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What is the problem of interest?

▶ Consider the general unconstrained minimization problem

min
x∈Rd

f (x),

where ∇f is L1-Lipschitz and ∇2f is L2-Lipschitz

▶ We will focus on two general settings
• Case I: f is µ-strongly convex (SCVX)
• Case II: f is (only) convex (CVX)

▶ We are interested in settings where we can only query first-order information
⇒ We only have access to ∇f (x)
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Gradient Descent-type Methods

▶ Popular methods: Gradient Descent (GD) and its Accelerated version (AGD)

• Require only access to gradient oracle ⇒ Cost per iteration O(d)
• In Case I (SCVX): Achieve a global linear convergence rate

∥xk − x∗∥2 ≤

(1 − µ
L1

)k∥x0 − x∗∥2 for GD;
(1 −

√
µ
L1

)k∥x0 − x∗∥2 for AGD.

• In Case II (CVX): Achieve a global sublinear convergence rate

f (xk) − f ∗ =
{

O( 1
k ) for GD;

O( 1
k2 ) for AGD.
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Can we improve over GD/AGD?

▶ AGD is “worst-case optimal”: it matches lower bounds for all first-order methods in
both SCVX and CVX settings [Nesterov’18]

▶ However, these lower bounds only hold in the high-dimensional regime, e.g., k = O(d)
▶ We propose a quasi-Newton-type method that:

• Matches the rate of GD/AGD when k = O(d)
• Outperforms GD/AGD with a faster rate when k = Ω(d)
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Quasi-Newton Methods

▶ Quasi-Newton (QN) methods aim at speeding up GD-type methods by using a
preconditioner

xk+1 = xk − ηkB−1
k ∇f (xk)

▶ When Bk ≈ ∇2f (xk) they mimic Newton’s method

▶ Only use gradients to construct Bk ⇒ Still first-order methods
▶ Various updates for Bk have been proposed with cost O(d2): DFP [Davidon’59;

Fletcher-Powell’63], BFGS [Broyden’70; Fletcher’70; Goldfarb’70; Shanno’70], SR1 [Powell’69]

▶ Despite their practical success, no result shows an improved global complexity bound
for QN methods
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Prior Work on QN Methods: SCVX setting

▶ Classical results show asymptotic superlinear convergence, i.e., limk→∞
∥xk+1−x∗∥
∥xk−x∗∥ = 0

[Powell’71; Broyden-Dennis-Moré’73; Powell’76; ...]
=⇒ No explicit rates are given

▶ Recent results show a local non-asymptotic superlinear rate of
(
O(1/

√
k)
)k

[Rodomanov-Nesterov’21; Jin-Mokhtari’22; ...]
• These results are only local. Unclear how to extend them into global guarantees

⇒ The condition on B0 may not hold when ∥x0−x∗∥ becomes small
• Moreover, there is no global result matching the linear rate of AGD or GD
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Prior Work on QN Methods: CVX Setting

▶ In the CVX setting, few results are known for classical QN methods
• limk→∞ f (xk) = f (x∗) with exact line search [Powell’72]
• lim infk→∞ ∥∇f (xk)∥ = 0 with inexact line search [Powell’76; Byrd-Nocedal-Yuan’87]

▶ Another line of work analyzed QN methods as preconditioned GD methods
• O(1/k) rate is shown in [Scheinberg-Tang’16]
• An accelerated O(1/k2) rate is achieved in [Ghanbari-Scheinberg’18]

▶ However, these rates are no better than that of AGD
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Goal and Main Ideas of our Proposed Approach

▶ Goal: Designing QN methods with superior gradient complexity compared to GD-type
methods in both CVX and SCVX settings.

