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Transformer background

SOTA language and vision models are
transformers

Transformer: Neural network
architecture built around
self-attention units
[Vaswani et al., 2017]

Self-attention: Maps token sequence
to sequence of convex combinations
of embeddings of the other tokens,
weighted by softmax attention score

[Vaswani et al., 2017]
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In-Context Learning

Pretrained language models can perform in-context learning (ICL)
of tasks not seen during pretraining [Brown et al., 2020]

ICL: few-shot learning with single forward pass (no model updates)

Instruction: Analyze sentiment
Input 1: Cheerful
Output 1: Positive
…
Input n: Lonely
Output n: Negative

Example n+1: Excited
Output n+1: 

Pretrained
Language Model

Positive{Context

{Query
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In-Context Learning

Pretrained language models can perform in-context learning (ICL)
of tasks not seen during pretraining [Brown et al., 2020]

ICL: few-shot learning with single forward pass (no model updates)

Instruction: Name the capital city.
Input 1: United States
Output 1:  Washington D.C.
…
Input n:  Argentina
Output n: Buenos Aires

Example n+1: India
Output n+1: 

Pretrained
Language Model

New Delhi{Context

{Query
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How to explain ICL?

We follow prior work by considering ICL as regression [Garg et al., 2022]

ICL task function class: F ⊆ {f : Rd → R}
ICL task t: For some ft ∈ F , the model takes as input

▶ context: (x t,1, ft(x t,1) + ϵt,1), . . . , (x t,n, ft(x t,n) + ϵt,n), x t,i ∈ Rd

▶ query: x t,n+1

goal: predict ft(x t,n+1)

Pretraining: train transformer to minimize MSE of its prediction of
ft(x t,n+1) across T such tasks

Downstream evaluation: given n labelled examples from a new task
T + 1, predict fT+1(xT+1,n+1)
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ICL as Regression

Each ICL task is written as a token sequence Z t ∈ R(d+1)×(n+1):

Z t :=

[
x t,1 x t,2 . . . x t,n x t,n+1

ft(x t,1) + ϵt,1 ft(x t,2) + ϵt,2 . . . ft(x t,n) + ϵt,n 0

]

Denote Z t = [z t,1, . . . , z t,n], where z t,i =

[
x t,i

ft(x t,i ) + ϵt,i

]
Each column z t,i of Z t is an embedded token
Context: z t,1, . . . , z t,n

Query: z t,n+1 – Goal is to predict its missing label
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What is known about ICL in this setting?

Popular idea: ICL can be interpreted as gradient descent (GD)

[von Oswald et al., 2023, Akyürek et al., 2022, Bai et al., 2023,
Fu et al., 2023]: Existence of transformers that implement GD and
other gradient-based algorithms during ICL on linear regression tasks

▶ Unclear whether pretraining leads to such transformers

[Zhang et al., 2022, Ahn et al., 2023, Mahankali et al., 2023]: Solving
pretraining loss yields transformers that execute preconditioned GD
during ICL

▶ Only holds for linear attention and linear tasks

[Cheng et al., 2023] Extension to nonlinear attn and tasks: ICL is
functional GD

▶ Requires activation to be a kernel (does not include softmax)
▶ For accurate predictions, requires activation kernel to align with kernel

that generates task labels (implicitly assumed in linear analysis)

Key Question
How does softmax self-attention learn to perform ICL?
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Outline

Intuition: Softmax Attention allows for adapting an attention window

Results Part I: Attention window adapts to function Lipschitzness

Results Part II: Attention window adapts to direction-wise function
Lipschitzness
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Learning Model: One Layer of Softmax Self-Attention

Self-Attention: Maps each token in Z to another token of same
dimension (drop subscript t ease of notation)
Parameters: θ := {W V ,W K ,WQ} ∈ (R(d+1)×(d+1))3

