}_{k}-\nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{s}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}} \lesssim\left\|\nabla^{2} f\left(\boldsymbol{x}_{k}\right)-\nabla^{2} f\left(\boldsymbol{x}^{*}\right)\right\|_{\mathrm{op}}^{2} \leq L_{2}^{2}\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2}
$$

- By using $\left\|x_{k}-x^{*}\right\|^{2} \leq\left\|x_{0}-x^{*}\right\|^{2}\left(1+\Omega\left(\frac{L_{1}}{\mu}\right)\right)^{-k}$, we further get

$$
\sum_{k=0}^{N-1} \ell_{k}\left(\nabla^{2} f\left(x^{*}\right)\right)=\mathcal{O}\left(\frac{L_{1} L_{2}^{2}\left\|x_{0}-x^{*}\right\|^{2}}{\mu}\right)
$$

Global Superlinear Convergence

- Putting everything together:

$$
\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)=\mathcal{O}\left(\left\|\mathbf{B}_{0}-\nabla^{2} f\left(\boldsymbol{x}^{*}\right)\right\|_{F}^{2}+\frac{L_{1} L_{2}^{2}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}}{\mu}\right)
$$

Note that the upper bound is independent of N !

- Thus,

$$
\frac{\left\|\boldsymbol{x}_{N}-\boldsymbol{x}^{*}\right\|^{2}}{\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}} \leq\left(1+2 \mu \sqrt{\frac{N}{\mathcal{O}\left(\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)\right)}}\right)^{-N}=\left(1+\frac{\mu}{L_{1}} \sqrt{\frac{N}{C}}\right)^{-N}
$$

where $C=\mathcal{O}\left(\frac{\left\|\mathbf{B}_{0}-\nabla^{2} f\left(x^{*}\right)\right\|_{F}^{2}}{L_{1}^{2}}+\frac{L_{2}^{2}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}}{\mu}\right) \Rightarrow$ Worst case: $C=\mathcal{O}(d)$

Projection-Free Online Learning

- One issue: Euclidean projection onto $\mathcal{Z}=\left\{\mathbf{B}: \mu \mathbf{I} \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$ is expensive
- It requires full eigen-decomposition, which costs $\mathcal{O}\left(d^{3}\right)$

Projection-Free Online Learning

- One issue: Euclidean projection onto $\mathcal{Z}=\left\{\mathbf{B}: \mu \mathbf{I} \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$ is expensive
- It requires full eigen-decomposition, which costs $\mathcal{O}\left(d^{3}\right)$
- Observation: it is simpler to do "gauge projection" [Mhammedi'22]
- For a given $\mathbf{B} \in \mathbb{S}^{d}$, compute $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$
- If $\mu \leq \lambda_{\text {min }} \leq \lambda_{\text {max }} \leq L_{1}$, then $\mathbf{B} \in \mathcal{Z}$
- Otherwise, we obtain a feasible point $\hat{\mathbf{B}}$ by "pulling" it towards to the "center"

$$
\hat{\mathbf{B}}=c \mathbf{B}+(1-c) \frac{L_{1}+\mu}{2} \mathbf{I}_{d}, \quad 0<c<1
$$

Projection-Free Online Learning

- One issue: Euclidean projection onto $\mathcal{Z}=\left\{\mathbf{B}: \mu \mathbf{I} \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$ is expensive
- It requires full eigen-decomposition, which costs $\mathcal{O}\left(d^{3}\right)$
- Observation: it is simpler to do "gauge projection" [Mhammedi'22]
- For a given $\mathbf{B} \in \mathbb{S}^{d}$, compute $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$
- If $\mu \leq \lambda_{\text {min }} \leq \lambda_{\text {max }} \leq L_{1}$, then $\mathbf{B} \in \mathcal{Z}$
- Otherwise, we obtain a feasible point $\hat{\mathbf{B}}$ by "pulling" it towards to the "center"

$$
\hat{\mathbf{B}}=c \mathbf{B}+(1-c) \frac{L_{1}+\mu}{2} \mathbf{I}_{d}, \quad 0<c<1
$$

- Solution: We adopted a projection-free approach inspired by [Mhammedi'22]
- To better illustrate the technique, consider a general online learning problem

Projection-Free Online Learning

- Consider a standard online learning problem over the constraint set \mathcal{C}
- For $k=0,1, \ldots, N-1$:
- Learner chooses $\boldsymbol{x}_{k} \in \mathcal{C}$
- Learner observes a convex loss $\ell_{k}: \mathcal{C} \rightarrow \mathbb{R}$
- The goal is to minimize the regret: $\operatorname{Reg}_{N}(\boldsymbol{x})=\sum_{k=0}^{N-1}\left(\ell_{k}\left(\boldsymbol{x}_{k}\right)-\ell_{k}(\boldsymbol{x})\right)$
- The Euclidean projection onto \mathcal{C} can be computationally expensive. \Rightarrow But, we have access to a separation oracle

