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Experimentally and Numerically
Validated Analytical Solutions
to Nonbuckling Piezoelectric
Serpentine Ribbons
Emerging stretchable piezoelectric devices have added exciting sensing and energy harvest-
ing capabilities to wearable and implantable soft electronics. As conventional piezoelectric
materials are intrinsically stiff and some are even brittle, out-of-plane wrinkled or buckled
structures and in-plane serpentine ribbons have been introduced to enhance their compli-
ance and stretchability. Among those stretchable structures, in-plane piezoelectric serpen-
tine ribbons (PSRs) are preferred on account of their manufacturability and low profiles. To
elucidate the trade-off between compliance and sensitivity of PSRs of various shapes, we
herein report a theoretical framework by combining the piezoelectric plate theory with
our previously developed elasticity solutions for passive serpentine ribbons without piezo-
electric property. The electric displacement field and the output voltage of a freestanding
but nonbuckling PSR under uniaxial stretch can be analytically solved under linear assump-
tions. Our analytical solutions were validated by finite element modeling (FEM) and exper-
iments using polyvinylidene fluoride (PVDF)-based PSR. In addition to freestanding PSRs,
PSRs sandwiched by polymer layers were also investigated by FEM and experiments. We
found that thicker and stiffer polymers reduce the stretchability but enhance the voltage
output of PSRs. When the matrix is much softer than the piezoelectric material, our analyt-
ical solutions to a freestanding PSR are also applicable to the sandwiched ones.
[DOI: 10.1115/1.4042570]

Keywords: stretchable, piezoelectric, serpentine, PVDF, voltage output

1 Introduction
In the past decade, flexible and stretchable electronics have found

many exciting applications in bio-integrated electronics [1–3], bio-
mimetic devices [4–6], as well as deployable and conformable
devices [7–9]. In addition to conductive and semiconducting mate-
rials, there are growing interests in integrating piezoelectric materi-
als in soft bio-electronics for their mechanical sensing, actuation,
and energy harvesting capabilities. However, conventional piezo-
electric materials, such as lead zirconate titanate (PZT) [10], zinc
oxide (ZnO) [11], and polyvinylidene fluoride (PVDF) [12], are
much stiffer than soft bio-tissues, which limits their biointegration.
To enable the stretchability of piezoelectric devices, researchers
borrowed the island-bridge structure [13,14] from stretchable elec-
tronics. It consists of isolated stiff functional islands interconnected
by electrically conductive in-plane serpentine or buckled ribbons all
supported by a stretchable substrate [15–17]. For example, a tissue-
conformable stiffness sensor based on PZT islands and serpentine
metal interconnects has been reported to survive up to 30% uniaxial
tensile strain [18]. Similar stretchability has been achieved for
PVDF islands on a thin polydimethylsiloxane substrate [19].
Although these devices are stretchable, separate patterning steps

for piezoelectric materials and metal interconnects are required
during device fabrication.
As a result, people thought of configuring the piezoelectric

materials into a continuous structure that is stretchable. With this
concept, many out-of-plane structures, such as the buckled structure
[20–22], the woven structure [23,24], and the helical structure [25],
have been constructed for piezoelectric devices. However, these
out-of-plane structures increase device thickness and also impede
their encapsulation and integration with foreign surfaces.
In fact, continuous stretchable structures can be achieved

through in-plane designs such as the serpentine ribbons [26–31]
and the kirigami cuts made to a planar sheet [32–34]. Compared
with the kirigami design, which has to buckle out-of-plane when
stretched and consists of many sharp cracks, the serpentine
ribbons can deform completely in-plane [7], can be very compli-
ant to stretch [31], and are robust enough to survive overstretch
and many deformation cycles [35]. In fact, printed serpentine-
shaped PVDF nanofibers/microfibers have been reported with
stretchability up to 300% [36,37]. Our group has applied the
“cut-and-paste” manufacture to pattern a thin sheet of PVDF
into a filamentary serpentine network that can serve as skin-soft
and skin-conformable seismocardiogram sensors to measure the
chest deformation of a few micron strains [38]. So far, the
design of piezoelectric serpentine ribbons (PSRs) is mostly empir-
ical because there is no available theoretical framework for them.
Therefore, we want to provide the first set of theoretical analysis
on PSRs.
The mechanics of passive serpentines has been well studied in

recent years. At small deformation, full-field analytical solutions

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received November 16, 2018; final man-
uscript received January 4, 2019; published online March 16, 2019. Assoc. Editor:
Yonggang Huang.