▶ Our Approach: Online-Learning guided Quasi-Newton Proximal Extragradient
(QNPE) Algorithms

▶ Main Ideas:

• Instead of the classic template of QN methods (xk+1 = xk − ηkB−1
k ∇f (xk)), we

follow the Hybrid Proximal Extragradient (HPE) framework
• Instead of updating Bk by classic QN updates, we use an Online Learning

framework for updating Bk inspired by our analysis
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Our Contributions (Strongly-Convex Setting)
▶ Global convergence rates (no conditions on x0 or B0) [Jiang-Jin-M, COLT ’23]

∥xk − x∗∥2

∥x0 − x∗∥2 ≤ min


(

1 + µ

4L1

)−k
,

1 + µ

4L1

√
k
C

−k


∥xk − x*∥2

∥x0 − x*∥2

Iterations

Linear rate:  


Superlinear rate: 

(1 + μ
4L1 )

−k

(1 + μ
4L1

k
C )

−k

C

C = 𝒪(∥B0 − ∇2f(x*)∥2
F

L21 )
≤ d

Log scale

▶ For k ≤ d , QNPE matches the linear rate of GD
▶ After at most O(d) iterations QNPE becomes provably faster than GD
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Our Contributions (Convex Setting)

▶ An accelerated QN proximal extragradient method [Jiang-M, NeurIPS ’23]

f (xk) − f (x∗) ≤ O
(

min
{

1
k2 ,

√
d log k
k2.5

})

• for k ≤ d log d , it matches the rate of AGD
• for k ≥ d log d , it provably converges faster than AGD

▶ Lower bound discussion:
• This result does not violate the lower bound for first-order methods
• The lower bound of Ω

(
1
k2

)
only holds for k ≤ d
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Hybrid Proximal Extragradient

▶ We follow (a variant of) the Hybrid Proximal Extragradient (HPE) framework
[Solodov-Svaiter’99; Monteiro-Svaiter’10]

▶ Stage 1: Inexact proximal point update

▶ Stage 2: Extragradient step

xk+1 = γk [xk − ηk∇f (x̂k)] + (1 − γk)x̂k , γk = 1
1 + 2ηkµ

▶ ∥xk+1 − x∗∥2 ≤ 1
1+2ηkµ∥xk − x∗∥2 ⇒ any rate can be achieved as ηk ↑
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Quasi-Newton Proximal Extragradient

▶ Issue: Subproblem in Stage 1 is costly!
∥x̂k − xk + ηk∇f (x̂k)∥ ≤ 1

2∥x̂k − xk∥

▶ Solution: Linearize ∇f (x̂k) ≈ ∇f (xk) + Bk(x̂k − xk) ⇒ a linear system of equations
▶ Stage 1: Quasi-Newton proximal step

∥x̂k − xk + ηk(∇f (xk) + Bk(x̂k − xk))∥ ≤ 1
4∥x̂k − xk∥,

ηk∥∇f (x̂k) − (∇f (xk) + Bk(x̂k − xk))∥ ≤ 1
4∥x̂k − xk∥

• ηk is not arbitrary; requires backtracking line search
▶ Stage 2: Extragradient step

xk+1 = γk [xk − ηk∇f (x̂k)]+(1 − γk)x̂k , γk = 1
1 + 2ηkµ
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How to Update Bk : Starting from Convergence Analysis

▶ How should we select/update {Bk}?

▶ We let the convergence analysis guide our choice of Bk !

▶ We know that ∥xk+1 − x∗∥2 ≤ 1
1+2ηkµ∥xk − x∗∥2

▶ ηk is constrained by

ηk∥∇f (x̂k) − (∇f (xk) + Bk(x̂k − xk))∥ ≤ 1
4∥x̂k − xk∥

▶ Initial result: By backtracking line search:

ηk ≃ ∥x̂k − xk∥
∥∇f (x̂k) − ∇f (xk) − Bk(x̂k − xk)∥ = ∥sk∥

∥yk − Bksk∥
,

where yk = ∇f (x̂k) − ∇f (xk) and sk = x̂k − xk
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How to Update Bk : Starting from Convergence Analysis

▶ Since ηk ≃ ∥sk∥/∥yk − Bksk∥, by applying Jensen’s inequality, we have

∥xN − x∗∥2

∥x0 − x∗∥2 ≤

1 + 2µ

√√√√ N
O(
∑N−1

k=0
∥yk−Bksk∥2

∥sk∥2 )


−N

▶ Hence, the goal is to choose Bk such that we minimize

N−1∑
k=0

ℓk(Bk) :=
N−1∑
k=0

∥yk − Bksk∥2

∥sk∥2
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Hessian Approximation Update via Online Learning

▶ We aim to minimize
∑N−1

k=0 ℓk(Bk), but we observe ℓk after selecting Bk !