Separation Oracle

- WLOG, we assume that $0 \in \mathcal{C} \subset B_{R}(0)$. Moreover, we have a separation oracle for \mathcal{C}
- Input: w $\in B_{R}(0)$
- Output: $\gamma>0, \boldsymbol{s} \in \mathbb{R}^{n}$ such that

$$
\left\{\begin{aligned}
\gamma \leq 1 & \Rightarrow \boldsymbol{w} \in \mathcal{C} \\
\gamma>1 & \Rightarrow \boldsymbol{w} / \gamma \in \mathcal{C} \text { and }\langle\boldsymbol{s}, \boldsymbol{w}-\boldsymbol{x}\rangle \geq \gamma-1, \forall \boldsymbol{x} \in \mathcal{C}
\end{aligned}\right.
$$

Projection-Free Online Learning

- We introduce an auxiliary online learning problem over the set $B_{R}(0)$
- For $k=0,1, \ldots, N-1$:
- Learner chooses $\boldsymbol{w}_{k} \in B_{R}(0)$
- Observes $\tilde{\ell}_{k}(\cdot)=\left\langle\tilde{\mathbf{g}}_{k}, \cdot\right\rangle$

Projection-Free Online Learning

- We introduce an auxiliary online learning problem over the set $B_{R}(0)$
- For $k=0,1, \ldots, N-1$:
- Learner chooses $\boldsymbol{w}_{k} \in B_{R}(0)$
- Observes $\tilde{\ell}_{k}(\cdot)=\left\langle\tilde{\mathbf{g}}_{k}, \cdot\right\rangle$
- We will show that $\sum_{k=0}^{N-1}\left(\ell_{k}\left(\boldsymbol{x}_{k}\right)-\ell_{k}(\boldsymbol{x})\right) \leq \sum_{k=0}^{N-1}\left\langle\tilde{\boldsymbol{g}}_{k}, \boldsymbol{w}_{k}-\boldsymbol{x}\right\rangle, \quad \forall \boldsymbol{x} \in \mathcal{C}$ $\Rightarrow \quad$ It suffices to bound the regret of the auxiliary problem

Projection-Free Online Learning

- We introduce an auxiliary online learning problem over the set $B_{R}(0)$
- For $k=0,1, \ldots, N-1$:
- Learner chooses $\boldsymbol{w}_{k} \in B_{R}(0)$
- Observes $\tilde{\ell}_{k}(\cdot)=\left\langle\tilde{\mathbf{g}}_{k}, \cdot\right\rangle$
- We will show that $\sum_{k=0}^{N-1}\left(\ell_{k}\left(\boldsymbol{x}_{k}\right)-\ell_{k}(\boldsymbol{x})\right) \leq \sum_{k=0}^{N-1}\left\langle\tilde{\boldsymbol{g}}_{k}, \boldsymbol{w}_{k}-\boldsymbol{x}\right\rangle, \quad \forall \boldsymbol{x} \in \mathcal{C}$ $\Rightarrow \quad$ It suffices to bound the regret of the auxiliary problem
- It is simple to compute the Euclidean projection onto the set $B_{R}(0)$
$\Rightarrow \quad$ We can use Online Gradient Descent: $\boldsymbol{w}_{k+1}=\Pi_{B_{R}(0)}\left(\boldsymbol{w}_{k}-\rho \tilde{\mathbf{g}}_{k}\right)$

Projection-Free Online Learning

- We introduce an auxiliary online learning problem over the set $B_{R}(0)$
- For $k=0,1, \ldots, N-1$:
- Learner chooses $\boldsymbol{w}_{k} \in B_{R}(0)$
- Observes $\tilde{\ell}_{k}(\cdot)=\left\langle\tilde{\boldsymbol{g}}_{k}, \cdot\right\rangle$
- We will show that $\sum_{k=0}^{N-1}\left(\ell_{k}\left(\boldsymbol{x}_{k}\right)-\ell_{k}(\boldsymbol{x})\right) \leq \sum_{k=0}^{N-1}\left\langle\tilde{\boldsymbol{g}}_{k}, \boldsymbol{w}_{k}-\boldsymbol{x}\right\rangle, \quad \forall \boldsymbol{x} \in \mathcal{C}$ $\Rightarrow \quad$ It suffices to bound the regret of the auxiliary problem
- It is simple to compute the Euclidean projection onto the set $B_{R}(0)$ $\Rightarrow \quad$ We can use Online Gradient Descent: $\boldsymbol{w}_{k+1}=\Pi_{B_{R}(0)}\left(\boldsymbol{w}_{k}-\rho \tilde{\mathbf{g}}_{k}\right)$
- Question:
- How to generate the "actual" iterate $\boldsymbol{x}_{k} \in \mathcal{C}$?
- How to define the surrogate loss vector $\tilde{\mathbf{g}}_{k}$?