Journal of Applied Mechanics MAY 2019, Vol. 86 / 051010-1Copyright © 2019 by ASME

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 03/24/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

mailto:liusiyi@utexas.edu
mailto:th25236@utexas.edu
mailto:nanshulu@utexas.edu


under curved beam [31] and linear elasticity [39] assumptions
have been derived for nonbuckling serpentines. However, the
linear models significantly overestimate the stretchability when
the applied strains are beyond 50%, so finite deformation models
were also established for nonbuckling serpentines [40]. Moreover,
the buckling and postbuckling behaviors of freestanding serpentines
[41–43], polymer-bonded serpentines [44–46], and serpentines
exploring self-similar designs [47,48] were also investigated.
Herein, we present a theoretical framework for freestanding non-

buckling PSRs by combining the existing linear elasticity serpentine
model [39] with the piezoelectric plate theory [49]. We will validate
our analytical results through 3D finite element modeling (FEM)
and experiments. We will also examine the effects of a polymer
matrix for PSRs embedded in a polymer matrix.
This paper is organized as follows: In Sec. 2, the theoretical

framework, the FEM method, and the experimental setup for
measuring freestanding PVDF PSRs are described. In Sec. 3, the
theoretical, FEM, and experimental results are plotted together for
comparison. Section 4 experimentally and numerically inves-
tigates PSRs embedded in a polymer matrix and discusses the
applicability of our analytical solutions. Concluding remarks are
given in Sec. 5.

2 Methods
2.1 Analytical Model. We consider uniaxial tension applied

to a periodic PSR. A three-dimensional (3D) schematic of a unit
cell of the PSR is depicted in Fig. 1(a), where gray represents the
piezoelectric material and cyan represents its top and bottom elec-
trodes. In many cases, the surface electrodes are so thin (e.g.,
200 nm) compared with the piezoelectric material (e.g., 28 µm)
that the mechanical stiffness of the electrodes is negligible. The
sidewalls of the PSR are traction-free, charge-free surfaces. The
Cartesian coordinate system {x, y, z} is used as the global
coordinate. The PSR is poled in the z direction and stretched
along the x direction. Each unit cell is constructed by linear arms
and circular arcs. Its geometry can be fully defined by five indepen-
dent parameters: the ribbon thickness t, the ribbon width w, the arm
length l, the arc radius R, and the arc angle α. Assuming that the ser-
pentine cannot buckle, i.e., can only deform in-plane, it can be
modeled as plane stress. In this case, only three independent

dimensionless geometric parameters are left: w/R, l/R, and α.
With each end being pulled by u0 for this unit cell, the applied
strain is defined by

eapp =
2u0
L

(1)

where L is the linear distance between the two ends of the unde-
formed unit cell, which can be expressed as

L = 4 R cos α −
l

2
sin α

( )
(2)

The PSR is assumed to have isotropic mechanical properties and
orthotropic electromechanical properties. Young’s modulus Y and
Poisson’s ratio ν are used to describe the mechanical properties.
The electromechanical properties can be described by a 3 × 6
matrix for the piezoelectric coefficients d following the Voigt nota-
tion and a 3 × 3 matrix for the dielectric constants ε:

[dij] =

0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0

⎡
⎢⎣

⎤
⎥⎦

[εij] =

ε1 0 0

0 ε2 0

0 0 ε3

⎡
⎢⎣

⎤
⎥⎦

(3)

When the PSR is subjected to an end-to-end tensile displacement
2u0, voltage can be generated between the top and the bottom elec-
trodes under the open circuit condition, as illustrated by Fig. 1(b), or
current can be generated under the short circuit condition, as illus-
trated by Fig. 1(c).
When the PSR is stretched, we are interested in how much

voltage can be generated under a given applied strain eapp. We
define sensitivity of the PSR as the partial derivative of the output
voltage φ0 under the open circuit condition with respect to the
applied strain eapp

S =
∂ϕ0

∂eapp
(4)

Fig. 1 (a) 3D schematic of a unit cell of a freestanding piezoelectric serpentine ribbon
(PSR) with geometric parameters labels, (b) and (c) Cross-sectional view of the electrical
boundary conditions (BCs) for open circuit (b) and short circuit (c), (d ) Mechanical BCs
for the arc and the arm; Weak BCs are adopted at the boundaries A, B, and C; c represents
the offset of point loads and d represents the offset of the continuity point in the weak BC
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The normalized sensitivity of the PSR is given by �S = S/Slinear,
where Slinear is the sensitivity of its linear counterpart (see Appen-
dix A):

Slinear =
d31Yt

ε3(1 − Yd231/ε3)
(5)

For a PSR with an arc angle α, when α→−π/2, the normalized
sensitivity �S must approach one because the serpentine ribbon
degenerates to a linear one.
Next, we will apply linear elasticity and linear piezoelectricity

theories to derive the normalized sensitivity �S as a function of the
normalized geometric parameters, l/R, w/R, and α. We establish
the boundary value problem (BVP) by listing the equilibrium equa-
tion, compatibility equation, the constitutive law, and the boundary
conditions (BCs) under the global Cartesian coordinate. The equi-
librium equations are as follows:

∂σij
∂xj

= 0

∂Di

∂xi
= 0

(6)

The compatibility equation is as follows:

∂
∂xj

∂eij
∂xk

+
∂ejk
∂xi

−
∂eik
∂xj

( )
=

∂2ejj
∂xi∂xk

(i ≠ j, j ≠ k, no summation)

(7)

The constitutive law is as follows:

eij = cijklσkl + dkijEk

Dk = dkijσij + εkjEj
(8)

e, c, σ, E, and D denote the strain tensor, the compliance matrix,
the stress tensor, the electric field, and the electric displacement,
respectively. The solution procedure is outlined as follows: First,
we prescribe an applied force P on the PSR, where P represents
the reaction force when the PSR is stretched by eapp or when the
unit cell is stretched by 2u0. According to the definition in
Ref. [39], the mechanical stiffness of the PSR normalized by that
of its linear counterpart can be expressed as PL/(2Ywtu0). Then
we semi-analytically solve the output voltage φ0 and the applied
strain eapp as functions of P. Finally, the normalized sensitivity �S
can be obtained by canceling the applied force P. The normalized
mechanical stiffness can also be analytically solved.
Similar to our previous model on nonbuckling serpentines using

elasticity theory [39], due to the symmetry of the BCs, the unit cell
can be reduced to a quarter cell subjected to a horizontal force P,
which corresponds to a displacement of u0/2. This quarter cell
can be further disassembled into two subregions—a half arc and a
half arm, as shown in Fig. 1(d ). For the two subregions, the cylin-
drical coordinate {r, θ, z} is adopted for the arc, whereas a local
Cartesian coordinate {x′, y′, z} is used for the arm. Weak mechan-
ical BCs such as point forces and moments are applied at the ends
A, B, and C. An offset c for the point force P and an offset d for the
continuity point are introduced as labeled in the figure to improve
the accuracy of the results.
To solve the electromechanically coupled equation, the piezo-

electric plate theory can be adopted because the piezoelectric ser-
pentine is flat initially and deforms in-plane subsequently.
Regarding the electrical BCs of the open circuit case (Fig. 1(b)),
we assume the bottom surface (z= 0) is grounded and the top
surface (z= t) has a constant electric potential φ0, which needs to
be determined as a function of P. All the sidewalls are insulated

and charge-free. The electrical BCs can be written as follows:

ϕ = 0 on z = 0
ϕ = ϕ0 on z = t
Dini = 0 on sidewalls

⎧⎨
⎩ (9)

where ni represents the surface normal. Besides, the total free
charge must be zero on each metallized surface for the open
circuit condition:

Qnet =
∫
D3dΩ = 0 on z = 0, t (10)

In this work, we assume the open circuit condition because cal-
culating and measuring voltage output is easier for FEM and exper-
iments, respectively. With the open circuit solution, the short circuit
solution can be easily obtained by changing a few electrical BCs.
Due to the thinness of the PSR and zero applied load out-of-

plane, the BVP falls into the plane-stress category. The out-of-plane
stresses σ13, σ23, and σ33 are zero and the out-of-plane shear strains
e13 and e23 can be neglected. According to the piezoelectric plate
theory, the electric displacement component D3 can be assumed
to be independent of z [49]. Hence, the constitutive law given in
Eq. (8) reduces to a plane problem

e11 = c11σ11 + c12σ22+d31E3

e22 = c21σ11 + c22σ22+d32E3

e12 = c66σ12
e33 = c31σ11 + c32σ22+d33E3

D3 = d31σ11 + d32σ22 + ε3E3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(11)

For elastically isotropic material, the compliance matrix satis-
fies c21= c12= c32= c31=−ν/Y, c66= (1+ ν)/Y, and c11= c22= 1/
Y. The indices 1, 2, and 3 represent the coordinates x, y, and z,
respectively, in the global Cartesian coordinate. The underlined
terms result from the piezoelectricity of the material. In other
words, the underlined terms will disappear without piezoelectricity,
and the problem will degenerate to the passive serpentine ribbon in
our previous study [39]. The electrical fields can be further simpli-
fied [49] as follows:

ϕ = ϕ(0) + zϕ(1)

Ei = 0, E3 = E(0)
3

Di = 0, D3 = D(0)
3

⎧⎨
⎩ (12)

where i= 1, 2. The terms ()( j) are functions independent of z but
may be dependent on x and y, where j represents the jth order
term. Substituting Eq. (12) into the electrical BCs (Eq. (9)), the elec-
tric potential φ in the body is found to be independent of in-plane
coordinates x and y but proportional to z, while the z component
of the electric field, E3, is a constant everywhere in the material.
The z component of the electric displacement,D3, which is indepen-
dent of z but dependent on the in-plane coordinates x and y, can be
obtained from Eq. (11). As a result, the electrical fields can be
solved as follows:

ϕ = z
ϕ0

t

Ei = 0, E3 = −
ϕ0

t
(i = 1, 2)

Di = 0, D3 = ε3E3 + d31σ11 + d32σ22

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(13)

In terms of the mechanical fields, strain and stress fields were
solved using the Airy stress function in our previous elasticity
model for passive serpentine ribbons [39]. As for PSRs, the
mechanical BCs and the equilibrium and compatibility equations
should be identical to those of passive serpentine ribbons, while
the only difference is the underlined terms in Eq. (11), which
is the constitutive law. The strain components eii in Eq. (11)
contain the underlined constant term d3iE3, which are subjected to
the piezoelectric effect. The stress with undetermined offsets c for
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passive serpentines must be the solution to the stress in the PSR,
because the underlined terms do not cause any violation to any of
the governing equations and BCs. A simple proof is shown in
Appendix B.
Let σ̂ and û represent the stress and displacement fields, respec-

tively, in the global Cartesian coordinate for passive serpentines,
with undetermined offsets c. For simplicity, we use ûarc and ûarm

to distinguish displacements in the arm and the arc. With the
stress field σ̂ available from passive serpentines, the in-plane
strains in the global coordinate become

e11 =
1
Y
(σ̂11 − νσ̂22)+d31E3

e22 =
1
Y
(σ̂22 − νσ̂11)+d32E3

ϵ12 =
σ̂12
G

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(14)

where the underlined terms do not exist for passive serpentines
since they do not have piezoelectric property. The electric displace-
ment can be written as

D3 = ε3E3 + d31σ̂11 + d32σ̂22 (15)

By substituting BC Eq. (10) and E3=−φ0/t into Eq. (15), the rela-
tionship between the output voltage and the applied force can be
obtained as

ϕ0 =
t

ε3As

∫
(d31σ̂11 + d32σ̂22)dΩ (16)

where As is the in-plane area of the serpentine.
To further investigate the strain sensitivity of the PSR, we need to

find out the relation between the applied strain and the reaction
force. The displacement field in the global coordinate can be
obtained from Eq. (14) by substituting E3=−φ0/t

uarcx = ûarcx −d31xϕ0/t

uarcy = ûarcy −d32yϕ0/t

{

uarmx = ûarmx −d31xϕ0/t

uarmy = ûarmy −d32yϕ0/t

{ (17)

where the underlined terms are attributed to the piezoelectricity of
the ribbon. As we did for passive serpentines, an offset d of the con-
tinuity point between the arm and the arc is introduced to offset the
inaccuracy due to the weak BCs. With d, the end-to-end displace-
ment can be obtained as

uapp =
u0
2
= uarcx |r = a+b

2 + d, θ = π
2 + α + uarmx |x = l

2 , y = 0 (18)

Plugging Eq. (18) into Eq. (1), the relation between eapp and P
can be obtained. Up to now, we can express both the output
voltage φ0 and the applied strain eapp in terms of the reaction
force P. Calculating sensitivity according to Eq. (4), P can be
fully eliminated. Thus, the normalized sensitivity of the PSR is a
function of three independent normalized geometric parameters
(w/R, l/R, α) and three independent normalized material parameters
(ν, Yd231/ε3, d32/d31). Justification for the three independent nor-
malized material parameters is offered in Appendix C.
However, two unknown offsets c and d still exist. As discussed

for passive serpentines, given material, the offsets c and d must
be functions of four in-plane geometric parameters (w, R, l, α).
Thus, we define c0= c(w, R, l→ 0, α→−π/2) and d0= d(w, R,
l→ 0, α→−π/2). The variations of c and d are proposed to be [39]

c = c0
2α
π

( )4

α ≤ 0

0 α > 0

⎧⎨
⎩ , d = d0

2α
π

( )4

α ≤ 0

0 α > 0

⎧⎨
⎩ (19)

c0 and d0 can be solved by setting the behavior of the PSR to be a
linear piezoelectric ribbon when l→ 0 and α→−π/2. In our study,
the sensitivity and effective stiffness degenerates to

S0
Slinear

= 1 as l � 0, α � 0

PL

2Ywtu0
=

1

1 − Yd231/ε3
as l � 0, α � 0, ϕ0 � ϕlinear

(20)

By solving the two equations in Eq. (20) for the two unknowns c0
and d0 in MATHEMATICA, the normalized sensitivity can be
finally obtained as a function of the in-plane geometric parameters
�S(w/R, l/R, α) for a given material.