Why? given xk , Bk → select (ηk , x̂k) by BLS → compute sk , yk → compute ℓk(Bk)

▶ Key idea: View the update of Bk as an online convex opt problem
• Choose Bk ∈ Z, where Z = {B : µI ⪯ B ⪯ L1I}
• Receive ℓk(Bk)
• Update Bk+1 by an online learning algorithm, e.g., Online Gradient Descent

Bk+1 = ΠZ (Bk − ρ∇ℓk(Bk))
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Convergence Analysis
▶ Recall that

∥xN − x∗∥2

∥x0 − x∗∥2 ≤
(

1 + 2µ

√
N

O(
∑N−1

k=0 ℓk(Bk))

)−N

▶ µI ⪯ Bk ⪯ L1I ⇒
∑N−1

k=0 ℓk(Bk) ≤ L2
1N

⇒ Linear rate
▶ A “small-loss” bound by using the smoothness of ℓk :

N−1∑
k=0

ℓk(Bk) ≤ 4∥B0 − H∥2
F + 2

N−1∑
k=0

ℓk(H)

▶ A natural choice: H = ∇2f (x∗) ⇒
∑N−1

k=0 ℓk(∇2f (x∗)) = O
(

L1L2
2∥x0−x∗∥2

µ

)
N−1∑
k=0

ℓk(Bk) = O
(

∥B0 − ∇2f (x∗)∥2
F + L1L2

2∥x0 − x∗∥2

µ

)
≈ L2

1d ⇒ Superlinear rate
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Projection-Free Online Learning

▶ One issue: Euclidean projection onto Z = {B : µI ⪯ B ⪯ L1I} is expensive
• It requires full eigen-decomposition, which costs O(d3)

▶ Solution: We adopted a projection-free approach inspired by [Mhammedi’ COLT22]
• Instead of projection onto the set we only require a separation oracle for the set.
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Summary (Strongly Convex)

HPE framework
￼xk

￼Bk

Online Convex Opt.

￼xk+1

￼ℓk(Bk) := ∥yk − Bksk∥2

∥sk∥2

￼Bk+1

▶ HPE analysis:

∥xN − x∗∥2

∥x0 − x∗∥2 ≤
(

1 + µ

√
N∑N−1

k=0 ℓk(Bk)

)−N

▶ Regret analysis:

N−1∑
k=0

ℓk(Bk) ≤
{

L2
1N,

∥B0 − H∗∥2
F +

∑N−1
k=0 ℓk(H∗)

▶ Omitted details:
• Backtracking line search
• Approx. linear solver
• Projecton-free online learning
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What about the CVX setting?

A-HPE framework
￼Bk

Online Convex Opt.

￼ℓk(Bk) := ∥wk − Bksk∥2

∥sk∥2

￼Bk+1

￼xk, zk ￼xk+1, zk+1

▶ In the CVX setting, we can use the
accelerated HPE [Monteiro-Svaiter’13]

▶ A-HPE analysis:

f (xN) − f (x∗) ≤ 2∥z0 − x∗∥2

N2.5

√√√√N−1∑
k=0

ℓk(Bk),

wk =∇f (xk+1) − ∇f (yk), sk =xk+1 − yk
▶ Regret analysis:

N−1∑
k=0

ℓk(Bk) ≤
{

L2
1N,

???