We will use the separation oracle!

Projection-Free Online Learning

- Initialize $\boldsymbol{w}_{0}=\boldsymbol{x}_{0} \in \mathcal{C}$ and $\tilde{\mathbf{g}}_{0} \leftarrow \nabla \ell_{0}\left(\boldsymbol{x}_{0}\right)$
- For $k=0,1, \ldots, N-1$:
- Update $\boldsymbol{w}_{k+1} \leftarrow \Pi_{B_{R}(0)}\left(\boldsymbol{w}_{k}-\rho \tilde{\boldsymbol{g}}_{k}\right)$
- Let $\left(\gamma_{k+1}, \boldsymbol{s}_{k+1}\right) \leftarrow \operatorname{SEP}\left(\boldsymbol{w}_{k+1}\right)$
- We consider two cases:

$$
\begin{cases}\text { If } \gamma_{k+1} \leq 1: & \text { set } \boldsymbol{x}_{k+1} \leftarrow \boldsymbol{w}_{k+1}, \tilde{\mathbf{g}}_{k+1} \leftarrow \boldsymbol{g}_{k+1} \\ \text { If } \gamma_{k+1}>1: & \text { set } \boldsymbol{x}_{k+1} \leftarrow \frac{\boldsymbol{w}_{k+1}}{\gamma_{k+1}}, \quad \tilde{\boldsymbol{g}}_{k+1} \leftarrow \boldsymbol{g}_{k+1}+\left|\left\langle\boldsymbol{g}_{k+1}, \boldsymbol{x}_{k+1}\right\rangle\right| \boldsymbol{s}_{k+1}\end{cases}
$$

where $\boldsymbol{g}_{k+1}=\nabla \ell_{k+1}\left(\boldsymbol{x}_{k+1}\right)$

$$
\sum_{k=0}^{N-1}\left(\ell_{k}\left(x_{k}\right)-\ell_{k}(\boldsymbol{x})\right) \leq \sum_{k=0}^{N-1}\left\langle\tilde{\mathbf{g}}_{k}, \boldsymbol{w}_{k}-\boldsymbol{x}\right\rangle, \quad \forall \boldsymbol{x} \in \mathcal{C}
$$

Separation Oracle in Our Setting

- Recall that in our case, the constraint set is $\mathcal{Z}=\left\{\mathbf{B}: \mu \mathbf{I} \preceq \mathbf{B} \preceq L_{1} \mathbf{l}\right\}$
- By translation and rescaling, we work with $\mathcal{C} \triangleq\{\hat{\mathbf{B}}:-\mathbf{I} \preceq \hat{\mathbf{B}} \preceq \mathbf{I}\}=\left\{\hat{\mathbf{B}}:\|\hat{\mathbf{B}}\|_{\text {op }} \leq 1\right\}$
- Input: $\boldsymbol{w} \in B_{R}(0)$
- Output: $\gamma>0, \boldsymbol{s} \in \mathbb{R}^{n}$ such that

$$
\left\{\begin{array} { l l }
{ \gamma \leq 1 \Rightarrow \boldsymbol { w } \in \mathcal { C } ; } \\
{ \gamma > 1 \Rightarrow } & { \boldsymbol { w } / \gamma \in \mathcal { C } , } \\
{ \langle \boldsymbol { s } , \boldsymbol { w } - \boldsymbol { x } \rangle \geq \gamma - 1 , \forall \boldsymbol { x } \in \mathcal { C } }
\end{array} \quad \left\{\begin{array}{rl}
\gamma \leq 1 \Rightarrow & \|\mathbf{W}\|_{\text {op }} \leq 1 ; \\
\gamma>1 \Rightarrow & \|\mathbf{W} / \gamma\|_{\text {op }} \leq 1, \\
& \langle\mathbf{S}, \mathbf{W}-\hat{\mathbf{B}}\rangle \geq \gamma-1, \forall\|\hat{\mathbf{B}}\|_{\text {op }} \leq 1
\end{array}\right.\right.
$$

- We only need to approximately compute ($\lambda_{\text {min }}, \boldsymbol{v}_{\text {min }}$) and ($\lambda_{\text {max }}, \boldsymbol{v}_{\text {max }}$) of \mathbf{W}
- We rely on the Lanczos method with a random start [Kuczyński-Woźniakowski'92]

Summary of Convergence Rates (Strongly Convex)