…WV z1 WV z2 WV zn+1 σ( )…
…WQz1 WQz2 WQzn+1

z⊤1 W⊤
K

z⊤2 W⊤
K

z⊤
n+1W⊤

K

Column-wise 
softmax

Key EmbeddingsValue Embeddings Query Embeddings

hSA(z i ,Z ;θ) :=
n∑

j=1

(W V z j)︸ ︷︷ ︸
z j value embedding

e(WK z j )
⊤(WQz i )∑n

j ′=1 e
(WK z ′

j )
⊤(WQz i )︸ ︷︷ ︸

Attention z i pays to zj

. (1)
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Pretraining Loss

Recall

Z :=

[
x1 x2 . . . xn xn+1

f (x1) + ϵ1 f (x2) + ϵ1 . . . f (xn) + ϵn 0

]
For simplicity, we consider

W V =

[
0d×d 0d

0d 1

]
, W K =

[
MK 0d

0d 0

]
, WQ =

[
MQ 0d

0d 0

]
and define M := M⊤

KMQ ∈ Rd×d , thus

hSA(zn+1,Z ;M)d+1 =
n∑

i=1

(f (x i ) + ϵi )
ex⊤

i M xn+1∑n
i=1 e

x⊤
i M xn+1

(2)

(d+1)-th element of hSA(zn+1,Z ;M): prediction of f (xn+1)
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Pretraining Loss

Let y t,i := ft(x t,i ) + ϵt,i . Empirical loss on T contexts:

L̂(M) :=
1
T

T∑
t=1

(
n∑

i=1

y t,i
ex⊤

t,i M x t,n+1∑n
i=1 e

x⊤
t,i M x t,n+1

− y t,n+1

)2

For simplicity, we consider the population version:

L(M) := Ef ,{x i}i ,{ϵi}i

(
n∑

i=1

(f (x i ) + ϵi )
ex⊤

i M xn+1∑n
i=1 e

x⊤
i M xn+1

− f (xn+1)

)2

where f ∼ D(F), x i
i.i.d.∼ Dx , ϵi

i.i.d.∼ Dϵ

How do minimizers of (ICL) adapt to D(F),Dx ,Dϵ?
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ICL estimator intuition

Let us return to the ICL estimator:

f̂ (xn+1) =
n∑

i=1

(f (x i ) + ϵi )
ex⊤

i M xn+1∑n
j=1 e

x⊤
j M xn+1

↑
some type of distance between x i and xn+1

Lemma 1: Inverting the data covariance
Under natural symmetry conditions:

x i ∼ Σ1/2Ud ∀ i =⇒ M∗ = wKQΣ
−1

for any M∗ ∈ argminL(M) and some wKQ ≥ 0, where Ud is the uniform
distribution over the d-dimensional hypersphere.

For the remainder of the talk, Σ = I d WLOG.
Does not explain ICL completely. → What is wKQ?
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ICL Estimator Intuition

Attention xn+1 → x i :
e−

wKQ
2 ∥ x i − xn+1 ∥2∑n

j=1 e
−wKQ

2 ∥ x j − xn+1 ∥2

1 Observation 1: Attention is larger for points closer to xn+1
▶ convenient if ∥ x i − xn+1 ∥ is a proxy for |f (x i )− f (xn+1)|

2 Observation 2: How much larger? Controlled by wKQ

0 10 20 30 40 50
wKQ

0.0

0.2

0.4

0.6

0.8

1.0

At
te

nt
io

n 
x 3

x i

n = 2, ||x1 x3||2 = 0.25, ||x2 x3||2 = 0.5

i = 1
i = 2

▶ Larger wKQ → attention concentrates on the closest point(s)
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ICL estimator intuition

Top: Varying Lipschitzness in the ground truth results in different optimal
attention windows. Middle: Attention unit can adapt to these attention
windows using softmax. Bottom: ICL error with varying number of context
tokens.
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ICL estimator intuition

How ∥M∥ changes the prediction.

Tradeoff M large M small
Attention decays quickly with distance slowly with distance
Number of points

that are attended to fewer more
Estimator bias Low High
Noise Variance High Low
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Intuition Summary

Function change Desired (attention window, wKQ)
Rapid (Small, Large)
Slow (Large, Small)

To formally capture these intuitions, we consider the following ReLU-based
function class (see paper for additional classes):

F+
L := {f : f (x) = ℓ1(q⊤x)+ + ℓ2(−q⊤x)+ + b, ℓ1, ℓ2, b ∈ [−L, L]3}

where D(F+
L ) is induced by ℓ1, ℓ2, b ∼ Unif([−L, L]), and (z)+ :=max(z ,0).