Static regret ⇒ dynamic regret
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Õ(
√

d/k2.5) Convergence Rate

▶ Recall that in the strongly convex setting, we use the regret bound

N−1∑
k=0

ℓk(Bk) ≤ 4∥B0 − H∗∥2
F + 2

N−1∑
k=0

ℓk(H∗),

where H∗ = ∇2f (x∗)
▶ By linear convergence, we have

N−1∑
k=0

ℓk(H∗) ≤
N−1∑
k=0

L2
2∥xk − x∗∥2 = O

(
L1L2

2
µ

∥x0 − x∗∥2
)

▶ However, we do not have linear convergence in the convex setting!
▶ Have to take a different approach via dynamic regret bound
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Õ(
√

d/k2.5) Convergence Rate

▶ For any sequence {Hk}N−1
k=0 with Hk ∈ Z = {B : 0 ⪯ B ⪯ L1I}, we can show that

N−1∑
k=0

ℓk(Bk) = O
(

∥B0 − H0∥2
F +

N−1∑
k=0

ℓk(Hk) + L1
√

d
N−1∑
k=0

∥Hk+1 − Hk∥F

)

▶ We then choose Hk = ∇2f (yk) for k = 0, . . . , N − 1
▶ With careful potential analysis, we can bound

N−1∑
k=0

ℓk(Hk) = O
(
L2

2∥z0 − x∗∥2
)

,
N−1∑
k=0

∥Hk+1 − Hk∥F = O
(
L2

√
d∥z0 − x∗∥ log N

)
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Õ(
√

d/k2.5) Convergence Rate

▶ Putting everything together:

N−1∑
k=0

ℓk(Bk) = O
(

∥B0 − H0∥2
F +

N−1∑
k=0

ℓk(Hk) + L1
√

d
N−1∑
k=0

∥Hk+1 − Hk∥F

)
= O

(
∥B0 − ∇2f (x0)∥2

F + L2
2∥x0 − x∗∥2 + L1L2d∥z0 − x∗∥ log N

)
▶ Thus, we have

f (xN) − f (x∗) ≤ 2∥z0 − x∗∥2

N2.5

√√√√O
(N−1∑

k=0
ℓk(Bk)

)
= O

(√
d log N
N2.5

)
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Numerical Experiment (Strongly Convex Setting)
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(a) Convergence by iteration (b) Histogram of gradient evals

Figure: Numerical results for an L2-regularized logistic regression problem
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Numerical Experiment (Convex Setting)

Numerical results for the hard a convex cubic-quadratic problem

10
0

10
1

10
2

10
3

10
4

10
-15

10
-10

10
-5

10
0

10
5

10
10

(a) Dimension d = 50

10
0

10
1

10
2

10
3

10
4

10
5

10
-15

10
-10

10
-5

10
0

10
5

10
10

(b) Dimension d = 500
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How about the Nonconvex Setting?

Goal: find x such that ∥∇f (x)∥2 ≤ ϵ

▶ If ∇f is Lipschitz, GD has a complexity of O(ϵ−2), which is optimal!

▶ What if ∇f and ∇2f are both Lipschitz? (but we only have access to ∇f )
• Two concurrent works achieved a grad complexity of O(ϵ−7/4 log(1/ϵ))

[Carmon,Duchi,Hinder,Sidford, ICML’17] & [Agarwal,AllenZhu,Bullins,Hazan,Ma, STOC’17].
• Later, [Li,Lin, ICML’22] shaved the log term and obtained O(ϵ−7/4)

▶ Our Result: gradient complexity of O(d1/4ϵ−13/8), where d is the problem dimension.

▶ For d ≤ 1√
ϵ
, our iteration complexity outperforms existing first-order methods.
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Main Ideas

▶ We design a QN-type algorithm that incorporates solving two online learning
problems under the hood!

▶ We first use the Online-to-Nonconvex framework of [Cutkosky,Mehta,Orabona, ICML’23]
to reformulate the task of finding a stationary point of a nonconvex function as an OCO

▶ Then, we introduce a novel Optimistic Quasi-Newton method for solving the OCO
• The Hessian approximation update itself is framed as an online learning problem in

the space of matrices. (similar to the previous settings!)
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