Theorem: [Jiang-Jin-M, COLT, '23]
Assume that $\mu \mathbf{I} \preceq \nabla^{2} f(\boldsymbol{x}) \preceq L_{1} \mathbf{I}$ and $\left\|\nabla^{2} f(\boldsymbol{x})-\nabla^{2} f(\boldsymbol{y})\right\| \leq L_{2}\|\boldsymbol{x}-\boldsymbol{y}\|$. Then
(a) (Linear convergence) For any $k \geq 0$, we have $\frac{\left\|x_{k+1}-x^{*}\right\|^{2}}{\left\|x_{k}-x^{*}\right\|^{2}} \leq\left(1+\frac{\mu}{4 L_{1}}\right)^{-1}$.
(b) (Superlinear convergence) For any $k \geq 0$,

$$
\begin{array}{r}
\frac{\left\|x_{k}-\boldsymbol{x}^{*}\right\|^{2}}{\left\|x_{0}-\boldsymbol{x}^{*}\right\|^{2}} \leq\left(1+\frac{\mu}{L_{1}} \sqrt{\frac{k}{C}}\right)^{-k} \approx \mathcal{O}\left(\left(\frac{1}{\sqrt{k}}\right)^{k}\right) \\
\text { where } C=\mathcal{O}\left(\left\|\mathbf{B}_{0}-\nabla^{2} f\left(\boldsymbol{x}^{*}\right)\right\|_{F}^{2} / L_{1}^{2}+L_{2}^{2}\left\|x_{0}-\boldsymbol{x}^{*}\right\|^{2} /\left(L_{1} \mu\right)\right) \approx \mathcal{O}(d)
\end{array}
$$

- As a corollary, the number of iterations to reach ϵ-accuracy can be bounded by

$$
N_{\epsilon}= \begin{cases}\frac{L_{1}}{\mu} \log \frac{1}{\epsilon}, & \text { if } \epsilon>\exp \left(-\frac{\mu}{L_{1}} C\right) \\ \frac{\log \frac{1}{\epsilon}}{\log \log \frac{1}{\epsilon}}, & \text { if } \epsilon \ll \exp \left(-\frac{\mu}{L_{1}} C\right)\end{cases}
$$

Computational Cost

Lemma: [Jiang-Jin-M, COLT, '23]

Let N_{ϵ} be the number of iterations to reach ϵ-accuracy. Then, the total number of gradient computations (due to BTLS) is bounded above by $3 N_{\epsilon}$.

- Iteration and gradient complexity: $N_{\epsilon}=\mathcal{O}\left(\frac{\log \frac{1}{\epsilon}}{\log \log \frac{1}{\epsilon}}\right)$
- Matrix-vector products:
- $\mathcal{O}\left(N_{\epsilon} \sqrt{\frac{L_{1}}{\mu}} \log \left(\frac{L_{1}\left\|x_{0}-\boldsymbol{x}^{*}\right\|^{2}}{\mu \epsilon}\right)\right)$ from approx. linear system solving
- $\mathcal{O}\left(N_{\epsilon} \sqrt{\frac{L_{1}}{\mu}} \log \left(d N_{\epsilon}^{2}\right)\right)$ from approx. eigenvector computation
- Total number of Matrix-vector products $\tilde{\mathcal{O}}\left(N_{\epsilon} \sqrt{\kappa}\right)$

Numerical Experiment

Numerical Experiment

What about the CVX setting?

Accelerated Hybrid Proximal Extragradient (MS Acceleration)

- Our proposed method is based on the accelerated HPE framework [Monteiro-Svaiter'13]
- Initialization: $x_{0}, z_{0} \in \mathbb{R}^{d}$ and $A_{0}=0$
- Stage 1: Pick η_{k} and compute

$$
a_{k}=\frac{\eta_{k}+\sqrt{\eta_{k}^{2}+4 \eta_{k} A_{k}}}{2}, \quad \boldsymbol{y}_{k}=\frac{A_{k}}{A_{k}+a_{k}} \boldsymbol{x}_{k}+\frac{a_{k}}{A_{k}+a_{k}} \boldsymbol{z}_{k}
$$

- Stage 2: Inexact proximal point update

$$
\boldsymbol{x}_{k+1} \approx \boldsymbol{y}_{k}-\eta_{k} \nabla f\left(\boldsymbol{x}_{k+1}\right)
$$

- Stage 3: Extragradient step

$$
z_{k+1}=z_{k}-a_{k} \nabla f\left(x_{k+1}\right), \quad A_{k+1}=A_{k}+a_{k}
$$

- $f\left(\boldsymbol{x}_{N}\right)-f\left(\boldsymbol{x}^{*}\right) \leq 2\left\|\boldsymbol{z}_{0}-\boldsymbol{x}^{*}\right\|^{2} /\left(\sum_{k=0}^{N-1} \sqrt{\eta_{k}}\right)^{2} \Rightarrow$ any rate can be achieved as $\eta_{k} \uparrow$