Definition (Lipschitzness)
The Lipschitzness of a function f is defined as:

Lip(f ) := inf
L∈R

{L : ∥f (x)− f (x ′)∥ ≤ L∥x − x′∥ ∀ x , x ′}

For any f ∈ F , Lip(f ) = max(|ℓ1|, |ℓ2|).
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Results Part I: Softmax Attention Adapts Attention Window
to Lipschitzness

Theorem 2
For sufficiently large n, the minimizer of the of the pretraining population
loss induced by D(F+

L ) is M∗ = wKQ I d where

Ω

((
nL2

σ2

) 1
d

)
< wKQ < O

((
nL2

σ2

) 2
d

)

Some extreme examples
σ → ∞: no signal, average the noise, wKQ → 0.
L ≫ σ: no point aggregating noise, pick the nearest neighbour,
wKQ → ∞.
n → ∞: the query token is in the context! Choose the nearest
neighbour, wKQ → ∞.
To our knowledge, first result showing how pretrained softmax
attention facilitates ICL.
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Pretraining Loss

Pretraining population loss, where f ∼ D(F), x i
i.i.d.∼ Dx , ϵi

i.i.d.∼ Dϵ:

L(M) := Ef ,{x i},{ϵi}

(∑n
i=1(f (x i ) + ϵi ) e

x⊤
i M xn+1∑n

i=1 e
x⊤
i M xn+1

− f (xn+1)

)2

Decomposition:

L(M) := Ef ,{x i},

(
n∑

i=1

f (x i )
ex⊤

i M xn+1∑n
i=1 e

x⊤
i M xn+1

− f (xn+1)

)2

︸ ︷︷ ︸
Lsignal(M)

+ E{x i},{ϵi}

(∑n
i=1 ϵi e

x⊤
i M xn+1∑n

i=1 e
x⊤
i M xn+1

)2

︸ ︷︷ ︸
Lnoise(M)

(ICL)
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Proof Sketch

Concentrations of various functionals of the empirical distribution of
tokens on the hypersphere:

▶ Recall Lnoise(wKQ) = σ2∑
i

e−2wKQ∥ x i − xn+1 ∥2(∑
j e

−wKQ∥ x j − xn+1 ∥2)2 . For the relevant

range of wKQ , Lnoise(wKQ) = Θ

(
σ2 w

d
2
KQ+1
n

)
.

▶ Recall Lbias(wKQ) =

(∑
i f (x i )

e−wKQ∥ x i − xn+1 ∥2∑
j e

−wKQ∥ x j − xn+1 ∥2 − f (xn+1)

)2

.

Ω

(
L2

w2
KQ

)
< Lbias(wKQ) < Θ

(
L2

wKQ
+

L2

n

)
.

Use these to get a range for wKQ .
overall upper bound
overall lower bound
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Empirical Scaling of ∥M∥ with L

∥M∥ grows faster during pretraining with larger L, on both ReLU and
Cosine tasks, with both isotropic and non-isotropic x i .

0 500 1000 1500 2000
Pretraining Iterations

0

20

40

60

80

100

||M
||

ReLU -- Isotropic
L

0
0.8
1.6
2.4
3.2

0 500 1000 1500 2000
Pretraining Iterations

0

20

40

60

80

100

ReLU -- Non-Isotropic
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Cos -- Isotropic

0 500 1000 1500 2000
Pretraining Iterations

0
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50

75

100

125
Cos -- Non-Isotropic
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Generalization Guarantees

Shared Lipschitzness across (train, test) is both necessary and sufficient
for ICL.

Theorem 3: Generalization
Suppose M is pretrained on the loss induced by D(F+

L ). Suppose it is

tested on D(F+
L ) then for large enough n, L(M) ≤ L2− 2

d+2

(
σ2

n

) 1
d+2 .

Meanwhile, if it is tested on D(F+
L′ ),

L(M) ≥


L′2
(

σ2

nL2

) 2
d+2

L′ > L (worse dependence on L′)(
nL2

σ2

) d
2(d+2)

n L′ ≤ L (no benefit of L′)
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Empirical Generalization

Shared Lipschitzness across (train, test) is sufficient for ICL.