2.2 FEM. To validate our analytical solutions, we used com-
mercial FEM software ABAQUS to perform 3D simulations on
PSRs of different shapes. To be consistent with later experimental
study, the piezoelectric material was chosen to be 28-µm-thick
PVDF, which is elastically isotropic and electromechanically ortho-
tropic. The two piezoelectric coefficients d31 and d32, the dielectric
constant ε3, and the Young’s modulus Y of the PVDF thin film have
been measured in our previous study [38]. The other material prop-
erties can be found in material data sheet and literatures [50–52].
Hence, the following values were adopted in our FEM: Young’s
modulus Y= 3.6 GPa, Poisson’s ratio ν= 0.34, and

[dij] =

0 0 0 0 −27 0

0 0 0 −23 0 0

10 1 −33 0 0 0

⎡
⎢⎣

⎤
⎥⎦ × 10−12 N/C

[εij] =

61.09 0 0

0 76.144 0

0 0 90.54

⎡
⎢⎣

⎤
⎥⎦ × 10−12 F/m

(21)

Due to the symmetry of the serpentine, we analyzed half of the unit
cell of the serpentine in FEM and applied periodic mechanical BCs,
as shown in Fig. 2(a). The right end was fixed in the x-direction, but
was free to move in the y-direction except for the bottom line of
the right end. The left end was subjected to an applied strain eapp
in the negative x-direction. To suppress the buckling, everywhere
in the bottom surface was constrained in the z-direction. For the elec-
trical BCs, the electric potential of the bottom surface (z= 0) was set
to be 0, while that of the top surface (z= t) was an undetermined
constant. Figure 2(b) shows the in-plane deformed configuration
with a scale factor of 10when eapp= 1%. The output voltage, electric
field, electric displacement, and mechanical deformation of the
ribbons can be obtained as FEM results.
Figures 2(c)–2(e) display contour plots for the z component of the

electric displacement (D3) of three different serpentine shapes
obtained by analytical methods (left panels) and FEM (right
panels). It is obvious that the full-field analytical solution agrees
well with the FEM solution except that some subtle mismatch
occurs near the interface between the arm and the arc. It can be
attributed to the fact that the weak BCs applied on the interface
can cause some discontinuity in the stresses, displacements, and
the electric displacements. Fortunately, extreme values occur at
the crest of the arc, which is usually far enough from the interface
unless α→−π/2. The contour plots in Fig. 2 indicate that the
extreme values obtained by analytical and FEM solutions are very
close. In Sec. 3, we will provide graphs to do more quantitative
comparison.

2.3 Experiments. Tensile tests on freestanding PSRs were
performed to validate the results of our analytical and FEM solu-
tions. We purchased a pre-electroded and prepoled 28-µm-thick
PVDF film (TE connectivity) to fabricate PSRs of different
shapes using a paper/vinyl cutter plotter (Silhouette CAMEO).
The material properties of this commercial PVDF were measured
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by us in a previous study [38]. Since the freestanding PSRs started
buckling under very small strains (e.g., 0.2%), we added two cover
sheets to suppress the out-of-plane buckling of the PSR, as illus-
trated in Fig. 3(a). A 50-µm-thick spacer was applied between the
two cover sheets. The two ends of the PSR were patterned into
two rectangular regions for clamping and electrical connection.

The PSR was first prestrained to 0.5% and then subjected to a
1 Hz cyclic uniaxial strain with a peak-to-peak amplitude of epp =
0.4% via an RSA-G2 dynamic mechanical analyzer, as shown in
Fig. 3(b). At such a low loading rate (0.256 mm/s), the loading
process can be regarded as a quasi-static process. The output
voltage between the two surface electrodes was measured by a

Fig. 2 (a) Mechanical boundary conditions in FEM, (b) 10× scaled deformed configuration
obtained by FEM, and (c–e) Full-field contour plots for the z-component of the electric displace-
ment D3 solved by the analytical method (left panels) and the FEM (right panels) under 1%
applied strain for different PSR shapes
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National Instrument data acquisition board (NI6225). Since the
clamped regions did not generate voltage but did contribute to
the total capacitance, the as-measured amplitude of the output
voltage should be compensated. The compensation factor is given
by f= (Ac+Aa)/Aa, where Aa is the area of the active region (the
serpentine part shown in Figs. 3(a) and 3(b)) and Ac is the area of
the clamped region (two rectangular terminal pads visible in
Fig. 3(a)). Experimentally, we manufactured two PSRs with the
same α= 0, l/R= 0, and the same rectangular terminal pads but
different w/R= 0.4 and 0.8. Their compensation factors were cal-
culated to be f0.4= 2.04 and f0.8= 1.66. The as-measured output
voltage for a PSR of w/R= 0.4, α= 0, and l/R= 0 subjected to
epp = 0.4% is plotted in Fig. 3(c). It is obvious that the output
voltage cycles with the strain cycle at 1 Hz, so the peak-to-peak
amplitude of the voltage oscillation (φpp) should be first compen-
sated and then related to the amplitude of cyclic strain (epp).
PSRs with different w/R and subjected to different epp were also
measured. At least two specimens were measured for each shape.
The compensated φpp versus epp results are plotted as hollow trian-
gles with error bars in Fig. 3(d ).