Accelerated Newton Proximal Extragradient

- Issue: Subproblem in Stage 2 is costly!

$$
\left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}+\eta_{k} \nabla f\left(\boldsymbol{x}_{k+1}\right)\right\| \leq \frac{1}{2}\left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right\|
$$

- Solution: Linearize $\nabla f\left(\boldsymbol{x}_{k+1}\right) \approx \nabla f\left(\boldsymbol{y}_{k}\right)+\nabla^{2} f\left(\boldsymbol{y}_{k}\right)\left(\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right)$
- Stage 2: Newton Proximal Step [Monteiro-Svaiter'13]

$$
\begin{aligned}
& \left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}+\eta_{k}\left(\nabla f\left(\boldsymbol{y}_{k}\right)+\nabla^{2} f\left(\boldsymbol{y}_{k}\right)\left(\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right\|, \\
& \eta_{k}\left\|\nabla f\left(x_{k+1}\right)-\left(\nabla f\left(\boldsymbol{y}_{k}\right)+\nabla^{2} f\left(\boldsymbol{y}_{k}\right)\left(\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right\|
\end{aligned}
$$

- However, there is another issue: η_{k} appears in both Stage 1 and 2
\Rightarrow The line search procedure is much more complicated
- In the paper, we adopt a refined MS acceleration framework by [Carmon et al.'22]

Accelerated Quasi-Newton Proximal Extragradient

- Stage 1: Pick η_{k} and compute

$$
a_{k}=\frac{\eta_{k}+\sqrt{\eta_{k}^{2}+4 \eta_{k} A_{k}}}{2}, \quad \boldsymbol{y}_{k}=\frac{A_{k}}{A_{k}+a_{k}} \boldsymbol{x}_{k}+\frac{a_{k}}{A_{k}+a_{k}} \boldsymbol{z}_{k}
$$

- Stage 2: Quasi-Newton proximal step

$$
\begin{aligned}
& \left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}+\eta_{k}\left(\nabla f\left(\boldsymbol{y}_{k}\right)+\mathbf{B}_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right\|, \\
& \eta_{k}\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)-\left(\nabla f\left(\boldsymbol{y}_{k}\right)+\mathbf{B}_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right\|
\end{aligned}
$$

- Given \boldsymbol{y}_{k} and \mathbf{B}_{k}, use backtracking line search to find η_{k} and \boldsymbol{x}_{k+1}
- Stage 3: Extragradient step

$$
z_{k+1}=z_{k}-a_{k} \nabla f\left(x_{k+1}\right), \quad A_{k+1}=A_{k}+a_{k}
$$

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- How should we select/update $\left\{\mathbf{B}_{k}\right\}$?

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- How should we select/update $\left\{\mathbf{B}_{k}\right\}$?
- Same story: we let the convergence analysis guide our choice of \mathbf{B}_{k} !

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- How should we select/update $\left\{\mathbf{B}_{k}\right\}$?
- Same story: we let the convergence analysis guide our choice of \mathbf{B}_{k} !
- We know that $f\left(x_{N}\right)-f\left(x^{*}\right) \leq 2\left\|z_{0}-x^{*}\right\|^{2} /\left(\sum_{k=0}^{N-1} \sqrt{\eta_{k}}\right)^{2}$

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- How should we select/update $\left\{\mathbf{B}_{k}\right\}$?
- Same story: we let the convergence analysis guide our choice of \mathbf{B}_{k} !
- We know that $f\left(x_{N}\right)-f\left(x^{*}\right) \leq 2\left\|z_{0}-x^{*}\right\|^{2} /\left(\sum_{k=0}^{N-1} \sqrt{\eta_{k}}\right)^{2}$
- η_{k} is constrained by

$$
\eta_{k}\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)-\left(\nabla f\left(\boldsymbol{y}_{k}\right)+\mathbf{B}_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right)\right)\right\| \leq \frac{1}{4}\left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right\|
$$

- Initial result: By backtracking line search:

$$
\eta_{k} \simeq \frac{\left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right\|}{\left\|\nabla f\left(\boldsymbol{x}_{k+1}\right)-\nabla f\left(\boldsymbol{y}_{k}\right)-\mathbf{B}_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right)\right\|}=\frac{\left\|\boldsymbol{s}_{k}\right\|}{\left\|\boldsymbol{w}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|},
$$

where $\boldsymbol{w}_{k}=\nabla f\left(\boldsymbol{x}_{k+1}\right)-\nabla f\left(\boldsymbol{y}_{k}\right)$ and $\boldsymbol{s}_{k}=\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}$

