• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
UT Shield
Mulva Clinic for the Neurosciences
  • About
    • Team
    • Departments
      • Neurology
        • 5th Anniversary Report
      • Neurosurgery
      • Psychiatry & Behavioral Sciences
        • Annual Report
    • Advisory Boards
      • Neurology & Neurosurgery Advisory Board
      • Psychiatry & Behavioral Sciences Advisory Board
  • Research Areas
    • Aging & Neurodegenerative Diseases
    • Neuroinflamation & Neuroimmunology
    • Brain & Nervous System Injury
    • Development & Neuroplasticity
    • Addiction
    • PTSD
    • Mood Disorders
    • Neural Engineering & Data Sciences
  • Research Labs & Centers
  • Clinical Trials
  • Clinical Services
    • UT Health Austin Adult
    • UT Health Austin Pediatric Neurosciences
    • UT Health Austin Pediatric Psychiatry
  • Publications
  • News

Research Focus

February 15, 2023, Filed Under: News

Are Thalamic Circuits Related to Autism or Other Conditions?

Audrey Brumback, MD, PhD, in the Brumback Lab
Audrey Brumback, MD, PhD, in the Brumback Lab

Audrey Brumback, MD, PhD, Assistant Professor of Neurology at Dell Medical School at The University of Texas at Austin, has been awarded a three-year, $1,500,000 grant from the National Institute of Mental Health entitled “Functional Architecture of the Mediodorsal Thalamus.” Brumback’s team will use mice to map the structure and function of a part of the thalamus that is thought to affect conditions such as autism, attention-deficit/hyperactivity disorder, and schizophrenia.

The thalamus is typically considered a relay center that facilitates the transfer of incoming sensory messages to the brain cortex. But the thalamus is likely a more sophisticated structure that uses the incoming sensory information to orchestrate the activity of higher cortical brain areas. As one of the largest thalamic nuclei, the mediodorsal thalamus reciprocally connects with multiple cortical and subcortical brain regions, provides a strong projection to the medial prefrontal cortex, and coordinates the activity of cortical microcircuits there during prefrontal-dependent behaviors. But despite the importance of the mediodorsal thalamus in a range of behaviors and human disease, little is known about the physiology of the neurons in this region or how they influence behavior.

In preliminary work, Brumback discovered that two populations of neurons in the mediodorsal thalamus have distinct structural and functional profiles. Based on her preliminary work and how these two thalamic circuits connect differently to the rest of the brain, she hypothesizes that each circuit is responsible for a different aspect of behavior: one circuit is responsible for social or emotional behaviors, while the other circuit modulates cognitive functions like attention and working memory.

In the funded work, Brumback’s team will directly test this model using a neuromodulation approach called optogenetics. Using flashes of light delivered directly into the brain via a fiber optic probe, she will activate or inactivate specific populations of neurons with millisecond precision while mice perform a battery of behavioral tasks. By turning each of the proposed circuits on or off during different types of behavior, she can test which circuit is important for each type of behavior. The team will also determine how individual neurons in these two thalamic circuits integrate synaptic inputs from different brain regions.

The team’s future work will decipher how these and other thalamic circuits are altered in autism and whether they can be modified to treat cognitive or social-emotional symptoms. “The ability to noninvasively alter the activity of specific populations of neurons has enormous implications,” said E. Steve Roach, MD, Brumback’s Austin colleague. “The more specific we can be when targeting neurons, the greater the likelihood of finding an effective treatment with few side effects.”

Article Courtesy of the Neurotransmitter

Primary Sidebar

Latest News

  • Kevin Kumar, MD, PhD, lead author in a recent Frontiers in Surgery article on DBS August 10, 2025
  • Clarke Elected Chair of ILAE-North America July 20, 2025
  • A Jolt of Innovation for Brain-Computer Interfaces June 16, 2025
  • Sound Waves That Heal: A Breakthrough for Depression and Anxiety May 12, 2025
  • Celebrating our Mulva Faculty Members Promotions March 24, 2025

Latest Publications

Do We All Do the Same Things? Applicability of Daily Activities at the Intersection of Demographics. Neuropsychology.

Prefrontal Cortical Dynorphin Peptidergic Transmission Constrains Threat-driven Behavioral and Network States. Neuron.

Knockdown of Tlr3 in Dorsal Striatum Reduces Ethanol Consumption and Acute Functional Tolerance in Male Mice. Brain Behav Immun.

Longitudinal Associations of Physical and Emotional Distress Tolerance with Pain Intensity and Pain-Related Disability in United States Veterans. The Journal of Pain.

Combining Detrended Cross-Correlation Analysis with Riemannian Geometry-based Classification for Improved Brain-computer Interface Performance. Front Neurosci.

The Role of Occipital Condyle and Atlas Anomalies on Occipital Cervical Fusion Outcomes in Chiari Malformation Type I with Syringomyelia: a Study from the Park-Reeves Syringomyelia Research Consortium. J Neurosurg Pediatr.

For a complete list of publications go to our Publications page!

Footer

Contact us

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2025