3 Results
3.1 Electromechanical Response. To comparewith the exper-

imental results, analytical and FEM results were obtained for the
same shapes as the ones used in the experiments. Theywere stretched
from the applied strains (0.5% − epp) to (0.5% − epp). The peak-
to-peak voltage of each ribbon was obtained analytically and
numerically as φpp. Analytical and FEM results are plotted as solid
lines and solid dots in Fig. 3(d ) for two different shapes—w/R= 0.4
and 0.8, both with α= 0 and l/R= 0. Other serpentine shapes will be

investigated in the following figures: according to Fig. 3(d ), φpp is
linearly proportional to epp, as expected for linear piezoelectric
materials. The slope of the linear φpp versus epp curve is the sensi-
tivity of the PSR defined by Eq. (4), which is dictated by the serpen-
tine shape for a given material. According to Fig. 3(d ), the larger w/
R, the bigger the slope, which means more voltage can be generated
using a wider ribbon. The six experimental results (hollow trian-
gles) fall reasonably close to the other two solutions, which vali-
dates our analytical and FEM solutions.

3.2 The Sensitivity and Stiffness of PSRs. Within our linear
theory, the sensitivity of PSRs is independent of epp and depends
only on the serpentine shape. To reveal the effects of serpentine
shapes, from now on, we will plot and discuss only the normalized
sensitivity, �S. Figure 4 plots �S as a function of the three different
normalized geometric parameters. Solid curves represent the analyt-
ical solution, solid dots represent the FEM results, and the hollow
triangles represent the experimental results. It is evident from
Fig. 4 that all three types of solutions are in good agreement with
each other. Slight discrepancies between the analytical and the
FEM results occur at large w/R and small l/R in Figs. 4(a) and
4(b) as well as when α→−π/2 and l/R is large in Fig. 4(c) due to
the weak BCs adopted, as we mentioned before. Overall, the depen-
dences are all monotonic—large sensitivity can be achieved by
using wide (large w/R), less wavy (small α), and short-armed
(small l/R) PSRs. As �S never exceeds 1, we conclude that linear
ribbons set the upper limit of the sensitivity for the PSR, i.e., all
PSRs are less sensitive than linear ribbons.
In comparison, Fig. 5 plots the effective mechanical stiffness of

the PSRs using the same horizontal axes as Fig. 4. Due to the

Fig. 3 (a) Experimental setup for limiting the out-of-plane buckling of PSRs under tension,
(b) A PSR mounted on a dynamic mechanical analyzer, (c) As-measured output voltage of a
PSR with w/R=0.4, l/R=0, α=0 deg, and R=4 mm under 0.5% prestrain and 0.4% peak-to-peak
strain amplitude, and (d ) Peak-to-peak output voltage as a function of strain amplitude for the ser-
pentine ribbons of w/R=0.8 (black) and w/R=0.4 (red) obtained by the analytical method (solid
line), FEM (dots), and experiments (hollow triangles); Sensitivity is given by the slope of the
linear curves
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Fig. 4 Normalized sensitivity obtained by the analytical method (solid curve), FEM (dots), and
experiments (hollow triangles): (a) and (b) α=0, (c) w/R=0.2, and (d ) w/R=0.6

Fig. 5 Normalized stiffness obtained by the analytical method (solid curve) and FEM (dots):
(a) and (b) α=0, (c) w/R=0.2, and (d ) w/R=0.6
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electromechanical coupling, the stiffness of the PSR and passive
serpentine ribbons as offered in Ref. [39] differs slightly (∼1%).
Although the sensitivity and stiffness curves are not matched
perfectly, they have a very similar trend, indicating that the
softer serpentines are always less sensitive. This finding gives us
a trade-off when designing soft and stretchable PSRs. We have
to balance the needs for softness and sensitivity to decide on the
PSR shape.