How to Update \mathbf{B}_{k} : Starting from Convergence Analysis

- After N iterations, we have

$$
f\left(x_{N}\right)-f\left(x^{*}\right) \leq \frac{2\left\|z_{0}-x^{*}\right\|^{2}}{\left(\sum_{k=0}^{N-1} \sqrt{\eta_{k}}\right)^{2}} \leq \frac{2\left\|z_{0}-x^{*}\right\|^{2}}{N^{2.5}} \sqrt{\sum_{k=0}^{N-1} \frac{1}{\eta_{k}^{2}}}
$$

- Since $\eta_{k} \simeq\left\|\boldsymbol{s}_{k}\right\| /\left\|\boldsymbol{w}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|$, we further have

$$
f\left(\boldsymbol{x}_{N}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \frac{2\left\|\boldsymbol{z}_{0}-\boldsymbol{x}^{*}\right\|^{2}}{N^{2.5}} \sqrt{\mathcal{O}\left(\sum_{k=0}^{N-1} \frac{\left\|\boldsymbol{w}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}}\right)}
$$

- Hence, the goal is to choose \mathbf{B}_{k} such that we minimize

$$
\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right):=\sum_{k=0}^{N-1} \frac{\left\|\boldsymbol{w}_{k}-\mathbf{B}_{k} \boldsymbol{s}_{k}\right\|^{2}}{\left\|\boldsymbol{s}_{k}\right\|^{2}}
$$

Hessian Approximation Update via Online Learning

- Again, we view the update of \mathbf{B}_{k} as an online convex opt problem
- Choose $\mathbf{B}_{k} \in \mathcal{Z}$, where $\mathcal{Z}=\left\{\mathbf{B}: 0 \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$
- Receive $\ell_{k}\left(\mathbf{B}_{k}\right)$
- Update \mathbf{B}_{k+1} by an online learning algorithm, e.g., Online Gradient Descent

$$
\mathbf{B}_{k+1}=\Pi_{\mathcal{Z}}\left(\mathbf{B}_{k}-\rho \nabla \ell_{k}\left(\mathbf{B}_{k}\right)\right)
$$

- To avoid Euclidean projection, we use the same projection-free online learning approach

$\mathcal{O}\left(1 / k^{2}\right)$ Convergence Rate

- Now our goal is to upper bound $\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)$
- Using $0 \preceq \mathbf{B}_{k} \preceq L_{1} \mathbf{I}$, we can always have $\ell_{k}\left(\mathbf{B}_{k}\right) \leq 4 L_{1}^{2} \quad \Rightarrow \quad \sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right) \leq 4 L_{1}^{2} N$
- Plugging this bound back:

$$
f\left(x_{N}\right)-f\left(x^{*}\right) \leq \frac{2\left\|z_{0}-x^{*}\right\|^{2}}{N^{2.5}} \sqrt{\mathcal{O}\left(\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)\right)}=\mathcal{O}\left(\frac{L_{1}\left\|z_{0}-x^{*}\right\|^{2}}{N^{2}}\right)
$$

- This matches the rate of Nesterov's Accelerated Gradient

$\tilde{\mathcal{O}}\left(\sqrt{d} / k^{2.5}\right)$ Convergence Rate

- Recall that in the strongly convex setting, a better bound on $\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)$ can be obtained using regret analysis
- For any $\mathbf{H} \in \mathcal{Z}=\left\{\mathbf{B}: 0 \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$, we have

$$
\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right) \leq 4\left\|\mathbf{B}_{0}-\mathbf{H}\right\|_{F}^{2}+2 \sum_{k=0}^{N-1} \ell_{k}(\mathbf{H})
$$

- Choosing $\mathbf{H}=\nabla^{2} f\left(\boldsymbol{x}^{*}\right)$, we showed that $\ell_{k}\left(\nabla^{2} f\left(\boldsymbol{x}^{*}\right)\right) \lesssim L_{2}^{2}\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2}$
- By linear convergence, $\sum_{k=0}^{N-1}\left\|x_{k}-\boldsymbol{x}^{*}\right\|^{2}=\mathcal{O}\left(\frac{L_{1}}{\mu}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}\right)$
- However, we do not have linear convergence in the convex setting!
- Have to take a different approach via dynamic regret bound

$\tilde{\mathcal{O}}\left(\sqrt{d} / k^{2.5}\right)$ Convergence Rate

- For any sequence $\left\{\mathbf{H}_{k}\right\}_{k=0}^{N-1}$ with $\mathbf{H}_{k} \in \mathcal{Z}=\left\{\mathbf{B}: 0 \preceq \mathbf{B} \preceq L_{1} \mathbf{I}\right\}$, we can show that

$$
\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)=\mathcal{O}\left(\left\|\mathbf{B}_{0}-\mathbf{H}_{0}\right\|_{F}^{2}+\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{H}_{k}\right)+L_{1} \sqrt{d} \sum_{k=0}^{N-1}\left\|\mathbf{H}_{k+1}-\mathbf{H}_{k}\right\|_{F}\right)
$$