0 250 500 750 1000
Pretraining Iterations

10 2

10 1

100

Te
st

 IC
L 

Er
ro

r

Test on Affine, L = 1
Trained on (all L = 1)

Affine
ReLU
Cos

0 250 500 750 1000
Pretraining Iterations

10 2

10 1

100 Test on ReLU, L = 1
Trained on (all L = 1)

Affine
ReLU
Cos

0 250 500 750 1000
Pretraining Iterations

10 2

10 1

100 Test on Cos, L = 1
Trained on (all L = 1)

Affine
ReLU
Cos

0 250 500 750 1000
Pretraining Iterations

10 2

10 1

100 Test on Cos, L = 1

Trained on
Affine, L = 1
Cos, L = 0.1
Cos, L = 10

3 attention units, pretrained on Affine, ReLU, and Cosine tasks with
L = 1

Tested on (Left) Affine, (Middle) ReLU, (Right) Cosine, with L = 1

All three attention units generalize to all test distributions since
L is the same
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Test on Affine, L = 1
Trained on (all L = 1)

Affine
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100 Test on ReLU, L = 1
Trained on (all L = 1)

Affine
ReLU
Cos

0 250 500 750 1000
Pretraining Iterations
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ReLU
Cos

0 250 500 750 1000
Pretraining Iterations

10 2

10 1

100 Test on Cos, L = 1

Trained on
Affine, L = 1
Cos, L = 0.1
Cos, L = 10

3 attention units, pretrained on Affine tasks with L = 1, Cosine with
L = 0.1, Cosine with L = 10

Test on Cosine tasks with L = 1

Only pretraining on the same Lipschitzness generalizes
▶ Please see paper for formal results (Theorem 3.5)

Aryan Mokhtari (UT Austin) Softmax Attention for ICL February 20, 2024 24 / 31



Results Part II: Softmax Attn Learns Attn Window Direction

Now suppose labels depend only on a low-dimensional component of
the input
∃ B ∈ Rd×k such that all ft ∈ F satisfy ft(x) = gt(B⊤ x) for some
gt : Rk → R

▶ Let B have orthonormal columns WLOG
Interesting case: k ≪ d , then learning col(B) drastically reduces ICL
problem dimension

▶ Attention window of softmax attention should depend only on
projections of the input onto col(B)

Key Question
Does softmax attention recover col(B)?
⇐⇒ Does attention window depend only on projections onto col(B)?
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Function Class and Connection with Lipschitzness

Function class: F lin
B := {f : f (x) = a⊤B⊤ x , a ∈ Sk−1}, and D(F lin

B )
is induced by drawing a ∼ Unif(Sk−1).

Definition (Direction-wise Lipschitzness - Informal)

For any direction s ∈ Sd−1:

Lips(f ) := inf
L∈R

{L : f (ss⊤ x)− f (ss⊤ x ′) ≤ L|s⊤ x −s⊤ x ′ | ∀ x , x ′}

If s ∈ col(B) (label-relevant direction)
▶ maxf∈F

Blin Lips(f ) = 1, Recovering col(B) =⇒ s⊤Ms > 0

If s ∈ col(B)⊥ (spurious direction)
▶ maxf∈F

Blin Lips(f ) = 0, Recovering col(B) =⇒ s⊤Ms = 0

Recovering col(B) ≡ Learning direction-wise Lipschitzness of F lin
B
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Main Result

Theorem 4 (Informal)
Suppose n = 2 or σ = 0. Then for some C = Ω(1), any optimal solution
M∗ of the ICL pretraining loss induced by the task distribution D(F lin

B )
optimized over the set M := {M : M = M⊤, ∥B⊤MB∥2 ≤ C} satisfies,
for c ∈ (0,C ],

M∗ = cBB⊤.

If s ∈ col(B) then s⊤M∗s > 0
If s ∈ col(B)⊥ then s⊤M∗s = 0
=⇒ M∗ learns direction-wise Lipschitzness, recovers col(B)
⇐⇒ softmax attn window depends only on projections onto col(B)

To our knowledge, first result showing softmax attention learns
low-dimensional structure among ICL pretraining tasks.
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Conclusion

Softmax attention learns shared Lipschitzness – both scale and
direction – among pretraining tasks that facilitates downstream ICL.

Future work:
▶ Moving beyond ICL-as-regression framework.

⋆ Auto-regressive pretraining
⋆ Sequences in which position is relevant to prediction
⋆ Discrete data

▶ Role of MLPs.
▶ Multiple attention layers and parallel heads.
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Softmax Attention Learns Low-Dimensional Structure in
Nonlinear Functions

We consider generalized linear models (GLMs) with affine, quadratic,
and cosine link functions

▶ Affine: f (x) = w⊤ x +2
▶ Quadratic: f (x) = (w⊤ x)2
▶ Cosine: f (x) = cos

(
4w⊤ x

)
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