This project aimed at developing magnetic microrobotics for ophtalmic surgery.
I was involved in developing the magnetic model for assembled-MEMS microrobots. The model is validated through FEM simulations and experiments, and captures the characteristics of complex 3-D structures. It allows us, for the first time, to consider full 6-DOF control of untethered devices.


Publications
Z. Nagy, O. Ergeneman, J. J. Abbott, M. Hutter, A. M. Hirt, and B. J. Nelson, Modeling Assembled-MEMS Microrobots for Wireless Magnetic Control, in Proc. IEEE International Conference on Robotics and Automation (ICRA), 2008, Pasadena, CA, USA
doi: 10.1109/ROBOT.2008.4543315
Z. Nagy and B. J. Nelson, Lagrangian Modeling of the Magnetization and the Magnetic Torque on Assembled Soft-Magnetic MEMS Devices for Fast Computation and Analysis, IEEE Transactions on Robotics, Vol.28, No.4, pp.787-797, August 2012
doi: 10.1109/TRO.2012.2193230