- We then choose $\mathbf{H}_{k}=\nabla^{2} f\left(\boldsymbol{y}_{k}\right)$ for $k=0, \ldots, N-1$
- We can show that

$$
\begin{aligned}
\ell_{k}\left(\nabla^{2} f\left(\boldsymbol{y}_{k}\right)\right) & \leq L_{2}^{2}\left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right\|^{2} \\
\left\|\nabla^{2} f\left(\boldsymbol{y}_{k+1}\right)-\nabla^{2} f\left(\boldsymbol{y}_{k}\right)\right\|_{F} & \leq \sqrt{d}\left\|\nabla^{2} f\left(\boldsymbol{y}_{k+1}\right)-\nabla^{2} f\left(\boldsymbol{y}_{k}\right)\right\|_{\mathrm{op}} \leq \sqrt{d} L_{2}\left\|\boldsymbol{y}_{k+1}-\boldsymbol{y}_{k}\right\|
\end{aligned}
$$

- With some careful analysis, we can bound

$$
\sum_{k=0}^{N-1}\left\|\boldsymbol{x}_{k+1}-\boldsymbol{y}_{k}\right\|^{2}=\mathcal{O}\left(\left\|z_{0}-\boldsymbol{x}^{*}\right\|^{2}\right), \quad \sum_{k=0}^{N-1}\left\|\boldsymbol{y}_{k+1}-\boldsymbol{y}_{k}\right\|=\mathcal{O}\left(\log N\left\|z_{0}-\boldsymbol{x}^{*}\right\|\right)
$$

$\tilde{\mathcal{O}}\left(\sqrt{d} / k^{2.5}\right)$ Convergence Rate

- Putting everything together:

$$
\begin{aligned}
\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right) & =\mathcal{O}\left(\left\|\mathbf{B}_{0}-\mathbf{H}_{0}\right\|_{F}^{2}+\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{H}_{k}\right)+L_{1} \sqrt{d} \sum_{k=0}^{N-1}\left\|\mathbf{H}_{k+1}-\mathbf{H}_{k}\right\|_{F}\right) \\
& =\mathcal{O}\left(\left\|\mathbf{B}_{0}-\nabla^{2} f\left(\boldsymbol{x}_{0}\right)\right\|_{F}^{2}+L_{2}^{2}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|^{2}+L_{1} L_{2} d\left\|z_{0}-\boldsymbol{x}^{*}\right\| \log N\right)
\end{aligned}
$$

- Thus, we have

$$
f\left(x_{N}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \frac{2\left\|z_{0}-\boldsymbol{x}^{*}\right\|^{2}}{N^{2.5}} \sqrt{\mathcal{O}\left(\sum_{k=0}^{N-1} \ell_{k}\left(\mathbf{B}_{k}\right)\right)}=\mathcal{O}\left(\frac{\sqrt{d \log N}}{N^{2.5}}\right)
$$

Summary of our results for the Convex setting

Theorem: [Jiang-Jin-M, NeurIPS, '23]
Assume that $\mathbf{0} \preceq \nabla^{2} f(\boldsymbol{x}) \preceq L_{1} \mathbf{I}$ and $\left\|\nabla^{2} f(\boldsymbol{x})-\nabla^{2} f(\boldsymbol{y})\right\| \leq L_{2}\|\boldsymbol{x}-\boldsymbol{y}\|$. Then the iterates if AQNPE satisfy

$$
f\left(x_{k}\right)-f(x) \leq \mathcal{O}\left(\min \left\{\frac{1}{k^{2}}, \frac{\sqrt{d \log k}}{k^{2.5}}\right\}\right)
$$

- Iteration complexity: $N_{\epsilon}=\tilde{\mathcal{O}}\left(\min \left\{\frac{1}{\sqrt{\epsilon}}, \frac{d^{0.2}}{\epsilon^{0.4}}\right\}\right)$
- Side result: Gradient evaluations: $3 N_{\epsilon}$
- Hence, gradient complexity: $N_{\epsilon}=\tilde{\mathcal{O}}\left(\min \left\{\frac{1}{\sqrt{\epsilon}}, \frac{d^{0.2}}{\epsilon^{0.4}}\right\}\right)$

Computational Cost

- Matrix-vector products:
- $\mathcal{O}\left(N_{\epsilon}+\sqrt{\frac{1}{\epsilon}}\right)$ from approx. linear system solving
- $\tilde{\mathcal{O}}\left(N_{\epsilon}^{1.25}\right)$ from approx. eigenvector computation