4 Discussion
4.1 Effects of the Weak BCs. Despite the decent agree-

ment between the analytical and the FEM solutions, discrepancy
exists including visible mismatch in Fig. 4(c) for nearly straight
(α<−70 deg) narrow ribbons (w/R <0.2) with long arms (l/R≥ 1).
Such imperfections of the analytical solution can be traced back
to the application of the weak BCs in the full-field elasticity solu-
tion. As shown in Fig. 1(d ), weak BCs, i.e., point loads instead
of distributed loads, were applied at the free end of the arm C and
at the arc–arm interface B. For a serpentine with large arc and
arm, the error caused by the assumed point loads at C and B is neg-
ligible as the Saint-Venant’s principle holds. Thus, our theoretical
solution provides a reliable full-field solution to the stress and dis-
placement. However, the Saint-Venant’s principle breaks down for
serpentines with small arcs. In this case, the weak BCs applied at B
are so close to the crest of the serpentine that the “boundary layer”
engulfs the whole arc.
In our elasticity models for passive serpentine ribbons [39], the

offsets c and d as labeled in Fig. 1(d ) were introduced in the BC to
diminish the influences of the weak BCs on the maximum strain,
but for the full-field solution, it works only for wide ribbons (w/R>
0.6). For narrow ribbons (w/R< 0.2) with a short arc (α< 70°), it
seems that such limitation cannot be fixed with the offsets.

4.2 PSRs Embedded in a Polymer Matrix. So far, we have
presented the electromechanical response and the sensitivity of free-
standing, nonbuckling PSRs. However, in many applications, the
PSR is embedded in a polymer matrix, which can provide the nec-
essary support and insulation. Figure 6(a) illustrates a PSR embed-
ded in a polymer matrix of thickness tm and Young’s modulus Ym.
We expect that the sensitivity of the serpentine ribbons would
increase due to the extra constraint from the polymer matrix, but
no easy analytical solution is achievable at this point. We performed
experiments on PSRs sandwiched by two Tegaderm tapes each
with tm= 47 µm, Ym= 7.4 MPa [35], and ν= 0.49. We used a
28-µm-thick PVDF to fabricate the PSR, tPVDF= 28 μm and
YPVDF= 3.6 GPa. For such matrix-embedded PSRs, the sensitivity
is a function of not only the geometry of the PSR but also the thick-
ness ratio and the modulus ratio of the matrix and the serpentine,
i.e., �S(w/R, l/R, α, tm/tPVDF, Ym/YPVDF). We patterned the
PVDF into PSRs of l/R= 0 and α= 0° but different w/R (0.4, 0.6,
and 0.8) and then sandwiched them by Tegaderm with the terminal
pads exposed for electrical connection. The sandwiched specimens
were subjected to a prestretch of 0.3% and a cyclic test with epp =
0.2% at a frequency of 1 Hz. The cyclic tests were repeated
three times for each specimen. Representative as-measured output
voltages of the three different types of PSRs are displayed in
Fig. 6(b). Experimentally measured sensitivity was obtained follow-
ing the same peak-to-peak voltage compensation and slope extrac-
tion procedure as described for freestanding PSRs in Sec. 2.3. The
experimentally measured sensitivity was normalized and plotted as
hollow triangles in Fig. 6(c).
We also performed FEM for embedded PSRs to reveal the effects

of the thickness and Young’s modulus of the polymer matrix on
the sensitivity of the matrix-embedded PSRs. Figure 6(c) plots
the FEM results of �S versus tm in solid dots, with the given
Young’s moduli YPVDF= 3.6 GPa and Ym= 7.4 MPa. As expected,

Fig. 6 (a) A schematic of matrix-embedded PSR, (b) As-measured output voltage for Tegaderm-
sandwiched PVDF PSRs of different widths under a prestrain of 0.3% and a peak-to-peak strain
amplitude of 0.2%, (c) Normalized sensitivity as a function of matrix thickness obtained by FEM
(dot) and experiments (hollow triangle), and (d ) �S as a function of the modulus ratio Ym/YPVDF;
Solid lines are analytical solutions to freestanding PSRs, while the dots and hollow triangles
are FEM and experimental results, respectively, of matrix-embedded serpentines
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�S increases monotonically with tm till it eventually saturates when
the polymer matrix can be considered as infinitely thick. The exper-
imental results of the Tegaderm-sandwiched PSRs agreed well with
the FEM results in Fig. 6(c).
Effects of matrix stiffness are investigated in Fig. 6(d ). Assuming

matrix thickness tm= 47 μm is fixed but matrix modulus is chang-
ing, Fig. 6(d ) plots the FEM and experimental results of �S versus
Ym/YPVDF (log-scale) for three different w/R (0.4, 0.6, and 0.8).
Two useful observations can be made. First, experimental results
are in good agreement with the FEM results. Second, �S increases
monotonically with Ym/YPVDF but when Ym/YPVDF approaches
zero, i.e., the infinitely soft substrate, �S approaches a constant that
must be the same as the �S of freestanding PSRs. For comparison,
we also plot the analytically solved �S of freestanding PSRs as hor-
izontal solid lines. We can see that when Ym/YPVDF < 3 × 10

−5, the
FEM solution to embedded PSRs and the analytical solution to free-
standing PSRs are indistinguishable.