Methods	Gradient queires	Additional Matrix-vector products
AGD	$\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$	N.A.
A-QNPE (ours)	$\tilde{\mathcal{O}}\left(\min \left\{\frac{1}{\sqrt{\epsilon}}, \frac{d^{0.2}}{\epsilon^{0.4}}\right\}\right)$	$\tilde{\mathcal{O}}\left(\min \left\{\frac{1}{\epsilon^{0.625}}, \frac{d^{0.25}}{\epsilon^{0.5}}\right\}\right)$

Computational Cost

- Matrix-vector products:
- $\mathcal{O}\left(N_{\epsilon}+\sqrt{\frac{1}{\epsilon}}\right)$ from approx. linear system solving
- $\tilde{\mathcal{O}}\left(N_{\epsilon}^{1.25}\right)$ from approx. eigenvector computation

Methods	Gradient queires	Additional Matrix-vector products
AGD	$\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$	N.A.
A-QNPE (ours)	$\tilde{\mathcal{O}}\left(\min \left\{\frac{1}{\sqrt{\epsilon}}, \frac{d^{0.2}}{\epsilon^{0.4}}\right\}\right)$	$\tilde{\mathcal{O}}\left(\min \left\{\frac{1}{\epsilon^{0.625}}, \frac{d^{0.25}}{\epsilon^{0.5}}\right\}\right)$

- Gradient complexity of AQNPE is always better than AGD
- Overall complexity is better when gradient query is more costly than mat-vec product

Numerical Experiment

(a) Convergence by iteration

(b) Histogram of gradient evals

Figure: Numerical results for log-sum-exp function on a synthetic dataset.

References

- R. Jiang, Q. Jin, A. Mokhtari, "Online Learning Guided Curvature Approximation: A Quasi-Newton Method with Global Non-Asymptotic Superlinear Convergence," COLT 2023. arXiv: 2302.08580 [math. OC]
- R. Jiang, A. Mokhtari, "Accelerated Quasi-Newton Proximal Extragradient: Faster Rate for Smooth Convex Optimization," NeurIPS 2023 (Spotlight). arXiv: 2306.02212 [math.OC]

Thank you!

Quasi-Newton Proximal Extragradient

: Initialization: initial point $\boldsymbol{x}_{0} \in \mathbb{R}^{d}$ and initial \mathbf{B}_{0} s.t. $\mu \mathbf{I} \preceq \mathbf{B}_{0} \preceq L_{1} \mathbf{I}$
for iteration $k=0, \ldots, N-1$ do
Let η_{k} be the largest possible step size in $\left\{\sigma_{k} \beta^{i}: i \geq 0\right\}$ such that

$$
\begin{aligned}
& \hat{\mathbf{x}}_{k} \approx_{\alpha_{1}} \boldsymbol{x}_{k}-\eta_{k}\left(\mathbf{I}+\eta_{k} \mathbf{B}_{k}\right)^{-1} \nabla f\left(\boldsymbol{x}_{k}\right), \\
& \eta_{k}\left\|\nabla f\left(\hat{\boldsymbol{x}}_{k}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)-\mathbf{B}_{k}\left(\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right)\right\| \leq \alpha_{2}\left\|\hat{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\| .
\end{aligned}
$$

4: \quad Set $\sigma_{k+1} \leftarrow \eta_{k} / \beta$
5: Update $\boldsymbol{x}_{k+1} \leftarrow \frac{1}{1+2 \eta_{k} \mu}\left(\boldsymbol{x}_{k}-\eta_{k} \nabla f\left(\hat{\boldsymbol{x}}_{k}\right)\right)+\frac{2 \eta_{k} \mu}{1+2 \eta_{k} \mu} \hat{\boldsymbol{x}}_{k}$
6: if $\eta_{k}=\sigma_{k}$ then \# Line search accepted the initial trial step size
7: \quad Set $\mathbf{B}_{k+1} \leftarrow \mathbf{B}_{k}$
8: else \# Line search bactracked
9: Let $\tilde{\boldsymbol{x}}_{k}$ be the last rejected iterate in the line search
10: \quad Set $\boldsymbol{y}_{k} \leftarrow \nabla f\left(\tilde{\boldsymbol{x}}_{k}\right)-\nabla f\left(\boldsymbol{x}_{k}\right)$ and $\boldsymbol{s}_{k} \leftarrow \tilde{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}$
11: \quad Define the loss function $\ell_{k}(\mathbf{B})=\frac{\left\|\mathbf{y}_{k}-\mathbf{B} s_{k}\right\|^{2}}{2\left\|s_{k}\right\|^{2}}$
12:
13
14: end for