5 Conclusion
We have developed a full-field analytical solution to freestand-

ing, nonbuckling PSRs under small deformation by combining
the elasticity solution to passive serpentines with the piezoelectric
plate theory. We also performed FEM and carried out experiments
to validate our analytical solution. We emphasized that the experi-
mentally measured peak-to-peak output voltage should be properly
compensated because the clamped terminal pads do not contribute
to the output voltage but do contribute to the total capacitance.
After proper compensation, all three types of results show excellent
agreement and confirm that the peak-to-peak output voltage is lin-
early proportional to the peak-to-peak applied strain. The effects
of serpentine geometry on PSR sensitivity were fully studied. The
sensitivity of the PSR has very similar geometric dependence as
the stiffness of PSR, which indicates a direct trade-off between
the sensitivity and the softness. Overall, the sensitivity is always
lower than its linear counterpart but improves with increasing w/R
and decreasing l/R and α. We have also studied the effect of the
polymer matrix on the sensitivity of PSRs and found that the
increasing matrix thickness and Young’s modulus can improve
the sensitivity of the PSR. We also proved that our analytical solu-
tion is applicable to serpentines made out of stiffness materials but
embedded in a very soft matrix.
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Appendix A
For a straight piezoelectric ribbon under uniaxial stretching,

the governing Eqs. (6)–(8) and the BCs Eqs. (9) and (10) still
hold. The only nonzero stress is the normal stress σ11 in the stretch-
ing direction, so the constitutive law gives

ε11 =
σ11
Y

+ d31E3

D3 = d31σ11 + ε3E3

(A1)

σ11 is constant over the ribbon. Since φ=−E3t, the BC Eq. (9)
gives

ϕlinear =
d31Yt

ε3(1 − Yd231/ε3)
e11 (A2)

The applied strain eapp= e11, so the sensitivity of a straight piezo-
electric ribbon is

Slinear =
∂ϕlinear

∂eapp
=

d31Yt

ε3(1 − Yd231/ε3)
(A3)

Appendix B
To prove the stress field σ̂ for passive serpentine is the solution

for the PSR, we need to prove σ̂ satisfies all the governing
Eqs. (6)–(8) and all the mechanical BCs. Keep in mind that σ̂
in the arc and the arm was derived in the local cylindrical coor-
dinate, {r, θ}, and the local Cartesian coordinate, {x′, y′}, respec-
tively, as shown in Fig. 1(d ). To apply the constitutive law, we
must transform the local coordinates {r, θ} and {x′, y′} to the
global coordinate {x, y} with transformation angles φ1=−(π/2+
θ) and φ2=−(π/2+α). Such rotation of axes does not affect
the satisfaction of all the governing equations. Since the mechan-
ical BCs and equilibrium equations of PSRs are identical to those
of the passive serpentines, σ̂ automatically satisfies all the
mechanical BCs and equilibrium equations of PSRs. Then, we
need to prove that it satisfies the compatibility equation. The
BVP can be reduced to a plane problem for PSRs, so the consti-
tutive law gives Eq. (14). For a plane problem, the compatibility
equation is

∂2e11
∂y2

+
∂2e22
∂x2

= 2
∂2e12
∂x∂y

(B1)

According to Eq. (13), the underlined terms in Eq. (14) are
constant because E3 is constant in the material. The compatibility
Eq. (B1) is then satisfied even with the underlined terms because
they do not contribute to the partial derivatives of the strains.
Therefore, the stress field σ̂ with the undetermined c is the solu-
tion for our problem. The unknown c will be determined at last.

Appendix C
There are only five independent material properties, ν, Y, d31, d32,

and ɛ3, contributing to the voltage output of nonbuckling freestand-
ing PSRs under uniaxial stretching. These five material properties
can be further reduced to three independent normalized material
properties. According to the analytical solution for passive serpen-
tines [39], stress is proportional to the applied force

σ̂ij =
P

tR
f

r

R
,
w

R
,
l

R
, ν, α

( )
(C1)

According to Eq. (16), the voltage is

ϕ0 =
d31
ε3

P

R
g

w

R
,
l

R
, ν, α,

d32
d31

( )
(C2)

where f and g are dimensionless functions. Equations (1), (17), and
(18) give the applied strain

eapp =
P

YtR
f (w/R, l/R, α, ν)

+
d231P

ε3tR
g(w/R, l/R, α, ν, d32/d31) (C3)

Then the sensitivity is

S =
∂ϕ0

∂eapp
=
d31PtY

ε3

g

f +
d231Y

ε3
g

(C4)
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By normalization, the factor d31PhY/ɛ3 can be canceled

�S =
g

glinear

flinear +
d231Y

ε3
glinear

f +
d231Y

ε3
g

(C5)

Therefore, �S is determined only by three normalized material
properties ν, d32/d31, and d231Y/ε3.
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